2014年秋人教版七上:3.1.2《等式的性质》教案设计

合集下载

人教版数学七年级上册3.1.2等式的性质(第一课时)教学设计

人教版数学七年级上册3.1.2等式的性质(第一课时)教学设计
3.教师针对学生的讨论情况进行点评,强调等式性质的重要性,并指出学生在讨论中存在的问题。
(四)课堂练习
1.设计具有代表性的练习题,让学生运用等式的性质进行求解,巩固所学知识。
a.简单的等式求解,如2x + 5 = 15。
b.稍微复杂一些的等式求解,如3(x - 1) + 2 = 7。
c.应用题,如:小明的年龄比小红大6岁,3年后小明的年龄是小红的2倍,求小明和小红的年龄。
六、课后作业
布置适量的课后作业,让学生巩固所学知识,提高解题能力。
七、板书设计
板书应突出等式的性质,以及性质的应用。设计清晰、简洁,便于学生理解和记忆。
二、学情分析
七年级的学生在数学学习上已经具备了一定的基础,他们熟悉基本的算术运算,并对方程的概念有了初步的了解。然而,对于等式的性质及其运用,学生可能还较为陌生,需要通过本节课的学习来加深理解。在此阶段,学生正处于由具体形象思维向抽象逻辑思维过渡的关键时期,他们对于数学原理的理解需要通过具体实例和操作来逐步抽象和内化。此外,学生的自主学习能力、合作交流能力和问题解决能力有待进一步培养和提高。因此,在本节课的教学中,应注重通过实际例子和动手操作,引导学生发现等式的性质,并在此过程中,培养学生运用数学知识解决实际问题的能力,激发他们对数学学习的兴趣和热情。
3.小组合作,探讨等式的性质在解方程、简化计算等方面的其他应用。每组整理出至少3个典型例子,并解释其解题思路。
4.尝试编写一道应用题,要求用到等式的性质来解决问题。题目要具有实际意义,可以涉及购物、年龄、速度等方面。
5.思考并回答以下问题:
a.等式的性质在数学中有哪些应用?
b.如何运用等式的性质来判断数学命题的真假?
a.让学生尝试解这个方程,并总结解方程的方法。

人教版七年级数学3.1.2等式的性质教案设计

人教版七年级数学3.1.2等式的性质教案设计

等式的性质教学目标:1利用天平,通过观察、分析得出等式的性质.掌握等式的两条性质。

2会用等式的性质变形以及解简单的一元一次方程。

重点:理解和应用等式的性质。

难点:利用等式的性质把简单的一元一次方程化成“x=a”的形式。

教学过程:一、知识回顾1:什么是方程?2:什么是一元一次方程?3:什么是方程的解?怎样检验?观察:x+1= 3a+b = b+a4x = 244+X= 7这4个式子的共同点是什么?总结:用等号“=”来表示相等关系的式子,叫做等式。

导入新课:等式有什么性质呢?二、探究学习探究(一)观察课件:(展示课件)天平上左右两边分别放置一块重量一致的汉堡,你发现了什么规律?换成同等质量的苹果呢?你发现了什么规律?自主学习(1)我们知道:4+2=6等号左边加2,结果为();等号右边加2,结果为(),即等号两边同时加2,结果仍()。

等号两边同时减2呢?把2换成其他数试一试。

我们知道: 2x+3x=5x等号左边加4x,结果为();等号右边加4x,结果为(),即等号两边同时加4x,结果仍()。

等号两边同时减4x呢?把4x换成其他算式试一试。

归纳:等式的性质1:等式的两边都加上(或减去)同一个数或同一个式子,所得的结果仍相等.如果a=b,那么a±c=b±c 。

探究(二)观察课件:(展示课件)天平上左右两边换成原来物体数量的3倍,你发现了什么规律?自主学习(2)我们知道:4+2=6等号左边乘3,结果为();等号右边乘3,结果为(),即等号两边同时乘3,结果仍()。

等号两边同时除以3呢?把3换成其他数试一试。

等式两边可以同除以任何数吗?归纳:等式的性质2: 等式两边都乘以同一个数,或都除以同一个不为0的数,结果仍相等。

如果a=b,那么ac=bc;如果a=b(c ≠ 0),那么a/c=b/c.三、课堂练习1、在下面的括号内填上适当的数或者代数式。

(1)2x-6=4;2x-6+6=4+()(2)3x=2x-8;3x-()=2x-8-2x(3)10x-9=8-6x;10x+()-9+9=8-6x+6x+()2. 用适当的数或式子填空,使结果仍是等式。

人教版数学七年级上册3.1.2《等式的性质》教案

人教版数学七年级上册3.1.2《等式的性质》教案

人教版数学七年级上册3.1.2《等式的性质》教案一. 教材分析《等式的性质》是人教版数学七年级上册第三章第一节的内容,主要介绍了等式的性质,包括等式的两边同时加减同一个数、乘除同一个数不改变等式的成立性。

这一节内容是学生学习方程和不等式的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

二. 学情分析学生在学习这一节内容前,已经掌握了整数、有理数的基本运算和概念,具备一定的逻辑思维能力。

但部分学生对于抽象的等式性质的理解可能存在困难,需要通过具体的例子和操作来加深理解。

三. 教学目标1.理解等式的性质,包括等式两边同时加减同一个数、乘除同一个数不改变等式的成立性。

2.能够运用等式的性质解决简单的问题。

3.培养学生的逻辑思维和解决问题的能力。

四. 教学重难点1.重点:等式的性质的理解和运用。

2.难点:对等式性质的深入理解和运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法,通过具体例子和操作,引导学生发现和总结等式的性质,并通过练习巩固所学知识。

六. 教学准备1.教学PPT。

2.练习题。

七. 教学过程1.导入(5分钟)通过一个具体的例子,引导学生思考等式的性质,激发学生的学习兴趣。

例子:有一辆汽车从A地出发,以每小时60公里的速度行驶,行驶了3小时后到达B地,问汽车行驶的路程是多少?2.呈现(10分钟)通过PPT呈现等式的性质,引导学生观察和发现等式的性质。

性质1:等式的两边同时加减同一个数,等式仍然成立。

性质2:等式的两边同时乘除同一个数(不为0),等式仍然成立。

3.操练(10分钟)让学生分组进行练习,运用等式的性质解决问题。

练习1:判断等式的正确性。

练习2:运用等式的性质,求解未知数。

4.巩固(10分钟)让学生独立完成练习题,巩固对等式性质的理解。

1.判断等式的正确性。

2.运用等式的性质,求解未知数。

3.拓展(10分钟)引导学生思考等式性质在实际问题中的应用,提高学生解决问题的能力。

人教版七年级数学上册3.1.2等式的性质(教案)

人教版七年级数学上册3.1.2等式的性质(教案)
五、教学反思
今天我们在课堂上一起探讨了等式的性质,这节课让我感受到了同学们的积极性和好奇心。大家在导入环节对于天平平衡的例子很感兴趣,这为后续的学习奠定了良好的基础。我发现,通过生活中的实际情境引入数学概念,确实能够激发学生的学习兴趣。
在讲授新课的过程中,我注意到有的同学对于等式的性质一和性质二的理解还存在一些困难。尤其是在案例分析环节,对于如何正确运用等式性质解题,部分同学还显得有些迷茫。我通过反复举例和引导,帮助他们逐步掌握了这些性质的应用。这也提醒了我,在今后的教学中,对于重点难点内容,需要更加耐心地讲解,让学生有更多的机会去实践和操作。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作可能是使用计数器或其他教具来演示等式的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“等式的性质在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-通过实例,让学生感受等式性质的数学意义,并将其应用于实际问题中。
举例:重点讲解等式2x + 3 = 7的求解过程,强调等式两边同时减去3后,得到2x = 4,再同时除以2得到x = 2的过程。
2.教学难点
-难点一:理解等式性质背后的逻辑原理,为什么等式两边进行相同操作后仍然成立。
-难点二:在解决具体问题时,如何选择合适的等式性质来简化问题,特别是在有多重操作时。
4.培养学生合作交流能力:通过小组讨论、互动交流,培养学生与他人合作解决问题的能力,增强团队协作意识。
三、教学难点与重点
1.教学重点
-理解并掌握等式的性质一和性质二,即等式两边同时进行加减乘除(除数不为零)操作后,等式依然成立。

人教版数学七年级上册3.1.2等式的性质教学设计

人教版数学七年级上册3.1.2等式的性质教学设计
4.解释等式性质2:等式两边同时乘以或除以同一个不为0的数,等式仍然成立。同样通过实例演示,帮助学生理解这一性质。
5.强调等式性质的应用,说明等式性质在解决实际问题中的重要性。
(三)学生小组讨论
在这一环节,我会组织学生进行小组讨论,共同探究等式的性质。具体步骤如下:
1.将学生分成若干小组,每组4-6人,确保每个学生都能参与到讨论中。
2.给每个小组发放讨论题目,如:请举例说明等式性质1和性质2的应用。
3.学生在小组内进行讨论,分享自己的观点和思考,互相学习,共同进步。
4.各小组汇报讨论成果,其他小组进行评价和补充。
5.教师对每个小组的表现给予点评,强调等式性质的实质和应用。
(四)课堂练习
课堂练习环节,我会设计以下步骤:
1.布置一些基础题,让学生巩固等式性质的基本概念。
2.让学生通过等式的性质,感受数学的严谨性和美妙,培养他们追求真理的精神。
3.引导学生将等式的性质应用于解决实际问题,体会数学与现实生活的紧密联系,增强他们学以致用的意识。
在教学过程中,教师应关注学生的个体差异,因材施教,使他们在知识与技能、过程与方法、情感态度与价值观等方面得到全面提高。以下是对本章节内容的具体教学设计:
2.强调等式性质在数学学习和生活中的重要性。
3.鼓励学生提问和发表见解,解答学生在学习过程中遇到的困惑。
4.布置课后作业,巩固学生对等式性质的理解和应用。
五、作业布置
为了巩固学生对等式性质的理解和应用,我设计了以下作业:
1.基础作业:请学生完成课本第36页的练习题1、2、3,这些题目旨在帮助学生掌握等式性质的基本概念和简单应用。
-演示:教师通过实例演示等式的性质,强调操作步骤和注意事项,让学生直观感受性质的魅力。

人教版七年级数学上册3.1.2 《 等式的性质》教学设计2

人教版七年级数学上册3.1.2 《 等式的性质》教学设计2

人教版七年级数学上册3.1.2 《等式的性质》教学设计2一. 教材分析等式的性质是初中数学中的一个重要概念,对于学生来说,理解和掌握等式的性质对于后续的数学学习有着至关重要的作用。

本节课主要让学生通过探究等式的性质,培养学生的逻辑思维能力和数学语言表达能力。

二. 学情分析学生在进入课堂之前,已经学习了有理数的概念,对数学符号有一定的了解,但是对等式的性质还没有接触过。

因此,在教学过程中,需要引导学生从已有的知识出发,探索和发现等式的性质。

三. 教学目标1.让学生理解等式的性质,并能够运用等式的性质解决问题。

2.培养学生的合作交流能力和逻辑思维能力。

3.提高学生运用数学语言表达问题的能力。

四. 教学重难点1.重点:让学生掌握等式的性质,并能够灵活运用。

2.难点:对等式性质的理解和运用。

五. 教学方法采用问题驱动法,通过引导学生探究等式的性质,激发学生的学习兴趣,培养学生的逻辑思维能力和数学语言表达能力。

六. 教学准备1.PPT课件2.教学素材七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考等式的性质。

例如:已知一个农夫有鸡和兔子共计30只,如果农夫给了邻居5只鸡,那么农夫剩下的鸡和兔子的总数还是30只。

让学生思考,这个过程中等式的性质是什么。

2.呈现(10分钟)通过PPT课件,展示等式的性质,引导学生进行观察和思考。

等式的性质主要包括:等式两边加减同一个数,等式仍然成立;等式两边乘除同一个数,等式仍然成立;等式两边交换位置,等式仍然成立。

3.操练(10分钟)让学生分组进行练习,通过实际操作,让学生理解和掌握等式的性质。

每组挑选一道题目,进行解答,并解释答案的合理性。

4.巩固(10分钟)对学生的练习进行讲解,让学生进一步理解和掌握等式的性质。

针对学生的疑惑,进行解答和指导。

5.拓展(10分钟)让学生思考等式的性质在实际生活中的应用,例如:购物时,如何计算找零;工厂生产中,如何计算产量等。

人教版七年级数学上册3.1.2等式的性质教学设计

人教版七年级数学上册3.1.2等式的性质教学设计
2.学生在运用等式性质解决实际问题时可能遇到的困难,如:选择合适的等式性质进行推理、简化问题等。教师应针对这些问题进行有针对性的指导,帮助学生掌握解决问题的策略和方法。
3.学生的学习兴趣和积极性,教师应通过生动的教学情境、有趣的实际问题,激发学生的学习兴趣,提高他们的学习积极性。
4.学生的合作交流能力,教师应关注学生在小组合作中的表现,引导他们学会倾听、尊重他人意见,提高学生的人际沟通能力。
7.教学评价,关注个体差异
在教学过程中,关注学生的个体差异,采用多元化的评价方式,如:课堂问答、小组讨论、课后作业等,全面评价学生的学习状况。针对学生的不同表现,给予个性化的指导,促进学生的全面发展。
四、教学内容与过程
(一)导入新课,500字
1.教师出示天平,提问:“同学们,你们知道天平的作用吗?”引导学生回顾天平的平衡原理。
b.请举例说明等式性质的应用。
c.在解决问题时,如何选择合适的等式性质?
2.学生在小组内分享自己的观点,讨论并解决疑问。
3.教师巡回指导,关注学生的讨论过程,适时给予提示和指导。
(四)课堂练习,500字
1.教师出示以下练习题,让学生独立完成:
a. 3x + 5 = 14,求解x的值。
b. 7x - 10 = 2x + 3,求解x的值。
2.解解题过程,培养同学们的表达能力和自信心。
3.结合生活实际,编写一道与等式性质相关的问题,并求解。鼓励同学们将所学知识运用到生活中,感受数学的实用价值。
4.小组合作,共同探讨以下问题:在解决实际问题时,如何灵活运用等式性质?请举例说明。要求每组提交一份讨论报告,内容包括问题分析、解决方案和总结。
3.教师总结并强调等式性质的重要性,指出等式性质在后续学习中的广泛应用。

3-1-2 等式的性质(教学设计)-(人教版)

3-1-2 等式的性质(教学设计)-(人教版)

3.1.2 等式的性质教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.1.2 等式的性质,内容包括:等式的性质、应用等式的性质解简单的一元一次方程.2.内容解析《等式的性质》是人教版七年级数学上册第三章第一节的内容,本节课是在学生掌握了一元一次方程的有关概念,并初步经历了列方程解实际问题的基础上,借助天平的原理,通过学生观察、归纳引出等式的两条性质,并直接利用它们讨论一些较简单的一元一次方程的解法,为后面讨论较复杂的方程的解法准备理论依据,也为以后在代数儿何中进行量与量之间的转换,代数式的恒等变形提供依据,更为以后学习不等式打下基础.基于以上分析,确定本节课的教学重点为:掌握等式的性质,会运用等式的性质解简单的一元一次方程.二、目标和目标解析1.目标(1)理解、掌握等式的性质.(2)能正确应用等式的性质解简单的一元一次方程.2.目标解析理解并能用语言表述等式的性质,能用等式的性质解简单的一元一次方程.通过解方程的训练培养学生的概括能力和应用新知的能力,渗透“化归”的思想.利用天平,通过观察、分析得出等式的两条性质.培养学生参与数学活动的自信心和合作交流的意识.通过运用等式性质解方程的过程,体验成功的喜悦,激发学生学习数学的积极性.三、教学问题诊断分析上节课学生刚刚接触了方程和一元一次方程的概念,对于等式有了初步的了解.学生对生活中的天平比较熟悉,将天平的平衡状态与等式的相等关系作对比,快速稳妥地完成等式的性质的学习比较合情合理. 本节课可以类比天平的平衡状态进行学习,而等式的性质二中出现了分母不为零的条件,学生在知识的转换上可能存在着一定难度.基于以上学情分析,确定本节课的教学难点为:由具体实例抽象出等式的性质.四、教学过程设计(一)复习回顾1.什么是等式?用等号表示相等关系的式子叫做等式. 我们可以用a=b表示一般的等式.2.下列各式中哪些是等式?(二)情境引入猜谜语:图是一架天平,现在我把“天平”做为谜面,请你们猜一数学术语.-----等式对比天平与等式,你有什么发现?把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码,则等号成立就可看作是天平保持两边平衡.(三)自学导航观察与思考:观察视频,思考从视频中能类比出等式具有什么样的性质?【归纳】等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.(如果a=b,那么a±c=b±c.)观察与思考:观察视频,思考从视频中能类比出等式具有什么样的性质?【归纳】等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.(如果a=b ,那么ac=bc ;如果a=b(c ≠0),那么a c =bc .)(四)考点解析例1.根据等式性质进行变形,下列变形错误的是( ) A.若x-a=y-a ,则x=y B.若ac 2=bc 2,则a=b C.若2x=x+y ,则x=y D.若x m−1=ym−1,则x=y【迁移应用】1.下列选项中,不能由已知等式a=b 推出的是( )A.a+3x=b+3xB.a-2=b-2C.ac=bcD.a m =bm 2.下列变形一定正确地是( )A.由x=y ,得x+2=y-2B.由x=y ,得2x-1=2y-1C.由x=y+1,得2x=2y+1D.由x 2=y 2,得x=y3.用适当的数或式子填空,使所得的结果仍是等式,并说明变形的依据和过程. (1)若3x+5=8,则3x=8-____,依据是___________,等式的两边________;(2)若-4x=14,则x=______,依据是_______________,等式的两边__________________; (3)若2m-3n=7,则2m=7+____,依据是_______________,等式的两边______. 例2.利用等式的性质解下列方程:(1)x+5=-7; (2)0.4x=-2; (3)12x-6=-9; (4)3x-2=5x+6.解:(1)两边减5,得x+5-5=-7-5.于是x=-12. (2)两边除以0.4,得0.4x 0.4=−20.4.于是x=-5.(3)两边加6,得12x-6+6=-9+6.化简,得12x=-3.两边乘2,得x=-6. (4)两边减5x ,得3x-2-5x=5x+6-5x.化简,得-2x-2=6. 两边加2,得-2x-2+2=6+2.化简,得-2x=8. 两边除以-2,得x=-4. 【总结提升】一般地,从方程解出未知数的值以后,可以代入原方程检验,看这个值能否使方程的两边相等. 例如(4)3x-2=5x+6.将x=-4分别代入方程的左、右两边 左边=3×(-4)-2=-14;右边=5×(-4)+6=-14. 方程的左右两边相等,所以x=-4是原方程的解. 【迁移应用】利用等式的性质解下列.方程并检验:(1)2+3x=-x+6; (2)-y3=3; (3)56x-13=14; (4)-a2-3=5.解:(1)两边减2,得2+3x-2=-x+6-2. 化简,得3x=-x+4. 两边加x ,得3x+x=-x+4+x. 化简,得4x=4. 两边除以4,得x=1.检验:将x=1代入方程2+3x=-x+6的左边,得2+3x1=5.将x=1代入方程2+3x=-x+6的右边,得-1+6=5.方程的左右两边相等,所以x=l 是方程2+3x=-x+6的解.(2)两边乘-3,得y=-9.检验:将y=-9代入方程-y3=3的左边,得-−93=3. 方程的左右两边相等y 所以y=-9是方程-y3=3的解. (3)两边加13,得56x-13+13=14+13.化简,得56x=712.两边乘65,得x=710.检验:将x=710代入方程56x-13=14的左边, 得76×710-13=14.方程的左右两边相等, 所以x=710是方程56x-13=14的解. (4)两边加3,得-a2-3+3=5+3.化简,得-a2=8. 两边乘-2,得a=-16.检验:将a=-16代入方程-a2-3=5的左边,得-−162-3=5.方程的左右两边相等,所以a=-16是方程-a2-3=5的解. 例3.已知2x 2-x=5,求多项式-4x 2+2x-8的值.解:等式两边乘-2,得-2(2x 2-x)=5×(-2). 化简,得-4x 2+2x=-10.两边减8,得-4x 2+2x-8=-10-8=-18. 【迁移应用】1.已知x=2y+3,则式子4x-8y+9的值是_______.2.若2x 2-3=5,则12x2+4=_____.3.已知23a+4=13b ,则a-12b=_____.例4.已知34m-1=34n ,试用等式的性质比较m 与n 的大小. 解:两边乘4,得3m-4=3n. 两边加4,得3m=3n+4. 两边减3n ,得3m-3n=4. 两边除以3,得m-n=43. 所以m-n >0,所以m >n. 【迁移应用】已知3a+2b+1=2a+3b,试用等式的性质比较a与b的大小.解:两边减2a+3b,得3a+2b+1-(2a+3b)=2a+3b-(2a+3b),即3a+2b+1-2a-3b=0,即a-6+1=0.两边减1,得a-b=-1.因为-1<0,所以a-b<0,所以a<b.例5.对设“〇”“△”“□”表示三种不同的物体,现用天平称了两次,如图所示的天平都处于平衡状态,则下列式子中“□”和“〇”的关系正确的是( )【迁移应用】1.设“〇”“△”“□”表示三种不同的物体,现用天平,称了两次,情况如图所示:则下列天平的指针指向不正确的是( )2.如图,两个天平都处于平衡状态,那么与6个小球质量相等的正方体的个数为______.(五)小结梳理五、教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.2 等式的性质
【教学目标】
知识与技能:理解并能用语言表述等式的性质,能用等式的性质解方程。

过程与方法:利用天平,通过观察、分析得出等式的两条性质
情感、态度与价值观:通过观察、操作、归纳等数学活动,感受数学思考过程的条理性和数学结论的严密性。

【教学重点难点】:1.了解等式的概念和等式的两条性质,并能运用这两条性质解方程.
2.难点:由具体实例抽象出等式的性质.
【教学过程】
一、检查预习,小组互助。

1:举例说明什么是等式
2等式有哪些性质?举例验证。

3你能用数学式子表示等式性质吗?
4运用等式的性质2时特别要注意什么问题。

5利用等式的性质解下列方程
(1)x-3=15 (2)-6x=36
二、小组学习,教师视导
探索等式性质
(一) 观察课本图3.1-1,由它你能发现什么规律
等式的性质1:等式两边都加(或减)同一个数(或式子),结果相等.
怎样用式子的形式表示这个性质?
(二).观察课本图3.1-2,由它你能发现什么规律?
等式性质2:等式两边乘同一个数,或除以同一个不等于0的数,结果仍相等.
怎样用式子的形式表示这个性质?
(三)性质的应用
1.(1) 从x=y 能不能得到x+5=y+5呢?为什么?
(2)从a+2=b+2能不能得到a=b 呢?为什么?
(3)从-3a=-3b 能不能得到a=b 呢?为什么?
(4)从x=y 能不能得到
9
9y x =呢?为什么? (5)从x=y 能否得到 a
y a x =呢?为什么? 2.(1)如果5.021=x ,那么2×=x 21 根据 。

(2)如果x-3=2,那么x-3+3= ,根
据 。

(3)如果4x=-12y ,那么x= ,根
据 。

(4)、如果-0.2x=6,那么x= 根据
三、范例剖析,合作探究。

例1:利用等式的性质解下列方程
(1)-1/3x-5=4 (2)4(x+1)=-20 (3)(-x-2)/2=3
例2:下面的解法对不对?如果不对,错在哪里?应怎样改正?
(1)解方程:x+12=34 (2)解方程:-9x+3=6
四、课堂反馈,达标测
1.在等式2x-1=4,两边同时________得2x=5,根据 。

2.在等式-x=4的两边都______,得x=______,根据 。

3.下列各组方程中,解相同的是( ).
A.x-1=3与2x=3
B.x+5=3与2x+6=0
C.与2x-6=0
D.x+8=2x 与2x=5
4.如果 ax = bx ,那么下列变形不一定成立的是( ).
A. ax +1=bx+1
B.5ax =5bx
C.2ax- 3 =2bx- 3
D.a = b
5、下列变形符合等式性质的是( )
A 、如果2x-3=7,那么2x=7-3
B 、如果3x-2=1,那么3x=1-2
C 、如果-2x=5,那么x=5+2
D 如果-
13
1 x 那么x=-3 五、课堂小结,学生总结学习内容。

交流收获、困惑与反思。

课后反思:。

相关文档
最新文档