第三章 逻辑代数基础 作业题(参考答案)

合集下载

第3章 逻辑代数(习题)

第3章 逻辑代数(习题)
3.7 答案
CD
AB
00 01 11 10
00 1 1
1
01
1
(1) F1 m(0,1,2,4) d(5,6)
BC
11 1
1
10 1 1
1
(2) F2 m(3,5,6,7,10) d(0,1,2,4,8)
CD
AB
00 01 11 10
00 x x 1 x
(a)
BC
A
00 01 11 10
0 11
表 T3.4(3表)T3.4(3) A B CA FB C F 0 0 00 0 0 0 0 0 10 10 1 1 0 1 00 01 0 0 0 1 10 1 1 1 1 0 01 0 0 0 1 0 11 0 1 0 1 1 01 1 0 1 1 1 11 1 1 1
(3)
A
表 T3.4(1)
ABCD ABCD ABCD ABC D ABCD ABCD
3.2 答案
(1) 左边 AB B AB AB B A B 右边 (2) 左边 A B CCD (B C)(ABD BC)
(A B C) CD ABCD BC
A B C C D ABCD BC A B 1 D ABCD BC 1 右边
0 0 0X 0Y 1Z 1F
O 000 0
B
0 0 1 0 10 01 01
O
010 1
C
011 0
0 1 0 1 10 00 10
O
101 1
F 0 1 0 1 11 00 00
O
111 1
表 T3.4(2)
1 1A B C F t 000 0
1 10 0 1 1
0 1 0t 1

《数字逻辑》第3章习题答案

《数字逻辑》第3章习题答案


【3-1】填空: (1) 逻辑代数中有三种最基本运算: 与 、 或 和 非 ,在此基础上又派生出五种基本运算, 分别为 与非 、 或非 、 异或 、 同或 、和 与或非 。 (2) 与运算的法则可概述为:有 0 出 0 ,全 1 出 1 ;类似地,或运算的法则为 有”1”出”1”, 全”0”出”0” 。 (3) 摩根定理表示为: A B = A B ; A B = A B 。 (4) 函数表达式 Y= AB C D ,则其对偶式为 Y ' = ( A B)C D 。 积的形式结果应为 M ( 0,1,2,4,5,8,9,10)。 (5) 函数式 F=AB+BC+CD 写成最小项之和的形式结果应为 m ((3,6,7,11,12,13,14,15)), 写成最大项之
0 0 1 1 1 1
1 1 0 0 1 1
0 1 0 1 0 1
1 1 0 0 1 0
【3-8】写出下列函数的反函数 F ,并将其化成最简与或式。 (1) F1 ( A D )( B C D)( AB C ) (2) F2 ( A B )( BCD E )( B C E )(C A) (3) F3 A B C A D (4) F4 ( A B)C ( B C ) D 解: (1) F1 AD C (2) F2 AB A C E (3) F3 AB AC A D (4) F4 BC C D ABD A B C 【3-9】用对偶规则,写出下列函数的对偶式 F ,再将 F 化为最简与或式。 (1) F1 AB B C A C (2) F2 A B C D (3) F3 ( A C )( B C D)( A B D) ABC (4) F4 ( A B )( A C )( B C )(C D) (5) F5 AB C CD BD C 解:题中各函数对偶函数的最简与或式如下: (1) F1 A BC AB C (2) F2 A B D A C D (3) F3 AC A BD (4) F4 A BC B C CD (5) F5 ABC D (6) F6 AB C D 【3-10】已知逻辑函数 F A B C , G=A⊙B⊙C,试用代数法证明: F G 。 解:

第3章 逻辑代数基础-习题答案

第3章  逻辑代数基础-习题答案

第3章 逻辑代数基础3.1 已知逻辑函数真值表如题表3.1所示,写出函数对应的标准与或表达式和标准或与表达式。

解: (0,1,4,5)()()()()(2,3,6,7)F A B C A B C A B C A B C A B C A B C A B C A B C =+++==++++++++=∑∏3.2 写出下列函数的标准与或式和标准或与式。

(1)()()()X A B D A C D B C D =++++++ 解:(先求标准或与式,得最大项;最大项中没有的编号构成最小项,组成标准与或式)()()()()()()()()(0,1,2,6,14)(3,4,5,7,8,9,10,11,12,13,15)X A B D A C D B C D A B C D A B C D A B C D A B C D A B C D =++++++=+++++++++++++++==∑∏ (2) X BCD AC D A C D A B D =+++ 解:(先求标准与或式,得最小项;最小项中没有的编号构成最大项,组成标准或与式)(0,2,4,7,8,12,15)(1,3,5,6,9,10,11,13,14)X BCD AC D A C D A B DABCD ABCD ABC D AB C D ABC D A B C D A BC D =+++=++++++==∑∏3.3 使逻辑函数()()()()()X A B B C A C A C B C =+++++为0的逻辑变量组合有哪些?使之为1的逻辑变量组合有哪些? 解:()()()()()()()()()()()(1,2,3,4,5,6)(0,7)X A B B C A C A C B C A B C A B C A B C A B C A B C A B C =+++++=++++++++++++==∑∏ 使函数为0的组合即最大项,有ABC =“110”,“101”,“100”,“011”,“010”,“001”;使之为1的逻辑变量组合有ABC =“000”,“111”。

第三章 逻辑代数基础 作业题(参考答案)

第三章 逻辑代数基础 作业题(参考答案)

第三章逻辑代数基础(Basis of Logic Algebra)1.知识要点逻辑代数(Logic Algebra)的公理、定理及其在逻辑代数化简时的作用;逻辑函数的表达形式及相互转换;最小项(Minterm)和最大项(Maxterm)的基本概念和性质;利用卡诺图(Karnaugh Maps)化简逻辑函数的方法。

重点:1.逻辑代数的公理(Axioms)、定理(Theorems),正负逻辑(Positive Logic, Negative Logic)的概念与对偶关系(Duality Theorems)、反演关系(Complement Theorems)、香农展开定理,及其在逻辑代数化简时的作用;2.逻辑函数的表达形式:积之和与和之积标准型、真值表(Truth Table)、卡诺图(Karnaugh Maps)、最小逻辑表达式之间的关系及相互转换;3.最小项(Minterm)和最大项(Maxterm)的基本概念和性质;4.利用卡诺图化简逻辑函数的方法。

难点:利用卡诺图对逻辑函数进行化简与运算的方法(1)正逻辑(Positive Logic)、负逻辑(Negative Logic)的概念以及两者之间的关系。

数字电路中用电压的高低表示逻辑值1和0,将代数中低电压(一般为参考地0V)附近的信号称为低电平,将代数中高电压(一般为电源电压)附近的信号称为高电平。

以高电平表示1,低电平表示0,实现的逻辑关系称为正逻辑(Positive Logic),相反,以高电平表示0,低电平表示1,实现的逻辑关系称为负逻辑(Negative Logic),两者之间的逻辑关系为对偶关系。

(2)逻辑函数的标准表达式积之和标准形式(又称为标准和、最小项和式):每个与项都是最小项的与或表达式。

和之积标准形式(又称为标准积、最大项积式):每个或项都是最大项的或与表达式。

逻辑函数的表达形式具有多样性,但标准形式是唯一的,它们和真值表之间有严格的对应关系。

第3章 逻辑代数基础答案.docx

第3章 逻辑代数基础答案.docx

第3章逻辑代数习题33. 1求下列函数的反函数(1) F = AB + C(A + D)(2)y = A(万+ C万+ CD)解:(1)F = AB + C(A + D)=AB*C(A + D)= (A + B)*(C + AD)=AC + BC + ABD(2)F = AB + C(A + D)=AB*C(A + D)= (A + B)*(C + AD)=AC + BC + ABD3. 2求下列函数的对偶式(1)Y = AB* CD* DAB(2)Y = A + C + B + C + A + B + B + C解:(1)Y = AB* CD* DABY'=A + B + C + D + D + A + B(2)Y = A + C + B + C + A + B + B + CY'=ACB^CABB^C3. 3用基本定理和公式证明下列等式(1)ABC + ABC + ABC = AB + AC(2)AB+ AC+ BC AB + C(3)A万+ BD + AD + DC^A万+ Z)(4)BC + D +万(万 + C)(DA + B) = B + D(5)AB + AB + AB + AB = 1(6)(A + B)(A + B)(A + B)(A + B) = 0(7) AB + BC + CA = AB + BC + CA(8)(A + B + C) • AB + BC + CA + ABC = (A + 万 +。

・(AB + BC + CA) + 云万©(9)A©B©C=A0BOC(10)A®B = AQB证明:(1)ABC + ABC + ABC = AB + AC左式=ABC + ABC + ABC=(ABC + ABC) + (ABC + ABC)-AB(C + C) + AC(B + B)=AB + AC =右式(2)AB+ AC+ BC AB + C左式= AB + AC + BC=AB + AC(B + B) + BC=AB + ABC + ABC + BC= B(A + AC) + B(AC + C)=AB + BC + BC=AB + C =右式(3)A万+ BD + AD + DC^AB + D左式=A万+ 切+ l£)+ OC=AB + BD + A(B + B)D + DC=B(A + AZ)) + BD + ABD + DC=AB + BD + BD + ABD + DC=AB+D+ABD+DC=AB + D =右式(4)BC + D +万(万 + C)(DA + B) = B + D左式= BC + D + D(B + C)(DA + B)=BC + D + BD(B+ C}=BC+D+BCD=BC+D+BC=B + D =右式(5)AB + AB + AB + AB = 1&^ = AB + AB + AB + AB=A(B + B) + A(B + B)= A + A=]=右式(6)(A + B)(A + 万)Q + B)Q + 万)=0左式=(A + fi)(A + B)(A + B)(A + 万)=(A + B)(A + B)(A + B)(A + B)=(A + B) + (A + B) + (A + B) + (A + B)=AB + AB + AB + AB=1 = 0 =右式(7)AB + BC + CA = AB + BC + CA根据代入规则,令A=B,,B=C,,C=A,左式= AB + BC + CA= B'C'+C'A'+ A'B'再次利用代入规则可得左式= B'C'+C'A' + A'B'= XB + §C + C如右式(8)(A + 5 + C) • AB + BC + CA + ABC = (M + 万 + C)・(AB + BC + CA) + ~ABC左式=(A + B + C) • AB + BC + CA + ABC=(A + B + C) • AB + BC + CA + ABC= (A + B + C)*(AB + BC + CA) + ABC=右式(9)A©B©C=AOB©C左式=A㊉3㊉C= A©BC + (A ㊉B R= (AOB)C+(A©5)C=A©BOC=右式(10)万= AOB左式=A®B= AB + AB-AB+AB=A0B(11)若A®B = C则= A®C = B由A©5 = A5 + A5 = CnJMB(AB + AB) = BC B* AB + AB = 5C艮"万=BC AB = BC将以上两式相加得配+ BC = A(B + B)即B©C=A同理可MA © C = B3.4 设Y ,= Z…, (0, 4,8, 12), %=£,“(1,4, 7,9, 10),试求下列逻辑函数:(1) A =匕+匕(2)L2 =匕•匕(3)L} =Y X・K解:(1)Lj = Kj + Y2A=匕+匕= £〃?(0,4,8,12) + £〃?(l,4,7,9,10)= £〃?(0,l,4,7,8,9,10,12)(2)L2 =Y t»Y2右=约•匕= £m(0,4,8,12)・£m(l,4,7,9,10)= £m(4)(3)L} =Y X・KA=K况=£m(0,4,8,12)・却1,4,7,9,10)= £〃?(0,8,12)3.5已知Y,=riM (0,2, 4, 6), 丫亓日心(1, 3, 5, 7),试求下列逻辑函数:(1) A =匕+七(2)L2 =匕・*(3)£3 =工•匕(4)L4=1T«K解:匕=f[M(0,2,4,6)= £m(0,2,4,6)K = f[M(l,3,5,7)= £〃?(1,3,5,7)(1)Lj = Kj + Y2A=匕+匕=E=0(2)L2 =匕•匕= X+Y;= £m(0,2,4,6) + £m(l,3,5,7)=0(3)L3=K•匕♦ X •七=K・M= £〃?(0,2,4,6)・£〃?(l,3,5,7)= £m(0,2,4,6)(4)L4=Y[»Y^乙4="= £m(0,2,4,6)・£m(l,3,5,7)3.6试写出图P3. 6所示电路的逻辑函数表达式。

数字逻辑第3章答案

数字逻辑第3章答案
(4) F A B[(C D)E G]
F, A B[(C D)E G]
5 (1) 如果已知 X + Y 和 X + Z 的逻辑值相同,那么 Y 和 Z 的逻
辑值一定相同。正确吗?为什么? (2) 如果已知 XY 和 XZ 的逻辑值相同,那么那么 Y 和 Z 的逻辑值
一定相同。正确吗?为什么? (3)如果已知 X + Y 和 X + Z 的逻辑值相同,且 XY 和 XZ 的逻辑
(1) F(A, B,C, D) BD AD CD CD ACD ABD
(2) F(A, B,C, D) (AB AB) C (AB AB) C
解答
G(A, B,C, D) AB BC AC (A B C) ABC
(1) 当 b a 时,令 a=1,b=0 能得到最简“与-或”表达式: F BC CD ACD (3 项)
(2) 当 a=1,b=1 时,能得到最简的“与-或”表达式:
F BC CD AC (3 项)
11 用列表法化简逻辑函数
F(A, B,C, D) m(0,2,3,5,7,8,10,11,13,15)
10
0
0
01 0 0 1 1
1
1
10 0 0 1 1
1
1
11 0 1 0 1
0
0
4 求下列函数的反函数和对偶函数: (1) F AB AB
(2) F A B A C C DE E
(3) F (A B)(C DAC)
(4) F A B CD E G
值相同,那么 Y = Z。正确吗?为什么? (4) 如果已知 X+Y 和 X·Y 的逻辑值相同,那么 X 和 Y 的逻辑值

第三章 逻辑代数基础 作业题(参考答案)

第三章 逻辑代数基础 作业题(参考答案)

第三章逻辑代数基础(Basis of Logic Algebra)1.知识要点逻辑代数(Logic Algebra)得公理、定理及其在逻辑代数化简时得作用;逻辑函数得表达形式及相互转换;最小项(Minterm)与最大项(Maxterm)得基本概念与性质;利用卡诺图(Karnaugh Maps)化简逻辑函数得方法。

重点:1.逻辑代数得公理(Axioms)、定理(Theorems),正负逻辑(Positive Logic, Negative Logic)得概念与对偶关系(Duality Theorems)、反演关系(plement Theorems)、香农展开定理,及其在逻辑代数化简时得作用;2.逻辑函数得表达形式:积之与与与之积标准型、真值表(Truth Table)、卡诺图(Karnaugh Maps)、最小逻辑表达式之间得关系及相互转换;3.最小项(Minterm)与最大项(Maxterm)得基本概念与性质;4.利用卡诺图化简逻辑函数得方法。

难点:利用卡诺图对逻辑函数进行化简与运算得方法(1)正逻辑(Positive Logic)、负逻辑(Negative Logic)得概念以及两者之间得关系。

数字电路中用电压得高低表示逻辑值1与0,将代数中低电压(一般为参考地0V)附近得信号称为低电平,将代数中高电压(一般为电源电压)附近得信号称为高电平。

以高电平表示1,低电平表示0,实现得逻辑关系称为正逻辑(Positive Logic),相反,以高电平表示0,低电平表示1,实现得逻辑关系称为负逻辑(Negative Logic),两者之间得逻辑关系为对偶关系。

(2)逻辑函数得标准表达式积之与标准形式(又称为标准与、最小项与式):每个与项都就是最小项得与或表达式。

与之积标准形式(又称为标准积、最大项积式):每个或项都就是最大项得或与表达式。

逻辑函数得表达形式具有多样性,但标准形式就是唯一得,它们与真值表之间有严格得对应关系。

数字逻辑课后答案 第三章

数字逻辑课后答案  第三章

第三章 时序逻辑1.写出触发器的次态方程,并根据已给波形画出输出 Q 的波形。

解:2. 说明由RS 触发器组成的防抖动电路的工作原理,画出对应输入输出波形解:3. 已知JK 信号如图,请画出负边沿JK 触发器的输出波形(设触发器的初态为0)1)(1=+++=+c b a Qa cb Q nn4. 写出下图所示个触发器次态方程,指出CP 脉冲到来时,触发器置“1”的条件。

解:(1),若使触发器置“1”,则A 、B 取值相异。

(2),若使触发器置“1”,则A 、B 、C 、D 取值为奇数个1。

5.写出各触发器的次态方程,并按所给的CP 信号,画出各触发器的输出波形(设初态为0)解:6. 设计实现8位数据的串行→并行转换器。

B A B A D +=DC B A K J ⊕⊕⊕==Q AQ B Q D Q C Q E Q F Q7. 分析下图所示同步计数电路解:先写出激励方程,然后求得状态方程状态图如下:该计数器是五进制计数器,可以自启动。

8. 作出状态转移表和状态图,确定其输出序列。

解:求得状态方程如下故输出序列为:000119. 用D 触发器构成按循环码(000→001→011→111→101→100→000)规律工作的六进制同步计数器解:先列出真值表,然后求得激励方程PS NS 输出N0 0 0 0 0 1 00 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1化简得:逻辑电路图如下:n Q 2n Q 1n Q 012+n Q 11+n Q 10+n Q n n n nn n n n n n nnQ Q Q Q Q Q Q Q Q Q Q Q Z 121002*********+==+==+++nnn nnn nnnn QQ Q D QQ Q D QQ Q Q D 121211121122+====+==+++10. 用D 触发器设计3位二进制加法计数器,并画出波形图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章逻辑代数基础(Basis of Logic Algebra)1.知识要点逻辑代数(Logic Algebra)的公理、定理及其在逻辑代数化简时的作用;逻辑函数的表达形式及相互转换;最小项(Minterm)和最大项(Maxterm)的基本概念和性质;利用卡诺图(Karnaugh Maps)化简逻辑函数的方法。

重点:1.逻辑代数的公理(Axioms)、定理(Theorems),正负逻辑(Positive Logic, Negative Logic)的概念与对偶关系(Duality Theorems)、反演关系(Complement Theorems)、香农展开定理,及其在逻辑代数化简时的作用;2.逻辑函数的表达形式:积之和与和之积标准型、真值表(Truth Table)、卡诺图(Karnaugh Maps)、最小逻辑表达式之间的关系及相互转换;3.最小项(Minterm)和最大项(Maxterm)的基本概念和性质;4.利用卡诺图化简逻辑函数的方法。

难点:利用卡诺图对逻辑函数进行化简与运算的方法(1)正逻辑(Positive Logic)、负逻辑(Negative Logic)的概念以及两者之间的关系。

数字电路中用电压的高低表示逻辑值1和0,将代数中低电压(一般为参考地0V)附近的信号称为低电平,将代数中高电压(一般为电源电压)附近的信号称为高电平。

以高电平表示1,低电平表示0,实现的逻辑关系称为正逻辑(Positive Logic),相反,以高电平表示0,低电平表示1,实现的逻辑关系称为负逻辑(Negative Logic),两者之间的逻辑关系为对偶关系。

(2)逻辑函数的标准表达式积之和标准形式(又称为标准和、最小项和式):每个与项都是最小项的与或表达式。

和之积标准形式(又称为标准积、最大项积式):每个或项都是最大项的或与表达式。

逻辑函数的表达形式具有多样性,但标准形式是唯一的,它们和真值表之间有严格的对应关系。

由真值表得到标准和的具体方法是:找出真值表中函数值为1的变量取值组合,每一组变量组合对应一个最小项(变量值为1的对应原变量,变量值为0的对应反变量),将这些最小项相或,即得到标准和表达式。

由真值表得到标准积的具体方法是:找出真值表中函数值为0的变量取值组合,每一组变量组合对应一个最大项(变量值为1的对应反变量,变量值为0的对应原变量),将这些最大项相与,即得到标准积表达式。

每个真值表所对应的标准和与标准积表达方式是唯一的。

(3)利用卡诺图化简逻辑函数卡诺图是真值表的图形表示,利用卡诺图对逻辑函数进行化简的原理是反复使用公式AB+AB′=A,对应到卡诺图上,即为相邻的小方格可以合并。

通常:2个相邻的方格可以合并,并可消去1个变量;4个相邻的方格可以合并,并可消去2个变量;8个相邻的方格可以合并,并可消去3个变量……在相邻方格合并的过程中,通常采用画圈的方法进行标记。

利用卡诺图化简,圈1的结果是得到最简和的表达式,圈0的结果是得到最简积的表达式。

利用卡诺图化简的步骤(以最简和为例):①填卡诺图;②找出全部质主蕴含项;③找到奇异1单元,圈出对应的质主蕴含项;④若未圈完所有1方格,则从剩余的主蕴含项中找出最简的;⑤写出各圈所对应的与项表达式(取值发生变化的变量不写,取值无变化的变量保留,取值为0写反变量,取值为1写原变量)。

⑥将所得到的与项相或,即为化简结果。

化简的原则是:圈1不圈0,1至少圈1次,圈数越少越好,圈越大越好。

(4)利用卡诺图对逻辑函数进行运算利用卡诺图可以完成逻辑函数的逻辑加(或)、逻辑乘(与)、反演(非)、异或等运算。

进行这些运算时,要求参加运算的两个卡诺图具有相同的维数(即变量数相同)。

①卡诺图相加两函数做逻辑加(或)运算时,只需将卡诺图中编号相同的各相应方格中的0、1按逻辑加的规则相或,而得到的卡诺图应包含每个相加卡诺图所出现的全部1项。

②卡诺图相乘两函数做逻辑乘(与)运算时,只需将卡诺图中编号相同的各相应方格中的0、1按逻辑乘的规则相与,所得到的卡诺图中的1方格,是参加相乘的卡诺图中都包含的1格。

③反演卡诺图的反演(非),是将函数F的卡诺图中各个为1的方格变换为0,将各个为0的方格变换为1。

④卡诺图异或两函数做异或运算,只需将卡诺图中编号相同的各相应方格中的0、1按异或运算的规则进行运算,所得到的卡诺图中的1方格,是进行异或运算的卡诺图中取值不同的方格。

2.ExercisesProve theorems (X+Y)(X+Z) = X+Y·Z using perfect induction.If X = 0, Left = (0+Y)(0+Z) = Y·Z Right = 0+ Y·Z = Y·Z ∴ Left = RightIf X = 1, Left = (1+Y)(1+Z) = 1·1 = 1Right = 1+ Y·Z = 1∴ Left = RightAccording to DeMorgan’s theorem, the complement of WX+YZ is W′+X′Y′+Z′. Yet both functions are 1 for WXYZ= 1110. How can both a function and its complement be 1 for the same input combination What’s wrong hereThe mistake is that the original operation priority has been changed.The complement of WX+YZ should be (W′+X′)(Y′+Z′)Use the theorems of switching algebra to simplify each of the following logic functions:(1) F = WXYZ(WXYZ′+WX′YZ+W′XYZ+WXY′Z)(2) F = AB+ABC′D+ABDE′+ A′BC′E+A′B′C′E(3) F = MRP+ QO′R′+MN+ONM+QPMO′(1) F = W·X·Y·Z·(W·X·Y·Z'+W·X'·Y·Z+W'·X·Y·Z+W·X·Y'·Z)= W·X·Y·Z·W·X·Y·Z'+ W·X·Y·Z·W·X'·Y·Z+ W·X·Y·Z·W'·X·Y·Z+ W·X·Y·Z·W·X·Y'·Z= 0(2) F = A·B·(1+C'·D+D·E') + A'·C'·E·(B+B') = A·B + A'·C'·E(3) F = M·R·P + Q·O'·R' + M·N + Q·P·M·O' = M·P·R + Q·O'·R' + M·P·Q·O' + M·N = M·P·R + Q·O'·R' + M·NWrite the truth table for each of the following logic functions:(1) F = AB′+B′C+CD′+CA′(2) F = (A′+B+C′)(A′+B′+D)(B+C+D′)(A+B+C+D)(3) F = AB+AB′C′+A′BC(4) F = XY′+YZ+Z′X(1)0101001101011111000110011101011011111000110101110111110(2)A B C D F00000000100010100111010010101101101011111000110010101001011011000110111110011111(3)A B C F00000010010001111001101011011111(4)X Y Z F00000010010001111001101111011111Write the canonical sum and product for each of the following logic functions:(1) FX,Y (1,2)∑(2) F =A,B(0,1,2)∏(3) F =A,B,C,D (1,2,5,6)∑(4) F = A′B+B′C+A(1) F = ∑X,Y (1,2) = X'·Y+X·Y' (标准和)= ∏X,Y(0,3) = (X+Y)·(X'+Y') (标准积)(2) F = ∏A,B (0,1,2) = (A+B)·(A+B')·(A'+B) (标准积)= ∑A,B (3) = A·B (标准和)(3) F = ∑A,B,C,D (1,2,5,6) = A'·B'·C'·D + A'·B'·C·D' + A'·B·C'·D + A'·B·C·D' (标准和)= ∏A,B,C,D (0,3,4,7,8,9,10,11,12,13,14,15)= (A+B+C+D)·(A+B+C'+D')·(A+B'+C+D)·(A+B'+C'+D')·(A'+B+C+D)·(A'+B+C+D')·(A'+B+C'+D)(A'+B+C'+D')·(A'+B'+C+D)·(A'+B'+C+D')·(A'+B'+C'+D)·(A'+B'+C'+D') (标准积)(4) F = A'·B+B'·C+A = A'·B·(C+C')+(A+A')·B'·C+A·(B+B')·(C+C')= A'·B·C+A'·B·C'+A·B'·C+A'·B'·C+A·B·C+A·B·C'+A·B'·C+A·B'·C'= A'·B·C+A'·B·C'+A·B'·C+A'·B'C+A·B·C+A·B·C'+A·B'C' (标准和)F = A'·B+B'·C+A = A+B+C (标准积)If the canonical sum for an n -input logic function is also a minimal sum, how many literals are in each product term of the sum Might there be any other minimal sums in this case若某函数的标准和也是最小和,说明其卡诺图中的1都不相邻,无法合并。

相关文档
最新文档