2020年湖北省武汉市一初慧泉中学中考数学模拟试卷及答案解析

合集下载

武汉一初慧泉2020年中考数学模拟试卷(一)(word版)

武汉一初慧泉2020年中考数学模拟试卷(一)(word版)

2019~2020武汉市中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.实数-2的相反数是() A .21 B .21-C .2D .-22.式子1+x 在实数范围内有意义,则x 的取值范围是()A .x ≥0B .x ≥-1C .x ≥1D .x ≤-13.有五张背面完全相同的卡片,正面分别标有数字1、2、3、4、5,从中同时抽取两张,则下列事件为随机事件的是()A .两张卡片的数字之和等于11B .两张卡片的数字之和大于或等于2C .两张卡片的数字之和等于8D .两张卡片的数字之和等于1 4.下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5.如图所示的几何体的俯视图是()A .B .C .D .6.在反比例函数xk y 2+=图像的每一支上,y 都随x 的增大而增大,则k 的取值范围是() A .k <0 B .k <-2 C .k >0 D .k >-27.在一个不透明的袋子里,有2个白球和3个红球,它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到红球的概率为() A .51 B .209 C .259 D .258 8.某天早上王刚上学,先步行一段路,遇到雅子同学和她爸爸驾车去学校,在雅子邀请下王刚上车和同学一起去学校,结果提前了16 min 到校,其部分行程情况如图所示.若他出门时步行,正好准时到校,则他的家离学校() A .2400 m B .1600 m C .1800 m D .2000m9.如图,AB 为⊙O 的直径,C 、D 为⊙O 上两点,,连AC 、BD 相交于E 点.如若AB =2CE ,则DE :BE 的值为() A . 313- B .12-C .213- D .212-10.如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为34,再分别取A 1C 、B 1C 的中点A 2、B 2,A 2C 、B 2C 的中点A 3、B 3,依次取下去….利用这一图形,计算出3 4+3 42+343+…+34n 的值是() A . 11414---n nB .nn 414-C . nn 212-D .nn 2121--二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算36=__________.12.数据7,6,2,3,4,5,6,5的中位数是__________.13.计算:2x 14x 4422+++——x x =__________.14.如图△ABC 绕点A 逆时针旋转得到△AB ´C ´,点C 在AB´上,延长BC 交B´C´于D ,∠BCB ´=95°,∠B ´+∠BAC ´=160°,则∠B =__________.15.已知抛物线y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)与x 轴相交于点A ,B (点A 在点B 左侧),点A (﹣1,0),与y 轴交于点C (0,c ),其中2≤c ≤3,对称轴为x =1,现有如下结论:①2a +b =0;②当x ≥3时,y <0;③这个二次函数的最大值的最小值为38;④﹣1≤a ≤32-.其中正确结论的序号是__________.16.如图,在矩形ABC 中,∠C =90°,AB =10.5,BC =14,E 是BC 的中点,F 是DC 的中点,点G 在AB 上,分别连接C D 、EF 交于点O .若∠FOC =45°,则OG =__________.第10题图2020年中考数学模拟1答题卡班级_________ 姓名_________ 总分:一、选择题(每小题3分,共30分)12345678910二、填空题(每小题3分,共18分)11.12.13.14.15.16.三、解答题(共7题,共72分)17.(本题8分)计算:[17m·m3-(3m2)2]÷2m218.(本题8分)如图,在四边形ABCD中,AB∥CD,∠A=∠C,BE平分∠ABC交AD于点E,DF∥BE 交BC于点F,求证:DF平分∠CDA.19.(本题8分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为°;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.20.(本题8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.△ABC的顶点在格点上,仅用无刻度尺的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,完成下列问题:(1) tan∠FCA=___________;(2) 将边BA绕点A顺时针旋转2∠FCA得到线段AD,则∠CAD=___________;(3) 画出△ADC的外接圆的圆心O;(4) 在AD上确定一点G,使GF=GD.21.(本题8分)如图,⊙O过长方形ABCD的顶点D和BC上一点E,且与BA相切于点F,⊙O分别交AD、CD于G、H两点,BF=BE.(1)求证:BC是⊙O的切线;(2)连接FE,FD.若AG=1,BF=5,CH=2,求tan∠FED的值.22.(本题10分)某机械租赁公司有同一型号的机械设备40套,经过一段时间的经营发现,当每套设备的月租金为270元时,恰好全部租出.在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元.设每套设备的月租金为x (元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元).(1)用含x 的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费用 (2)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由.(3)当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益为多少?23.(本题10分)已知,矩形ABCD 中,E 为边AB 上一点,F 为CE 上一点,AB =3 (1)如图1,E 为AB 中点,∠BFC =90°,求EF •EC 的值; (2)如图2,直线AF 交BC 于G ,且AF =FG ,求BE 1+BCBG3的值; (3)如图3,若BF =2,DF =5,∠BFD ﹣∠FBC =90°,则CF =.24.(本题12分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.求DM+DN的值.。

2020年湖北省武汉市中考数学模拟试卷(含答案)

2020年湖北省武汉市中考数学模拟试卷(含答案)

2020年湖北省武汉市中考数学模拟试卷一.选择题(满分30分,每小题3分)1.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等2.若分式有意义,则x的取值范围是()A.x≠5B.x≠﹣5C.x>5D.x>﹣53.下列事件中,必然发生的事件是()A.随意翻到一本书的某页,这页的页码是奇数B.通常温度降到0℃以下,纯净的水会结冰C.地面发射一枚导弹,未击中空中目标D.测量某天的最低气温,结果为﹣150℃4.下列我国著名企业商标图案中,是中心对称图形的是()A.B.C.D.5.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.6.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是()A.B.C.D.7.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()A.B.C.D.8.若反比例函数的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(﹣,3)C.(﹣3,﹣1)D.(,3)9.如图,AB为⊙O的直径,C、D为⊙O上两点,=+,连AC、BD相交于M点.若AB=4CM,则的值为()A.B.C.D.210.将正偶数按图排成5列:根据上面的排列规律,则2008应在()A.第250行,第1列B.第250行,第5列C.第251行,第1列D.第251行,第5列二.填空题(满分18分,每小题3分)11.算术平方根等于它本身的数是.12.一组数据6,3,9,4,3,5,11的中位数是.13.已知=,则实数A﹣B=.14.如果等腰三角形的一个角比另一个角大30°,那么它的顶角是.15.若二次函数y=x2+bx﹣5的对称轴为直线x=2,则关于x的方程x2+bx﹣5=2x﹣13的解为.16.如图,将一张长方形纸片ABCD沿AC折起,重叠部分为△ACE,若AB=6,BC=4,则重叠部分△ACE的面积为.三.解答题(共8小题,满分72分)17.(8分)求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.18.(8分)如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H,∠3+∠4=180°,试说明∠1=∠2.(请通过填空完善下列推理过程)解:因为∠3+∠4=180°(已知)∠FHD=∠4().所以∠3+=180°.所以FG∥BD().所以∠1=().因为BD平分∠ABC.所以∠ABD=().所以.19.(8分)某中学计划为乡村希望小学购买一些文具送给学生,为此希望小学决定围绕在笔袋、圆规、直尺和钢笔四种文具中,你最需要的文具是什么(必选且只选一种)的问题,在全校内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若希望小学共有360名学生,请你估计全校学生中最需要钢笔的学生有多少名?20.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上.连结CE,则CE的长为.21.(8分)如图,AB是半圆O的直径,D为BC的中点,延长OD交弧BC于点E,点F 为OD的延长线上一点且满足∠OBC=∠OFC.(1)求证:CF为⊙O的切线;(2)若DE=1,∠ABC=30°.①求⊙O的半径;②求sin∠BAD的值.(3)若四边形ACFD是平行四边形,求sin∠BAD的值.22.(10分)某经销商以每千克30元的价格购进一批原材料加工后出售,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数y=kx+b,且x=35时,y =55;x=42时,y=48.(1)求一次函数y=kx+b的表达式;(2)设该商户每天获得的销售利润为W(元),求出利润W(元)与销售单价x(元/千克)之间的关系式;(3)销售单价每千克定为多少元时,商户每天可获得最大利润?最大利润是多少元?(销售利润=销售额﹣成本)23.(10分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE 和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.24.(12分)在平面直角坐标系中,抛物线y=ax2+bx﹣4经过点A(﹣8,0),对称轴是直线x=﹣3,点B是抛物线与y轴交点,点M、N同时从原点O出发,以每秒1个单位长度的速度分别沿x轴的负半轴、y的负半轴方向匀速运动,(当点N到达点B时,点M、N同时停止运动).过点M作x轴的垂线,交直线AB于点C,连接CN、MN,并作△CMN 关于直线MC的对称图形,得到△CMD.设点N运动的时间为t秒,△CMD与△AOB 重叠部分的面积为S.(1)求抛物线的函数表达式;(2)当0<t<2时,①求S与t的函数关系式;②直接写出当t=时,四边形CDMN为正方形;(3)当点D落在边AB上时,过点C作直线EF交抛物线于点E,交x轴于点F,连接EB,当S△CBE :S△ACF=1:3时,直接写出点E的坐标为.参考答案一.选择题1.解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.2.解:根据题意得,x﹣5≠0,解得x≠5.故选:A.3.解:A、随意翻到一本书的某页,这页的页码是奇数,是随机事件;B、通常温度降到0℃以下,纯净的水会结冰,是必然事件;C、地面发射一枚导弹,未击中空中目标,是随机事件;D、测量某天的最低气温,结果为﹣150℃,是不可能事件;故选:B.4.解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.5.解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B.6.解:根据十位上的数字x比个位上的数字y大1,得方程x=y+1;根据对调个位与十位上的数字,得到的新数比原数小9,得方程10x+y=10y+x+9.列方程组为.故选:D.7.解:当转盘停止转动时,指针指向阴影部分的概率是,故选:D.8.解:∵反比例函数的图象经过(﹣1,3),∴k=﹣1×3=﹣3.∵﹣3×1=﹣3,﹣×3=﹣1,﹣3×(﹣1)=3,×3=1,∴反比例函数的图象经过点(﹣3,1).故选:A.9.解:连接BC,∵AB为圆O的直径,∴∠ACB=90°,∵=+,∴∠DBC=∠D+∠DCM,∵∠CMB=∠DCM+∠D,∴∠CMB=∠CBM,∴BC=CM,连接AD,同理,AD=DM,设BC=CM=a,∴BM=a,∵AB=4CM,∴AB=4a,∵AC2+CB2=AB2,∴AC=a,∴AM=(﹣1)a,∵AB为⊙O的直径,∴∠ADM=90°,∴DM=AM=a,∴==,故选:C.10.解:∵所在数列是从2开始的偶数数列,∴2008÷2=1004,即2008是第1004个数,∵1004÷4=251,∴第1004个数是第251行的第4个数,观察发现,奇数行是从第2列开始到第5列结束,∴2008应在第251行,第5列.故选:D.二.填空题11.解:算术平方根等于它本身的数是0和1.12.解:把这组数据按从小到大排列,得3,3,4,5,6,9,11,共7个数,中间的数是5,所以这组数据的中位数是5.故答案为:5.13.解:=+=,根据题意知,,解得:,∴A﹣B=﹣7﹣10=﹣17,故答案为:﹣17.14.解:①较大的角为顶角,设这个角为x,则:x+2(x﹣30)=180x=80;②较大的角为底角,设顶角为y°,则:y+2(y+30)=180y=40,答:等腰三角形的顶角为80°或40°.故答案为:80°或40°.15.解:∵二次函数y=x2+bx﹣5的对称轴为直线x=2,∴,得b=﹣4,则x2+bx﹣5=2x﹣13可化为:x2﹣4x﹣5=2x﹣13,解得,x1=2,x2=4.故答案为:x1=2,x2=4.16.解:∵长方形纸片ABCD按图中那样折叠,由折叠的性质可知,∠BAC=∠B′AC,∵DC∥AB,∴∠BAC=∠ECA,∴∠EAC=∠ECA,∴EA=EC,在Rt△ADE中,AD2+DE2=AE2,即42+(6﹣EC)2=EC2,解得,EC=∴重叠部分的面积=××4=,故答案为:.三.解答题17.解:(1)∵2x+5y+3=0,∴2x+5y=﹣3,∴4x•32y=22x•25y=22x+5y=2﹣3=;(2)∵2×8x×16=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.18.解:∵∠3+∠4=180°(已知),∠FHD=∠4(对顶角相等),∴∠3+∠FHD=180°,∴FG∥BD(同旁内角互补,两直线平行),∴∠1=∠ABD(两直线平行,同位角相等),∵BD平分∠ABC,∴∠ABD=∠2(角平分线的定义),∴∠1=∠2,故答案为:对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2,角平分线的定义,∠1=∠2.19.解:(1)抽取的学生数是:18÷30%=60(名);(2)喜欢圆规的学生:60﹣21﹣18﹣6=60﹣45=15(名),补全统计图如图所示;(3)根据题意得:360×=36(名)答全校学生中最需要钢笔的学生有36名.20.解:(1)如图所示,矩形ABCD即为所求;(2)如图所示,△ABE即为所求,CE=4,故答案为:4.21.解:(1)连接CO.∵D为BC的中点,且OB=OC,∴OD⊥BC,∵OB=OC,∴∠OBC=∠OCB,又∵∠OBC=∠OFC,∴∠OCB=∠OFC,∵OD⊥BC,∴∠DCF+∠OFC=90°.∴∠DCF+∠OCB=90°.即OC⊥CF,∴CF为⊙O的切线.(2)①设⊙O的半径为r.∵OD⊥BC且∠ABC=30°,∴OD=OB=r,又∵DE=1,且OE=OD+DE,∴,解得:r=2,②作DH⊥AB于H,在Rt△ODH中,∠DOH=60°,OD=1.∴DH=,OH=,在Rt△DAH中,∵AH=AO+OH=,∴由勾股定理:AD=.∴.(3)设⊙O的半径为r.∵O、D分别为AB、BC中点,∴AC=2OD,又∵四边形ACFD是平行四边形,∴DF=AC=2OD,∵∠OBC=∠OFC,∠CDF=∠ODB=90°,∴,∴,解得:,∴在Rt△OBD中,OB=r,∴,∴,∴在Rt△DAH中,∵AH=AO+OH=,∴由勾股定理:AD=,∴.22.解:(1)将x=35、y=55和x=42、y=48代入y=kx+b,得:,解得:,∴y=﹣x+90;(2)根据题意得:W=(x﹣30)(﹣x+90)=﹣x2+120x﹣2700;(3)由W=﹣x2+120x﹣2700=﹣(x﹣60)2+900,∴销售单价每千克定为60元时,商户每天可获得最大利润,最大利润是900元.23.解:(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴=,由旋转的性质得:∠BAD =∠CAE ,∴△ABD ∽△ACE ,∴==;(3)作AE ⊥CD 于E ,DM ⊥AC 于M ,DN ⊥BC 于N ,如图3所示:则四边形DMCN 是矩形,∴DM =CN ,DN =MC ,∵∠BAC =∠ADC =θ,且tan θ=,∴=,=,∴=,∴AE =AD =×3=,DE =AE =,∴CE =CD ﹣DE =6﹣=,∴AC ===,∴BC =AC =,∵△ACD 的面积=AC ×DM =CD ×AE ,∴CN =DM ==,∴BN =BC +CN =,AM ===,∴DN =MC =AM +AC =,∴BD ===.24.解:(1)抛物线y =ax 2+bx ﹣4经过点A (﹣8,0),对称轴是直线x =﹣3,则抛物线与x 轴另外一个交点坐标为:(2,0),则抛物线的表达式为:y =a (x +8)(x ﹣2)=a (x 2+6x ﹣16),故﹣16a =﹣4,解得:a =,故抛物线的表达式为:y =x 2+x ﹣4;(2)①抛物线的对称轴为:x =﹣3,OM =ON =t ,则AM =8﹣t ,∵MC ∥y 轴,则,即,解得:MC =(8﹣t ),S =S △MCN =MC ×t =﹣t 2+2t ;②四边形CDMN 为正方形时,MC =ND =2t ,即MC =(8﹣t )=2t ,解得:t =,故答案为;(3)由点A 、B 的坐标可得:直线AB 的表达式为:y =﹣x ﹣4,当点D 在AB 上时,在CD 在直线AB 上,设点M (﹣t ,0),则点N (2t ﹣8,﹣t ),由题意得:DM =MN =t ,即(3t ﹣8)2+t 2=2t 2,解得:t =2或4,当t =4时,S △CBE :S △ACF =1:3不成立,故t =2, 故点C (﹣2,﹣3);则AC =3=3CB ,过点E 、F 分别作AB 的垂线交于点M 、N ,∵S △CBE :S △ACF =1:3,∴EM =FN ,故点C 是MN 的中点,设点F (m ,0),点C (﹣2,﹣3), 由中点公式得:点E (﹣4﹣m ,﹣6),将点E 的坐标代入抛物线表达式并解得:m =0或﹣2, 故点E 的坐标为:(﹣4,﹣6)或(﹣2,﹣6), 故答案为:(﹣4,﹣6)或(﹣2,﹣6).。

2020年湖北省武汉市中考数学模拟试卷(含答案)

2020年湖北省武汉市中考数学模拟试卷(含答案)

2020年湖北省武汉市中考数学模拟试卷一.选择题(满分27分,每小题3分)1.一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6 B.5,2,6 C.2,5,﹣6 D.5,2,﹣62.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′3.二次函数y=x2﹣1的图象的顶点坐标为()A.(0,0)B.(0,﹣1)C.(﹣,﹣1)D.(﹣,1)4.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是15.下列方程中,有两个不相等的实数根的是()A.5x2﹣4x=﹣2 B.(x﹣1)(5x﹣1)=5x2C.4x2﹣5x+1=0 D.(x﹣4)2=06.已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为()A.点在圆内B.点在圆上C.点在圆外D.不能确定7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.B.C.x(x﹣1)=28 D.x(x+1)=288.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°9.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =﹣1,与x 轴的一个交点为(2,0).若于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二.填空题(满分18分,每小题3分)10.已知A (m ,n ),B (m +8,n )是抛物线y =﹣(x ﹣h )2+2036上两点,则n = . 11.如图,小圆O 的半径为1,△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3,…,△A n B n ∁n 依次为同心圆O 的内接正三角形和外切正三角形,由弦A 1C 1和弧A 1C 1围成的弓形面积记为S 1,由弦A 2C 2和弧A 2C 2围成的弓形面积记为S 2,…,以此下去,由弦A n ∁n 和弧A n ∁n 围成的弓形面积记为S n ,其中S 2020的面积为 .12.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 寸.13.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是.15.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B点所经过的路径长度为.三.解答题(共8小题,满分72分)16.(8分)解方程:x2+4x﹣3=0.17.(8分)如图,在⊙O中,AB是弦,OC⊥AB于C,OA=6,AB=8,求OC的长.18.(8分)如图所示,有一张“太阳”和两张“小花”样式的精美卡片(共三张),它们除花形外,其余都一样.(1)小明认为:闭上眼从中任意抽取一张,抽出“太阳”卡片与“小花”卡片是等可能的,因为只有这两种卡片.小明的说法正确吗?为什么;(2)混合后,从中一次抽出两张卡片,请通过列表或画树状图的方法求出两张卡片都是“小花”的概率;(3)混合后,如果从中任意抽出一张卡片,使得抽出“太阳”卡片的概率为,那么应添加多少张“太阳”卡片?请说明理由.19.(8分)如图,等腰直角△ABC的斜边AB上有两点M、N,且满足MN2=BN2+AM2,将△ABC绕着C点顺时针旋转90°后,点M、N的对应点分别为T、S.(1)请画出旋转后的图形,并证明△MCN≌△MCS;(2)求∠MCN的度数.20.(8分)如图,AE平分∠BAC,交BC于点D,AE⊥BE,垂足为E,过点E作EF∥AC,交AB于点F.求证:点F是AB的中点.21.(10分)某水果批发商销售每箱进价为40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.(10分)如图,△ABC是等边三角形,AB=2cm.动点P从点C出发,以lcm/s的速度在边BC的延长线上运动.以CP为边作等边三角形CPQ,点A、Q在直线BC同侧.连结AP、BQ 相交于点E.设点P的运动时间为t(s)(t>0).(1)当t=s时,△ABC≌△QCP.(2)求证:△ACP≌△BCQ.(3)求∠BEP的度数.(4)设AP与CQ交于点F,BQ与AC交于点G,连结FG,当点G将边AC分成1:2的两部分时,直接写出△CFG的周长.23.(12分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:方程整理得:2x2+5x﹣6=0,则方程的二次项系数、一次项系数、常数项分别是2,5,﹣6,故选:C.2.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.3.解:∵二次函数y=x2﹣1,∴该函数图象的顶点坐标为(0,﹣1),故选:B.4.解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,并不能说明每次抛出硬币一定向上,即抛掷硬币正面向上的概率不是1,此选项错误;故选:A.5.解:A、原方程可变形为5x2﹣4x+2=0,∵△=(﹣4)2﹣4×5×2=﹣24<0,∴方程5x2﹣4x=﹣2无实数根;B、原方程可变形为6x﹣1=0,∴方程(x﹣1)(5x﹣1)=5x2只有一个实数根;C、∵△=(﹣5)2﹣4×4×1=9>0,∴方程4x2﹣5x+1=0有两个不相等的实数根;D、∵(x﹣4)2=0,∴x1=x2=4,∴方程(x﹣4)2=0有两个相等的实数根.故选:C.6.解:∵OA=OP=2.5,⊙O的半径为3,∴OA<⊙O半径,∴点A与⊙O的位置关系为:点在圆内.故选:A.7.解:设比赛组织者应邀请x个队参赛,依题意,得: x(x﹣1)=28.故选:A.8.解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.9.解:∵抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1∴﹣=﹣1,解得b=2a.又∵抛物线y=ax2+bx+c(a<0)与x轴的一个交点为(2,0).把(2,0)代入y=ax2+bx+c得,0=4a+4a+c解得,c=﹣8a.∴y=ax2+2ax﹣8a(a<0)对称轴h=﹣1,最大值k==﹣9a如图所示,顶点坐标为(﹣1,﹣9a)令ax2+2ax﹣8a=0即x2+2x﹣8=0解得x=﹣4或x=2∴当a<0时,抛物线始终与x轴交于(﹣4,0)与(2,0)∴ax2+bx+c=p即常函数直线y=p,由p>0∴0<y≤﹣9a由图象得当0<y≤﹣9a时,﹣4<x<2,其中x为整数时,x=﹣3,﹣2,﹣1,0,1 ∴一元二次方程ax2+bx+c=p(p>0)的整数解有5个.又∵x=﹣3与x=1,x=﹣2与x=0关于直线x=﹣1轴对称当x=﹣1时,直线y=p恰好过抛物线顶点.所以p值可以有3个.故选:B.二.填空题(共6小题,满分18分,每小题3分)10.解:∵A(m,n)、B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,∴A(h﹣4, n),B(h+4,n),当x=h+4时,n=﹣(h+4﹣h)2+2036=2020,故答案为2020.11.解:∵小圆O的半径为1,△A1B1C1,△A2B2C2,△A3B3C3,…,△A n B n∁n依次为同心圆O的内接正三角形和外切正三角形,∴S1=S﹣S=﹣××,S2=﹣2×1S3=﹣4×2…发现规律:Sn=﹣×(2n﹣1)×2n﹣2=×22n﹣2﹣22n﹣4×=22n﹣4(﹣)∴S2020的面积为:24036(﹣).故答案为:24036(﹣).12.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.13.解:圆锥的侧面积=×2π×3×7=21π.故答案为21π.14.解:∵y=x2﹣4x+c=(x﹣2)2+c﹣4,∴其顶点坐标为(2,c﹣4),∵顶点在x轴上,∴c﹣4=0,解得c=4,故答案为:4.15.解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段==π,第二段==π.故B点翻滚一周所走过的路径长度=π+π=π,三次一个循环,∵40÷3=13……1,若翻滚了40次,则B点所经过的路径长度为13×π+π=18π.故答案为:18π.三.解答题(共8小题,满分72分)16.解:原式可化为x2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x=﹣2+;1x=﹣2﹣.217.解:∵AB是⊙O的弦,OC⊥AB于点C,AB=8,∴AC=BC=4,∠ACO=90°,由勾股定理得:OC===2;18.解:(1)答:不正确,P(抽出“太阳”卡片)=,P(抽出“小花”卡片)=;(2)设“太阳”卡片与“小花”卡片分别为A,B,列表得:(A,B)(B,B)﹣﹣﹣(A,B)﹣﹣﹣﹣(B,B)﹣﹣﹣﹣﹣(B,A)(B,A)∴两张卡片都是“小花”的概率为=;(3)设应添加x张“太阳”卡片,,解得x=3.∴应添加3张“太阳”卡片.19.解:(1)画图形如右图所示:证明:由旋转的性质可得:CS=CN,AS=BN,又∵MN2=BN2+AM2,∴MN2=AS2+AM2=MS2,∴MS=MN,又∵CS=CN,CM=CM,∴△MCN≌△MCS(SSS).(2)由(1)得:△MCN≌△MCS,∴∠NCM=∠MCS=45°.20.证明:∵AE平分∠BAC,∴∠BAD=∠CAD,∵EF∥AC,∴∠FEA=∠CAD,∴∠BAD=∠FEA,∴FA=FE,∵AE⊥BE,∴∠BEF+∠AEF=90°,∵∠ABE+∠BAE=90°,∴∠ABE=∠BEF,∴FB=FE,∴FB=FA,即点F是AB的中点.21.解:(1)y=90﹣3(x﹣50)即y=﹣3x+240;(2)w=(x﹣40)y=(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3)w=﹣3x2+360x﹣9600=﹣3(x﹣60)2+1200∵a=﹣3<0,∴当销售价x=60元时,利润w最大.最大利润为1200元.22.解:(1)∵△ABC,△CPQ都是等边三角形,∴当PC=AB=2时,△ABC≌△QCP.∴t=2s,故答案为2.(2)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵△CPQ是等边三角形,∴∠PCQ=60°,CP=CQ,∴∠ACP=∠BCQ=120°,∴△ACP≌△BCQ(SAS).(3)∵△ACP≌△BCQ,∴∠CAP=∠CBQ,∵∠BEP=∠ABE+∠BAE,∴∠BEP=∠ABC+∠BAC,∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠BEP=120°.(4)如图1中,∵△ACP≌△BCQ,∴∠CAF=∠CBG,∵CA=CB,∠ACF=∠BCG=60°,∴△ACF≌△BCG(ASA),∴CF=CG,∵∠GCF=60°,∴△GCF是等边三角形,当AG=2CG时,CG=cm,∴△CFG的周长为2cm如图2中,当CG=2AG时,CG=cm,△FCG的周长为4cm.综上所述,△CFG的周长为2cm或4cm.23.解:(1)c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)如图1,过点D作DH⊥x轴于点H,交AB于点M,S△COF :S△CDF=3:2,则OF:FD=3:2,∵DH∥CO,故CO:DM=3:2,则DM=C O=2,由B、C的坐标得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点M(x,﹣x+3),DM=﹣x2+2x+3﹣(﹣x+3)=2,解得:x=1或2,故点D(1,4)或(2,3);(3)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,设MH=x,则MG=,则△OBM中,OB2+OM2=MB2,即(+)2+9=(x+3)2,解得:x=2,故MG==,则点M(0,4),将点B、M的坐标代入一次函数表达式并解得:直线BM的表达式为:y=﹣x+4…②,联立①②并解得:x=3(舍去)或,故点P(,);②当点P在x轴下方时,同理可得:点P(﹣,﹣);综上,点P的坐标(,)或(﹣,﹣).。

湖北省武汉市2020年数学中考模拟试卷及参考答案

湖北省武汉市2020年数学中考模拟试卷及参考答案

A . 21,22 B . 21,21.5 C . 10,21 D . 10,22 4. 如图,在平面直角坐标系中,点A,B,C的坐标分别为(-1,3)、(-4,1)、(-2,1),将△ABC沿一确定方向 平移得到△A1B1C1 , 点B的对应点B1的坐标是(1,2),则点A1 , C1的坐标分别是( )
(1) 如图1,当点E在边BC上时,求证DE=EB; (2) 如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明; (3) 如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,B H=3.求CG的长. 24. 如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A(0,1)和点B(3,﹣2),交x轴于 点C,顶点为点F,点D是该抛物线上一点.
9. 如图,在等腰Rt△ABC中,∠C=90°,直角边AC长与正方形MNPQ的边长均为2cm,CA与MN在直线l上.开始时A 点与M点重合;让△ABC向右平移;直到C点与N点重合时为止.设△ABC与正方形MNPQ重叠部分(图中阴影部分)的面 积为ycm2 , MA的长度为xcm,则y与x之间的函数关系大致是( )
13. 计算:
________.
ห้องสมุดไป่ตู้
14. 如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE =1.5,则四边形EFCD的周长________.
15. 二次函数y=ax2+bx+3的图象经过点A(﹣2,0)、B(4,0),则一元二次方程ax2+bx=0的根是________. 16. 如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD ∥AC;②∠B=∠C;③2OA=BC;④DE是⊙O的切线;⑤∠EDA=∠B,正确的序号是________.

2020年湖北省武汉市中考数学模拟试卷(一)解析版

2020年湖北省武汉市中考数学模拟试卷(一)解析版

2020年湖北省武汉市中考数学模拟试卷(一)一、选择题(共8小题,每小题3分,共24分)1.(3分)在数1,2,3和4中,是方程x2+x﹣6=0的根的为()A.1B.2C.3D.42.(3分)桌上倒扣着形状,大小,背面图案都相同的10张扑克牌,其中6张梅花、4张红桃,则()A.从中随机抽取1张,抽到梅花的可能性更大B.从中随机抽取1张,抽到梅花和红桃的可能性一样大C.从中随机抽取6张必有2张红桃D.从中随机抽取5张,可能都是红桃3.(3分)抛物线y=2(x﹣3)2﹣7的顶点坐标是()A.(3,7)B.(﹣3,7)C.(3,﹣7)D.(﹣3,﹣7)4.(3分)在⊙O中,弦AB的长为8,⊙O的半径为5,则圆心O到AB的距离为()A.4B.3C.2D.15.(3分)在平面直角坐标系中,有A(3,﹣2),B(﹣3,﹣2),C(2,2),D(﹣3,2)四点.其中关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A 6.(3分)方程x2﹣x+2=0的根的情况是()A.两实数根的积为2B.两实数根的和为1C.没有实数根D.有两个不相等的实数根7.(3分)将抛物线y=﹣(x+1)2向右平移3个单位,再向上平移2个单位后得到的抛物线的解析式为()A.y=﹣(x+4)2+2B.y=﹣(x+4)2﹣2C.y=﹣(x﹣2)2﹣2D.y=﹣(x﹣2)2+28.(3分)如图,点O1是△ABC的外心,以AB为直径作⊙O恰好过点O1,若AC=2,BC=4,则AO1的长是()A.3B.C.2D.2二、填空题(共5个小题,每小题3分,共15分)9.(3分)掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为3点“出现的频率越来越稳定于0.3.那么,掷一次该骰子,“朝上一面为3点”的概率为.10.(3分)如图,AB为⊙O的直径,点C、D在⊙O上.若∠CAB=40°,则∠D的大小为度.11.(3分)圆心角为125°的扇形的弧长是12.5π.则扇形的面积为.12.(3分)如图是一块矩形铁皮,将四个角各剪去一个边长为1米的正方形后剩下的部分做成一个容积为70立方米的无盖长方体箱子,已知长方体箱子底面的长比宽多3米,则矩形铁皮的面积为m2.13.(3分)如图,正三角的边长为6cm,则这个正三角形的内部任意一点到三边的距离和为cm.三、解答题(共8题,共61分)14.(8分)解方程:x2﹣2x﹣4=0.15.(8分)△ABC内接于⊙O,AB=AC,∠BAC=40°.(1)求∠ABC的度数;(2)D为AB的中点,过B作BE∥AD交⊙O于点E,求∠CAE的度数.16.(8分)阅读材料,回答问题.材料:题1:假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功后,求3只雏鸟中恰有2只雄鸟的概率,我们可以用“袋中摸球”的试验来模拟题1:在口袋中放两种不同颜色的小球,红球表示雌鸟,黄球表示雄鸟,3只雏鸟孵化小鸟.相当于从三个这样的口装中各随机换出一球.恰好有2个黄球.题2:一天晚上,小伟帮助妈妈清洗两套只有颜色不同的有盖茶杯.突然停电了.小伟只好把杯等和茶杯随机地搭配在一起:求颜色搭配正确的概率.(1)设计一个“袋中模球”的试验模拟题2,请筒要说明你的方案;(2)请直接写出题2的概率的结果.17.(9分)如图所示,在直角坐标系中,已知A(2,2)、B(0,1),平移线段AB至线段DC,使得点A与点D重合,点B与点C重合(1)若C(1,0),请画出此四边形ABCD,此时四边形ABCD的面积为;(2)若四边形ABCD为正方形,直接写出点C的坐标为;(3)若点C在坐标轴上,且四边形ABCD为菱形,则满足条件的菱形有个.18.(10分)如图,点C在以AB为直径的⊙O上.AE与过点C的切线垂直,垂足为D,AD交⊙O于点E,过B作BF∥AE交⊙O于点F,连接CF.(1)求证:∠B=2∠F;(2)已知AE=8,DE=2,过B作BF∥AE交〇O于F,连接CF,求CF的长.19.(10分)某产品每件成本10元,试销阶段日销售量y(件)与每件产品的销售单价x (元/件)之间的关系如表.X(元/件)15182022y(件)250220200180(1)直接写出日销售量y(件)与每件产品的销售单价x(元/件)之间的函数解析式;(2)销售单价定为多少元时,销售利润最大;(3)若销售利润为1250元,且使销售量最大,求销售单价.20.(4分)如图,将△ABC绕点A逆时针旋转90°得到△ADE,将线段BC绕点C顺时针旋转90°得线段CG,DG交EC于O点,求证:EO=OC.21.(4分)已知抛物线y=(m+1)x2+(m﹣2)x﹣3,抛物线必过第三象限一个定点,求该定点的坐标.参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.(3分)在数1,2,3和4中,是方程x2+x﹣6=0的根的为()A.1B.2C.3D.4【分析】求出方程的解,判断即可.【解答】解:方程分解得:(x﹣2)(x+3)=0,可得x﹣2=0或x+3=0,解得:x=2或x=﹣3,故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.(3分)桌上倒扣着形状,大小,背面图案都相同的10张扑克牌,其中6张梅花、4张红桃,则()A.从中随机抽取1张,抽到梅花的可能性更大B.从中随机抽取1张,抽到梅花和红桃的可能性一样大C.从中随机抽取6张必有2张红桃D.从中随机抽取5张,可能都是红桃【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:A、从中随机抽取1张,抽到梅花的可能性为0.6,抽到红桃的可能性为0.4,故正确;B、从中随机抽取1张,抽到梅花和红桃的可能性不是一样大,故错误;C、从中随机抽取6张,不一定必有2张红桃,故错误;D、从中随机抽取5张,不可能都是红桃,故错误,故选:A.【点评】本题考查的是可能性的大小,熟知随机事件发生的可能性(概率)的计算方法是解答此题的关键.3.(3分)抛物线y=2(x﹣3)2﹣7的顶点坐标是()A.(3,7)B.(﹣3,7)C.(3,﹣7)D.(﹣3,﹣7)【分析】直接利用顶点式的特点可知顶点坐标.【解答】解:因为y=2(x﹣3)2﹣7是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,﹣7);故选:C.【点评】本题考查了二次函数的性质,由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.4.(3分)在⊙O中,弦AB的长为8,⊙O的半径为5,则圆心O到AB的距离为()A.4B.3C.2D.1【分析】连接OA,因为OC为圆心O到AB的距离,所以OC⊥AB,根据垂径定理,AC =CB=AB=4,因为圆O的半径为5,所以OA=5,在Rt△AOC中,利用勾股定理,可以求出OC=3.【解答】解:如图,连接OA,作OC⊥AB于C.∵OC为圆心O到AB的距离,∴OC⊥AB,∵AB=8,∴AC=CB=AB=4,∵圆O的半径为5,∴OA=5,在Rt△AOC中,根据勾股定理,OC===3,故选:B.【点评】本题考查垂径定理,勾股定理等知识,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.5.(3分)在平面直角坐标系中,有A(3,﹣2),B(﹣3,﹣2),C(2,2),D(﹣3,2)四点.其中关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A 【分析】根据关于原点对称,横纵坐标都互为相反数,即可得出答案.【解答】解:由题可得,A(3,﹣2)与D(﹣3,2)关于原点对称,故选:D.【点评】本题考查了关于原点对称点的坐标,点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).6.(3分)方程x2﹣x+2=0的根的情况是()A.两实数根的积为2B.两实数根的和为1C.没有实数根D.有两个不相等的实数根【分析】根据根的判别式即可求出答案.【解答】解:由题意可知:△=1﹣4×2=﹣7<0,故选:C.【点评】本题考查一元二次方程,解题的关键是熟练运用根的判别式,本题属于基础题型.7.(3分)将抛物线y=﹣(x+1)2向右平移3个单位,再向上平移2个单位后得到的抛物线的解析式为()A.y=﹣(x+4)2+2B.y=﹣(x+4)2﹣2C.y=﹣(x﹣2)2﹣2D.y=﹣(x﹣2)2+2【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=﹣(x+1)2向右平移3个单位,再向上平移2个单位后所得直线解析式为:y=﹣(x+1﹣3)2+2,即y=﹣(x﹣2)2+2.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.8.(3分)如图,点O1是△ABC的外心,以AB为直径作⊙O恰好过点O1,若AC=2,BC=4,则AO1的长是()A.3B.C.2D.2【分析】连接AO1、BO1,首先由直径所对的圆周角是直角得出∠AO1B=90°,再由圆周角定理得出∠ACB=(360°﹣90°),延长AC交⊙O于D,求得∠BCD=45°,根据勾股定理得到AB===2,根据等腰直角三角形的性质即可得出结果.【解答】解:作△ABC的外接圆,连接AO1、BO1,如图所示:∵AB是⊙O的直径,∴∠AO1B=90°,由圆周角定理得:∠ACB=(360°﹣90°)=135°,延长AC交⊙O于D,∴∠BCD=45°,∵AB是⊙O的直径,∴∠D=90°,∴CD=BD=BC=4,∴AD=AC+CD=6,∴AB===2,∵点O1是△ABC的外心,∴AO1=BO1,∵∠AO1B=90°,∴AO1=AB=,故选:B.【点评】本题考查了三角形的外接圆与外心、圆周角定理;熟练掌握圆周角定理,由直径所对的圆周角是直角得出∠AO1B=90°是解决问题的关键.二、填空题(共5个小题,每小题3分,共15分)9.(3分)掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为3点“出现的频率越来越稳定于0.3.那么,掷一次该骰子,“朝上一面为3点”的概率为0.3.【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.【解答】解:∵大量的重复试验,发现“朝上一面为3点“出现的频率越来越稳定于0.3,∴掷一次该骰子,“朝上一面为3点”的概率为0.3故答案为:0.3.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.10.(3分)如图,AB为⊙O的直径,点C、D在⊙O上.若∠CAB=40°,则∠D的大小为50度.【分析】连接BC,求出∠ABC的度数,然后根据圆周角定理求出∠D的度数.【解答】解:连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∴∠B=∠ABC=50°,故答案为50.【点评】本题主要考查了圆周角定理,熟练掌握在同圆或等圆中,同弧所对的圆周角相等是解题的关键.11.(3分)圆心角为125°的扇形的弧长是12.5π.则扇形的面积为112.5π.【分析】首先利用弧长公式得出半径,进而利用扇形面积求法得出答案.【解答】解:∵圆心角为125°的扇形的弧长是12.5π,∴12.5π=,解得:r=18,故扇形的面积为:×18×12.5π=112.5π.故答案为:112.5π.【点评】此题主要考查了扇形面积的计算,正确得出半径长是解题关键.12.(3分)如图是一块矩形铁皮,将四个角各剪去一个边长为1米的正方形后剩下的部分做成一个容积为70立方米的无盖长方体箱子,已知长方体箱子底面的长比宽多3米,则矩形铁皮的面积为108m2.【分析】设矩形铁皮的宽为x米,则长为(x+3)米,无盖长方体箱子底面长为(x+3﹣2)米,宽为(x﹣2)米,根据长方体的体积公式,即可得出关于x的一元二次方程,解之即可得出x的值,再利用矩形的面积公式即可求出矩形铁皮的面积.【解答】解:设矩形铁皮的宽为x米,则长为(x+3)米,无盖长方体箱子底面长为(x+3﹣2)米,宽为(x﹣2)米,依题意,得:1×(x+3﹣2)×(x﹣2)=70,整理,得:x2﹣x﹣72=0,解得:x1=9,x2=﹣8(不合题意,舍去),∴x(x+3)=108.故答案为:108.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.(3分)如图,正三角的边长为6cm,则这个正三角形的内部任意一点到三边的距离和为3cm.【分析】由条件可以求出边长为2的等边三角形的高为3,连接PA,PB,PC,仿照面积的割补法,得出S△PBC +S△PAC+S△PAB=S△ABC,而这几个三角形的底相等,故化简后可得出高的关系.【解答】解:分别连接AP,BP,CP,作AD⊥BC于D,∴∠ADB=90°,∵△ABC是等边三角形∴AB=BC=AC=2,∠ABC=60°,∴∠BAD=30°,∴BD=3,在Rt△ABD中,由勾股定理,得∴AD=3∵S△ABP +S△BCP+S△ACP=S△ABC.∴AB•r1+BC•r2+AC•r3=BC×AD,∵BC=AC=AB,∴r1+r2+r3=AD.∴r1+r2+r3=3.故答案是:3.【点评】本题主要考查了等边三角形的性质,及利用面积分割法,求线段之间的关系,充分体现了面积法解题的作用.三、解答题(共8题,共61分)14.(8分)解方程:x2﹣2x﹣4=0.【分析】在本题中,把常数项﹣4移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:由原方程移项,得x2﹣2x=4,等式两边同时加上一次项系数一半的平方,得x2﹣2x+1=5,配方,得(x﹣1)2=5,∴x=1±,∴x1=1+,x2=1﹣.【点评】本题考查了一元二次方程的解法﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.15.(8分)△ABC内接于⊙O,AB=AC,∠BAC=40°.(1)求∠ABC的度数;(2)D为AB的中点,过B作BE∥AD交⊙O于点E,求∠CAE的度数.【分析】(1)利用等腰三角形的性质和三角形内角和求解;(2)连接BD,如图,先利用圆心角、弧、弦的关系得到AD=BD,则∠BAD=∠ABD,根据圆内接四边形的性质得∠D=110°,则∠ABD=∠BAD=35°,再利用平行线的性质得∠D+∠DBE=180°,所以∠DBE=∠ABC=70°,然后计算∠CBE即可得到∠CAE 的度数.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=(180°﹣∠BAC)=(180°﹣40°)=70°;(2)连接BD,如图,∵D为的中点,∴AD=BD,∴∠BAD=∠ABD,∵∠D+∠C=180°,∴∠D=180°﹣70°=110°,∴∠ABD=∠BAD=(180°﹣110°)=35°,∵BE∥AD,∴∠D+∠DBE=180°,∴∠DBE=∠ABC=70°,∴∠CBE=∠ABD=35°,∴∠CAE=∠CBE=35°.【点评】本题考查了三角形的外心与外接圆:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.16.(8分)阅读材料,回答问题.材料:题1:假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功后,求3只雏鸟中恰有2只雄鸟的概率,我们可以用“袋中摸球”的试验来模拟题1:在口袋中放两种不同颜色的小球,红球表示雌鸟,黄球表示雄鸟,3只雏鸟孵化小鸟.相当于从三个这样的口装中各随机换出一球.恰好有2个黄球.题2:一天晚上,小伟帮助妈妈清洗两套只有颜色不同的有盖茶杯.突然停电了.小伟只好把杯等和茶杯随机地搭配在一起:求颜色搭配正确的概率.(1)设计一个“袋中模球”的试验模拟题2,请筒要说明你的方案;(2)请直接写出题2的概率的结果.【分析】(1)口袋中放两种不同颜色的小球,红球表示某种颜色的杯或盖,黄球表示另一种颜色的杯或盖,据此可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【解答】解:(1)口袋中放两种不同颜色的小球,红球表示某种颜色的杯或盖,黄球表示另一种颜色的杯或盖,颜色搭配正确,相当于从两个这样的口袋中各随机取出一球,颜色相同.(2)画树状图如下:由树状图知,共有4种等可能结果,其中颜色搭配正确的有2种结果,∴颜色搭配正确的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17.(9分)如图所示,在直角坐标系中,已知A(2,2)、B(0,1),平移线段AB至线段DC,使得点A与点D重合,点B与点C重合(1)若C(1,0),请画出此四边形ABCD,此时四边形ABCD的面积为3;(2)若四边形ABCD为正方形,直接写出点C的坐标为(1,﹣1)或(﹣1,3);(3)若点C在坐标轴上,且四边形ABCD为菱形,则满足条件的菱形有3个.【分析】(1)依据C(1,0),即可得到CD的位置,进而得出四边形ABCD的面积;(2)依据四边形ABCD为正方形,即可得到点C的坐标为(1,﹣1),(3)依据点C在坐标轴上,且四边形ABCD为菱形,即可得到菱形ABCD的位置.【解答】解:(1)如图所示,四边形ABCD即为所求;四边形ABCD的面积为×3×(1+1)=3,故答案为:3;(2)如图所示:当四边形ABCD为正方形时,点C的坐标为(1,﹣1)或(﹣1,3),故答案为:(1,﹣1)或(﹣1,3);(3)如图所示,满足条件的菱形有3个.故答案为:3.【点评】本题考查了作图﹣平移变换,平移的性质,坐标轴上点的坐标特征,菱形、正方形的性质的运用,运用平移变换作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.18.(10分)如图,点C在以AB为直径的⊙O上.AE与过点C的切线垂直,垂足为D,AD交⊙O于点E,过B作BF∥AE交⊙O于点F,连接CF.(1)求证:∠B=2∠F;(2)已知AE=8,DE=2,过B作BF∥AE交〇O于F,连接CF,求CF的长.【分析】(1)连接OC,根据切线的性质得出OC⊥CD,即可证得OC∥AD,根据平行线的性质以及等腰三角形的性质得出∠DAB=2∠F,进而即可证得结论;(2)连接AF、AC,延长CO交⊙O于H,过O作OG⊥AE于G,首先根据平行线的性质证得∠ACH=∠HCF然后根据垂径定理证得AH=FH,根据垂直平分线的性质得出AC =FC,进而通过证得四边形OCDG是矩形求得半径,然后根据勾股定理求得OG.得出CD,最后根据勾股定理求得AC,从而求得FC.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠BOC=∠DAB,由圆周角定理得,∠BOC=2∠F,∴∠DAB=2∠F,∵AD∥BF,∴∠B=∠DAB,∴∠B=2∠F;(2)解:连接AF、AC,延长CO交⊙O于H,过O作OG⊥AE于G,∵OC∥AD,AE∥BF,∴OC∥BF,∴∠F=∠HFF,∵∠B=2∠F,∴∠B=2∠HCF,∵∠ACF=∠B,∴∠ACF=2∠HCF,∴∠ACH=∠HCF,∴=,∴CH垂直平分AF,∴CF=AC,∵OG⊥AE,∴AG=EG=4,∴GD=GE+ED=4+2=6,∵∠OGD=∠D=∠OCD=90°,∴四边形OCDG是矩形,∴OC=GD=6,OG=CD,∵OA=OC=6,AG=4,∴OG===2,∴DC=2,在Rt△ADC中,AC===2∴CF=AC=2.【点评】本题考查了切线的性质,垂径定理,勾股定理,矩形的判定和性质,平行线的性质,熟练掌握性质定理是解题的关键.19.(10分)某产品每件成本10元,试销阶段日销售量y(件)与每件产品的销售单价x (元/件)之间的关系如表.X(元/件)15182022y(件)250220200180(1)直接写出日销售量y(件)与每件产品的销售单价x(元/件)之间的函数解析式;(2)销售单价定为多少元时,销售利润最大;(3)若销售利润为1250元,且使销售量最大,求销售单价.【分析】(1)根据题意得出日销售量y是销售价x的一次函数,再利用待定系数法求出即可;(2)根据销量×每件利润=总利润,即可得出所获利润W为二次函数;(3)利用销售利润为1250元,解方程,即可得出结论.【解答】解:(1)由图表中数据得出y与x是一次函数关系,设解析式为:y=kx+b,则,解得:.故y与x之间的函数关系式为:y=﹣10x+400;(2)日销售利润w(元)与销售单价x(元)之间的函数关系式为:w=(x﹣10)y=(x﹣10)(﹣10x+400)=﹣10x2+500x﹣4000=﹣10(x﹣25)2+2250,故x=25时,w最大;(3)由题意可得:(﹣10x+400)(x﹣10)=1250解得:x=15或35(舍),答:销售单价为15元.【点评】本题考查了二次函数的运用,一次函数及二次函数最大值求法,难度适中,解答本题的关键是根据题意,逐步求解,由易到难,搞清楚这两个函数之间的联系.20.(4分)如图,将△ABC绕点A逆时针旋转90°得到△ADE,将线段BC绕点C顺时针旋转90°得线段CG,DG交EC于O点,求证:EO=OC.【分析】如图,把△ABC绕点C顺时针旋转90°,得到△GFC,由旋转的性质可证DE=CG,∠AED=∠FCG,EA∥FC,可得∠CHG=∠AMG=∠DME,可证△DOE≌△GOC,可得EO=OC.【解答】解:如图,把△ABC绕点C顺时针旋转90°,得到△GFC,∵将BC绕点C顺时针旋转90°得CG,∴CF⊥AC,∵将△ABC绕点A逆时针旋转90°得到△ADE,∴EA⊥AC,∴EA∥FC,∴∠CHG=∠AMG=∠DME,∵△ADE和△FGC都是△ABC旋转而成,∴DE=CG,∠AED=∠FCG,∴∠EDG=∠CGD,在△DOE和△GOC中,,∴△DOE≌△GOC(AAS),∴EO=OC,【点评】本题考查了旋转的性质,全等三角形的判定和性质,添加恰当辅助线是本题的关键.21.(4分)已知抛物线y=(m+1)x2+(m﹣2)x﹣3,抛物线必过第三象限一个定点,求该定点的坐标.【分析】解析式变形为y=m(x2+x)+x2﹣2x﹣3,则当x2+x=0,抛物线必过第三象限一个定点,解得x2+x=0,的解为x=0或﹣,然后把x=﹣代入解析式得y=,即可求得定点坐标为为(﹣).【解答】解:∵y=(m+1)x2+(m﹣2)x﹣3=m(x2+x)+x2﹣2x﹣3,∴当x2+x=0,则x=0或﹣,把x=﹣代入得y=∴第三象限定点为(﹣).【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,图象上点的坐标适合解析式.。

湖北省武汉市一初慧泉2020年九年级6月数学模拟试卷

湖北省武汉市一初慧泉2020年九年级6月数学模拟试卷

2020年武汉一初六月考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数13的相反数是 A .13 B .13-C .3D .-32.式子2x -在实数范围内有意义,则x 的取值范围是 A .x <2B .x >2C .x ≥2D .x ≤23.有一个质量均匀的正方体骰子,其六个面的点数分别为1、2、3、4、5、6,随手抛出两次,则下列事件为随机事件的是 A .两次朝上一面的点数之和小于2 B .两次朝上一面的点数之和大于2 C .两次朝上一面的点数之和小于13 D .两次朝上一面的点数之和大于134.下列汽车标志中,既是轴对称图形又是中心对称图形的是AB C D5.如图所示的几何体的左视图是A .B .C .D .6.在反比例函数21k y x-=的图象过点P (3,4),下列点中在此函数图象上的是A .(2,5)B .(-6,2)C .(4,-3)D .(-36,-13) 7.在2,3,4,8这四个数中,任取两个数分别记为a 和b ,能使得a ,b ,5为长度的三条线段构成三角形的概率是 A .61 B .41 C .31D .21 8.甲、乙两队合作完成某项工程,两人开始一起合做,一段时间后乙因另有任务离开了,由甲单独去做剩余工程,设总工程量为单位1,工程完成的进度s 与工作时间t (天)之间的函数关系如图,则下列说法正确的是 A .若单独完成此工作,甲会比乙多用10天 B .实际完成时间会比乙单独完成少用8天 C .实际完成时间会比甲单独完成少用5天D .实际完成时间比甲、乙一直合做多用6天9.如图,在平面直角坐标系中,A (-1,0),B (5,0),过A ,B 两点的弧交y 轴正半轴于C 为,且∠ACB =120°,则△ABC 的面积为 A. B.C.D.610.观察分析下列方程:①23x x +=的解是x =1或x =2;②65x x+=的解是x =2或x =3;③127x x+=的解是x =3或x =4.请利用它们所蕴含的规律解答下面问题:若关于x 的方程23n nx m x ++=-(m ,n 均为正整数)的解是x =2019或x =2020,则m 的值为A .4033B .4036C .4039D .4042第8题 第9题二、填空题(本大题共6个小题,每小题3分,共18分) 11=__________.12.抽取10名同学参加心理健康测试,得分情况如下表:则这组数据的众数是___________.13.计算:322121a a a a a ----+=__________. 14.如图,将△ABC 沿BC 翻折得△DBC ,再把△DBC 沿DC 翻折得△DEC ,若点A 正好落在DE 的延长线上,且∠ACE =30°,则∠BAC =__________. 15.如图,二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的图象交y 轴于(0,2),其对称轴交x 轴于(12,0).下列结论:①a +b +c =2;②若x =12-时,y >0,则a <83-;③对任意实数t ,一定有a (4t 2-1)+2b (2t -1)≤0;④若(m ,n )是图象上一点,则关于x 的方程ax 2+bx+c =n 有两实数根x 1=m ,x 2=1-m ;⑤若(12-,-1)是图象上一点,则关于x 的方程ax 2+(b -2) x +c =0的解是x 1=1,x 2=-1.其中正确的序号是_______. 16.如图,在Rt △ABC 中,∠C =90°,AC =4,BC , D 是BC 上一点,∠BAD =30°,则CD =__________.t (天)。

2020年湖北省武汉一初慧泉中学7月中考数学模拟试题

2020年湖北省武汉一初慧泉中学7月中考数学模拟试题

2020年湖北省武汉一初慧泉中学7月中考数学模拟试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. ﹣3的相反数是()C.D.A.B.2. 式子在实数范围内有意义,则x的取值范围是()A.x<-2 B.x>-2 C.x≥-2 D.x≤-23. 投掷两枚质地均匀的六面体骰子,每个骰子的六个面的点数分别为1,2,3,4,5,6,下列事件是必然事件的是()A.掷得的点数都是奇数B.掷得的点数都是偶数C.掷得的点数和不大于12 D.掷得的点数和不小于64. 下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5. 如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.6. 如图,正比例函数与反比例函数的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则的面积等于()A.8 B.6 C.4 D.27. 若一个袋子中装有形状、大小完全相同的4张卡片(卡片上分别标有数字-2、-1、2、3),现从中任意抽出其中的两张,其上的数字分别为x、y,并以此确定点P(x,y),则点P落在直线y=-x+1.上的概率为()A.B.C.D.8. 某快递公司每天上午9:00~10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲,乙两仓库的快件数量(件)与时间(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15 B.9:20 C.9:25 D.9:309. 如图,⊙O经过矩形ABCD的顶点A、D,与BC相切于点F,与CD相交于另一点G,P为弧AD上一点,连接DP,GP,若,则sin∠DPG的值为()A.B.C.D.10. 有一列数:它有一定的规律性.若把第一个数记为a1,第二个数记为a2,…….第n个数记为an,则的值是()A.2020B.2021-C.2020-D.2021-二、填空题11. 计算__________.12. 为了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如表所示,那么这组数据的中位数是_____.13. _____.14. 在△ABC中,∠C=90°,AC=BC,将△ABC绕点A按顺时针方向旋转60°到△AB’C’的位置,连结C’B、BB’,则∠BB’C’=_______________________.15. 二次函数y= ax2+bx+c(a、b、c是常数,a≠0)中,x与y的部分对应值如表,且当x=1时,与其对应的函数值y<-3,则对于下列结论:①abc>0;②不等式ax2+bx+c+2>0的解集是x>2或x<0;③关于x的方程ax2+bx+c=t的两个根是一2和4;④m+n=2.其中正确的结论的序号是_____.16. 如图,△ABC中,∠ACB=90°,AC=BC,点P为△ABC外一点,且∠APC=45°,过B作BE∥AC分别交PA、PC于点E、F,若BE=3EF=3,则AE=_____.三、解答题17. 计算:.18. 如图,∠B=∠C,∠AGE=∠DHF,求证:BE∥CF.19. 某校300名学生参加植树活动,要求每人植4-7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵,B:5棵,C:6棵,D:7棵.将所得数据处理后,绘制成扇形统计图(部分)和条形统计图(部分)如下:回答下列问题:(1)在这次调查中,D类学生有多少名?(2)植树6棵所对应圆心角的度数是多少?(3)估计参加活动的300名学生共植树多少棵?20. 如图,已知A(2,0),B(1,3),请在图上的网格中用无刻度的直尺按要求画图.(1)作线段AB绕点A逆时针旋转90°至AM,则M点的坐标为.作线段AB绕点B顺时针旋转90°至BN,则N点的坐标为.(2)在AM上作点E,在BN上作点F,使得矩形MNFE的面积为3.(3)在AM上作点C,使.21. 四边形ABCF中,AF∥BC,∠AFC=90°,△ABC的外接圆⊙O交CF于E,与AF相切于点A,过C作CD⊥AB于D,交BE于G.(1)求证:AB=AC;(2)①证明:GE=EC;②若BC=8,OG=1,求EF的长.22. 某公司用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备进行生产加工.已知生产这种产品每件还需成本费40元.经调查发现:该产品的销售单价不低于200元且不高于300元较为合理,销售单价x元与年销售量y万件之间的变化可看作是如下表的一次函数关系:(1)请求出y与x间的函数关系式;并直接写出自变量x的取值范围;(2)请说明投资的第一年,该公司是盈利还是亏损?若贏利,最大利润是多少?若亏损,最少亏损多少?(3)在(2)的结论下,第二年公司重新确定产品售价,能否使两年共盈利达1790万元,若能,求出第二年的产品售价;若不能,请说明理由.23. 在平行四边形ABCD中,BC=nAB,E,F分别是边AD,DC上的点,AF⊥BE,G为垂足.(1)当n=1时,①如图1,若∠ABC=90°,求证:AF=BE;②如图2,若sin∠ABC=,E为AD的中点,求的值.(2)当n=时,如图3,若∠ABC=90°,AB=2,直接写出EF的最小值.24. 经过原点的抛物线y=ax2+bx+c与x轴相交于O,A两点.(1)若抛物线的对称轴为直线x=2,点C(6,-6)在抛物线上.①直接写出抛物线的解析式;②如图1,B为抛物线的顶点,抛物线的对称轴与x轴相交于点D,在抛物线上取点E,使∠EOB=∠CBD,求E点的坐标.(2)如图2,若A点的坐标为(4,0),a>0,P为抛物线上第四象限内的一点,过点P作PN⊥x轴于点N,过点N作直线MN//AP交y轴于点M,求证:直线PM与抛物线只有唯一的公共点.。

2020年湖北省武汉市中考数学模拟考试试卷及答案解析

2020年湖北省武汉市中考数学模拟考试试卷及答案解析

2020年湖北省武汉市中考数学模拟考试试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6B.5,2,6C.2,5,﹣6D.5,2,﹣6 2.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.(3分)下列事件中,不可能事件是()A.水在100℃沸腾B.射击一次,命中靶心C.三角形的内角和等于360°D.经过路口,遇上红灯4.(3分)将抛物线y=﹣2(x+3)2+2以原点为中心旋转180°得到的抛物线解析式为()A.y=﹣2(x﹣3)2+2B.y=﹣2(x+3)2﹣2C.y=2(x﹣3)2﹣2D.y=2(x﹣3)2+25.(3分)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得6.(3分)如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A.15°B.20°C.25°D.30°7.(3分)⊙O的半径r=10cm,圆心到直线l的距离OM=6cm,在直线l上有一点P,且PM=3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内8.(3分)如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=()A.25°B.30°C.40°D.60°9.(3分)已知△ABC中,AB=AC,以AB为直径的⊙O1分别交AC、BC于两D、E点,过B点的切线交OE的延长线于点F,连FD、BD、OD,下列结论:①四边形ODCE是平行四边形;②E是△BFD的内心;③E是△FDO的外心;④∠C=∠BFD;其中正确的有()个.A.1B.2C.3D.410.(3分)二次函数y=x2+bx的对称轴为直线x=1,若关于x的方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有实数解,则t的取值范围是()A.t≥﹣1B.﹣1≤t<3C.﹣1≤t<8D.t<3二.填空题(共6小题,满分18分,每小题3分)11.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.12.(3分)若点A(m,7)与点B(﹣4,n)关于原点成中心对称,则m+n=.13.(3分)今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.14.(3分)用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为.15.(3分)如图,正六边形ABCDEF纸片中,AB=6,分别以B、E为圆心,以6为半径画、.小欣把扇形BAC与扇形EDF剪下,并把它们粘贴为一个大扇形(B与E重合,F与A重合),她接着用这个大扇形作一个圆锥的侧面,则这个圆锥的高为.16.(3分)如图,P是等腰Rt△ABC内的一点,∠ACB=90°,P A=,PB=2,PC=1,∠APC的度数是.三.解答题(共8小题,满分72分)17.(8分)解方程:x2﹣x﹣3=0.18.(6分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF,DF.(1)求证:BF⊥AF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.19.(8分)如图,两转盘分别标有数字,转盘一被三等分,转盘二被分成六份,其中标有数字“8”的扇形的圆心角为90°,标有数字“5”的扇形圆心角是标有数字“2”的扇形圆心角的2倍,转动转盘,等旋转停止时,每个转盘上的前头各指向一个数字(若箭头指向两个扇形的交线,则重新转动转盘,直到指向数字为止).(1)转动转盘一次,求出指向数字“3”的概率,(2)同时转动两个转盘,通过画树状图法或列表法求这两个转盘转出的数字之和为偶数的概率.20.(8分)如图,已知点A(﹣2,﹣1)、B(﹣5,﹣5)、C(﹣2,﹣3),点P(﹣6,0).(1)将△ABC绕点P逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为;(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为;(3)把△A2B2C2向下平移6个单位长度得△A3B3C3,画出△A3B3C3,由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为;21.(8分)如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD,BC交于点P,连结AC(1)求证:AB=AP;(2)若AB=10,DP=2,①求线段CP的长;②过点D作DE⊥AB于点E,交AC于点F,求△ADF的面积.22.(10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.23.(12分)在△ABC中,∠ACB=45°,BC=5,AC=2,D是BC边上的动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接EC.(1)如图a,求证:CE⊥BC;(2)连接ED,M为AC的中点,N为ED的中点,连接MN,如图b.①写出DE、AC,MN三条线段的数量关系,并说明理由;②在点D运动的过程中,当BD的长为何值时,M,E两点之间的距离最小?最小值是,请直接写出结果.24.(12分)如图,抛物线y=a(x2﹣2mx﹣3m2)(其中a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标;(2)若点E是第一象限抛物线上的点,满足∠EAB=∠ADC.①求点E的纵坐标;②试探究:在x轴上是否存在点P,使以PF、AD、AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.2020年湖北省武汉市中考数学模拟考试试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6B.5,2,6C.2,5,﹣6D.5,2,﹣6【分析】方程整理为一般形式,找出所求即可.【解答】解:方程整理得:2x2+5x﹣6=0,则方程的二次项系数、一次项系数、常数项分别是2,5,﹣6,故选:C.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图是轴对称图形,是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个,故选:B.3.(3分)下列事件中,不可能事件是()A.水在100℃沸腾B.射击一次,命中靶心C.三角形的内角和等于360°D.经过路口,遇上红灯【分析】根据事件发生的可能性大小判断.【解答】解:A、水在100℃沸腾是必然事件;B、射击一次,命中靶心是随机事件;C、三角形的内角和等于360°是不可能事件;D、经过路口,遇上红灯是随机事件;故选:C.4.(3分)将抛物线y=﹣2(x+3)2+2以原点为中心旋转180°得到的抛物线解析式为()A.y=﹣2(x﹣3)2+2B.y=﹣2(x+3)2﹣2C.y=2(x﹣3)2﹣2D.y=2(x﹣3)2+2【分析】求出绕原点旋转180°的抛物线顶点坐标,然后根据顶点式写出即可.【解答】解:∵抛物线y=﹣2(x+3)2+2的顶点为(﹣3,2),绕原点旋转180°后,变为(3,﹣2)且开口相反,故得到的抛物线解析式为y=2(x﹣3)2﹣2,故选:C.5.(3分)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【解答】解:A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.6.(3分)如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A.15°B.20°C.25°D.30°【分析】连接AC,如图,利用圆周角定理的推论得到∠ACB=90°,则∠ACD=∠DCB ﹣∠ACB=20°,然后再利用圆周角定理可得到∠AED的度数.【解答】解:连接AC,如图,∵AB为直径,∴∠ACB=90°,∴∠ACD=∠DCB﹣∠ACB=110°﹣90°=20°,∴∠AED=∠ACD=20°.故选:B.7.(3分)⊙O的半径r=10cm,圆心到直线l的距离OM=6cm,在直线l上有一点P,且PM=3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内【分析】连接CP,根据圆心到直线l的距离CM=6cm,在直线l上有一点P且PM=3cm 得出CP的长度,即可得出P与圆的位置关系.【解答】解:∵过点O作OM⊥l,连接OP,∴MP=3cm,OM=6cm,∴CO===3,∵⊙C的半径r=10cm,∴d=3<10,∴点P在圆内,.故选:A.8.(3分)如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=()A.25°B.30°C.40°D.60°【分析】先根据直角三角形斜边上的中线性质得AB1=BB1,再根据旋转的性质得AB1=AB,旋转角等于∠BAB1,则可判断△ABB1为等边三角形,所以∠BAB1=60°,从而得出结论.【解答】解:∵点B1为斜边BC的中点,∴AB1=BB1,∵△ABC绕直角顶点A顺时针旋转到△AB1C1的位置,∴AB1=AB,旋转角等于∠BAB1,∴AB1=BB1=AB,∴△ABB1为等边三角形,∴∠BAB1=60°.∴∠B1AC=90°﹣30°=60°.故选:B.9.(3分)已知△ABC中,AB=AC,以AB为直径的⊙O1分别交AC、BC于两D、E点,过B点的切线交OE的延长线于点F,连FD、BD、OD,下列结论:①四边形ODCE是平行四边形;②E是△BFD的内心;③E是△FDO的外心;④∠C=∠BFD;其中正确的有()个.A.1B.2C.3D.4【分析】首先利用三角形的中位线定理证明OE∥AC,然后证得△FDO≌△FBO,可以得到DF是圆的切线,然后利用内心以及外心的定义和的等腰三角形的性质:等边对等角即可作出判断.【解答】解:连接AE,∵AB是直径,∴AE⊥BC,又∵AB=AC,∴BE=CE,又∵OA=OB,∴OE∥AC,∴∠BOE=∠BAC,∠EOD=∠ADO,∵∠BAC=∠ADO,∴∠BOE=∠EOD,在△FDO和△FBO中∵,∴△FDO≌△FBO∴∠ODF=∠OBF=90°,即△FDO是直角三角形,DF是圆的切线.如果四边形ODCE是平行四边形,则OD∥BC,则∠BEO=∠EOB=∠DOE则△OBE是等边三角形,从而得到△ABC是等边三角形,与已知不符,故①是错误的;∵FD、FB是圆的切线,∴FD=FB,又∵OB=OD∴OF是BD的中垂线,∴=,E在∠DFB的平分线上,∴E在∠FBD的平分线上,则E是△BFD的内心,故②正确;Rt△DOF中,若E是△FDO的外心,则E是OF的中点,可以得到△ODE是等边三角形,则△ABC是等边三角形,与已知不符,故③是错误的;设∠C=x°,则∠A=180﹣2x°,则在直角△ABD中,∠ABD=90°﹣(180﹣2x)=2x﹣90°,∵BF是切线,则∠ABF=90°,∴∠DBF=90°﹣∠ABD=90°﹣(2x﹣90)°=180﹣2x°,在等腰△BDF中,∠F=180°﹣2∠DBF=180°﹣2(180﹣2x)°=4x﹣180°,而4x﹣180与x不一定相等,故④不正确.故正确的只有②.故选:A.10.(3分)二次函数y=x2+bx的对称轴为直线x=1,若关于x的方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有实数解,则t的取值范围是()A.t≥﹣1B.﹣1≤t<3C.﹣1≤t<8D.t<3【分析】二次函数的表达式为y=x2﹣2x,顶点为:(1,﹣1),x=﹣1时,y=4,x=4时,y=8,即可求解.【解答】解:二次函数y=x2+bx的对称轴为直线x=1,则x=﹣=﹣=1,解得:b=﹣2,二次函数的表达式为y=x2﹣2x,顶点为:(1,﹣1),x=﹣1时,y=4,x=4时,y=8,t的取值范围为顶点至y=8之间的区域,即﹣1≤t<8;故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是0.【分析】根据一元二次方程根的存在性,利用判别式△>0求解即可;【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;12.(3分)若点A(m,7)与点B(﹣4,n)关于原点成中心对称,则m+n=﹣3.【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m,n的值,进而得出答案.【解答】解:∵点A(m,7)与点B(﹣4,n)关于原点成中心对称,∴m=4,n=﹣7,∴m+n=﹣3.故答案为:﹣3.13.(3分)今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为50%.【分析】设平均每个季度的增长率为x,根据该超市第一季度及第三季度排骨的单价,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设平均每个季度的增长率为x,依题意,得:40(1+x)2=90,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).故答案为:50%.14.(3分)用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为.【分析】画树状图列出所有等可能结果和能配成紫色的结果,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中能配成紫色的有3种结果,所以能配成紫色的概率为=,故答案为:.15.(3分)如图,正六边形ABCDEF纸片中,AB=6,分别以B、E为圆心,以6为半径画、.小欣把扇形BAC与扇形EDF剪下,并把它们粘贴为一个大扇形(B与E重合,F与A重合),她接着用这个大扇形作一个圆锥的侧面,则这个圆锥的高为2.【分析】根据正六边形的性质和弧长的公式即可得到结论.【解答】解:正六边形ABCDEF纸片中,∵∠B=∠E=120°,∵AB=6,∴+的长=×2=8π,∴圆锥的底面半径==4,∴圆锥的高==2,故答案为:2.16.(3分)如图,P是等腰Rt△ABC内的一点,∠ACB=90°,P A=,PB=2,PC=1,∠APC的度数是135°.【分析】如图,将△P AC绕C点顺时针旋转90°,与△P′CB重合,连结PP′.可求PP′=,∠CP′P=45°,由勾股定理的逆定理可求∠BP′P=90°,即可求解.【解答】解:如图,将△P AC绕C点顺时针旋转90°,与△P′CB重合,连结PP′.∴△P AC≌△P′BC,∠PCP′=90°,∴CP=CP′=1,∠APC=∠CP′B,AP=BP′=,∴△PCP′是等腰直角三角形,且PC=1,∴PP′=,∠CP′P=45°,在△BPP′中,∵PP′=,BP′=,PB=2,∴PP′2+BP′2=PB2,∴△CP′P是直角三角形,∠BP′P=90°,∴∠CP′B=∠BP′P+∠CP′P=45°+90°=135°,∴∠APC=135°,故答案为135°.三.解答题(共8小题,满分72分)17.(8分)解方程:x2﹣x﹣3=0.【分析】根据方程的特点可直接利用求根公式法比较简便.【解答】解:a=1,b=﹣1,c=﹣3∴x==∴,.18.(6分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF,DF.(1)求证:BF⊥AF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.【分析】(1)首先利用平行线的性质得到∠F AB=∠CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;(2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠F AB=∠CAB =∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形.【解答】(1)证明:∵EF∥AB,∴∠E=∠CAB,∠EF A=∠F AB,∵∠E=∠EF A,∴∠F AB=∠CAB,在△ABC和△ABF中,,∴△ABC≌△ABF(SAS),∴∠AFB=∠ACB=90°,∴BF⊥AF;(2)解:当∠CAB=60°时,四边形ADFE为菱形.理由如下:∵∠CAB=60°,∴∠F AB=∠CAB=60°,∴∠EAF=60°,∵AE=AF=AD,∴△AEF,△ADF都是等边三角形,∴EF=AE=AD=AE,∴四边形ADFE是菱形.19.(8分)如图,两转盘分别标有数字,转盘一被三等分,转盘二被分成六份,其中标有数字“8”的扇形的圆心角为90°,标有数字“5”的扇形圆心角是标有数字“2”的扇形圆心角的2倍,转动转盘,等旋转停止时,每个转盘上的前头各指向一个数字(若箭头指向两个扇形的交线,则重新转动转盘,直到指向数字为止).(1)转动转盘一次,求出指向数字“3”的概率,(2)同时转动两个转盘,通过画树状图法或列表法求这两个转盘转出的数字之和为偶数的概率.【分析】(1)由概率公式即可得出答案(2)画出树状图,由概率公式即可得出答案.【解答】解:(1)转动转盘一一次,指向数字“3”的概率为;(2)∵标有数字“8”的扇形的圆心角为90°,∴标有数字“4”的扇形的圆心角为90°,∵标有数字“5”的扇形圆心角是标有数字“2”的扇形圆心角的2倍,∴标有数字“2”和“5”的扇形的圆心角的分别为60°、120°,画树状图如图:共有36个等可能的结果,两个转盘转出的数字之和为偶数的结果有16个,∴两个转盘转出的数字之和为偶数的概率为=.20.(8分)如图,已知点A(﹣2,﹣1)、B(﹣5,﹣5)、C(﹣2,﹣3),点P(﹣6,0).(1)将△ABC绕点P逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为(﹣3,5);(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为(1,1);(3)把△A2B2C2向下平移6个单位长度得△A3B3C3,画出△A3B3C3,由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为(3,3);【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.(3)分别作出A1,B1,C1的对应点A3,B3,C3即可.对应点连线段的垂直平分线的交点即为所求的点Q.【解答】解:(1)如图△A1B1C1即为所求.点C的对应点C1的坐标为(﹣3,5);故答案为(﹣3,5).(2)如图△A2B2C2即为所求.点A的对应点A2的坐标为(1,1);故答案为(1,1).(3)如图△A3B3C3即为所求.由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为(3,3),故答案为(3,3).21.(8分)如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD,BC交于点P,连结AC(1)求证:AB=AP;(2)若AB=10,DP=2,①求线段CP的长;②过点D作DE⊥AB于点E,交AC于点F,求△ADF的面积.【分析】(1)利用等角对等边证明即可.(2)①利用勾股定理分别求出BD,PB,再利用等腰三角形的性质即可解决问题.③作FH⊥AD于H.首先利用相似三角形的性质求出AE.DE,再证明AE=AH,设FH=EF=x,利用勾股定理构建方程解决问题即可.【解答】(1)证明:∵=,∴∠BAC=∠CAP,∵AB是直径,∴∠ACB=∠ACP=90°,∵∠ABC+∠BAC=90°,∠P+∠CAP=90°,∴∠ABC=∠P,∴AB=AP.(2)①解:连接BD.∵AB是直径,∴∠ADB=∠BDP=90°,∵AB=AP=10,DP=2,∴AD=10﹣2=8,∴BD===6,∴PB===2,∵AB=AP,AC⊥BP,∴BC=PC=PB=,∴PC=.②解:作FH⊥AD于H.∵DE⊥AB,∴∠AED=∠ADB=90°,∵∠DAE=∠BAD,∴△ADE∽△ABD,∴==,∴==,∴AE=,DE=,∵∠FEA=∠FEH,FE⊥AE,FH⊥AH,∴FH=FE,∠AEF=∠AHF=90°,∵AF=AF,∴Rt△AFE≌Rt△AFH(HL),∴AH=AE=,DH=AD﹣AH=,设FH=EF=x,在Rt△FHD中,则有(﹣x)2=x2+()2,解得x=,∴S△ADF=•AD•FH=×8×=.22.(10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,列方程求解即可;(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,由题意得:x(100﹣2x)=450解得:x1=5,x2=45当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10<20答:AD的长为10m;(2)设AB=xm,则S=x(100﹣x)=﹣(x﹣50)2+1250,(0<x≤70)∴x=50时,S的最大值是1250.答:当x=50时,矩形菜园ABCD面积的最大值为1250.23.(12分)在△ABC中,∠ACB=45°,BC=5,AC=2,D是BC边上的动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接EC.(1)如图a,求证:CE⊥BC;(2)连接ED,M为AC的中点,N为ED的中点,连接MN,如图b.①写出DE、AC,MN三条线段的数量关系,并说明理由;②在点D运动的过程中,当BD的长为何值时,M,E两点之间的距离最小?最小值是1,请直接写出结果.【分析】(1)如图a,过点A作AH⊥AC交BC于H,由“SAS”可证△HAD≌△CAE,可得∠ACE=∠AHD=45°,可得结论;(2)①如图b,连接AN,CN,由直角三角形的性质和等腰三角形的性质可得AN=CN =DN=EN=DE,MN⊥AC,AM=CM=AC,由勾股定理可得结论.②根据垂线段最短即可解决问题.【解答】证明:(1)如图a,过点A作AH⊥AC交BC于H,∵∵∠ACB=45°,AH⊥AC,∴∠AHC=∠ACB=45°,∴AH=AC,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴AD=AE,∠HAC=∠DAE=90°,∴∠HAD=∠CAE,且AD=AE,AH=AC,∴△HAD≌△CAE(SAS)∴∠ACE=∠AHD=45°,∴∠HCE=90°,∴CE⊥BC;(2)MN2+AC2=DE2,理由如下:如图b,连接AN,CN,∵∠EAD=∠ECD=90°,点N是DE中点,∴AN=CN=DN=EN=DE,∵M为AC的中点,∴MN⊥AC,AM=CM=AC,∵MN2+CM2=CN2,∴MN2+AC2=DE2.(3)如图c中,由(1)可知∠ECB=90°,∴CE⊥BC,∴当ME⊥EC时,ME的值最小,在Rt△ACH中,∵AH=AC=2,∴HC=4,∵AM=MC=,在Rt△CME中,∵∠ECM=∠CME=45°,∴EC=EM=1,由(1)可知:△HAD≌△CAE,∴HD=EC=1,∴CD=4﹣1=3,∴BD=5﹣3=2,∴当BD=2时,EM的值最小,最小值为1,故答案为:124.(12分)如图,抛物线y=a(x2﹣2mx﹣3m2)(其中a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标;(2)若点E是第一象限抛物线上的点,满足∠EAB=∠ADC.①求点E的纵坐标;②试探究:在x轴上是否存在点P,使以PF、AD、AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.【分析】(1)根据题意将a=1,C(0,﹣3)代入y=a(x2﹣2mx﹣3m2),进而求出m 的值,即可得出答案;(2)①表示D点坐标,得出∠EAB=∠BAD,则x轴平分∠BAD,可得出点D关于x 轴的对称点一定在直线AE上,求出直线AE的解析式,联立直线AE和抛物线解析式可得出点E的坐标.②由①知E点的坐标,得出F(m,﹣4)、A(﹣m,0)、D(2m,﹣3),再利用PF,AD,AE的关系得出答案.【解答】解:(1)当a=1时,y=a(x2﹣2mx﹣3m2)=x2﹣2mx﹣3m2,∵与y轴交于点C(0,﹣3),∴﹣3m2=﹣3,解得:m=±1,∵m>0,∴m=1,∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∵CD∥AB,∴C,D关于直线x=1对称,∴D点坐标为:(2,﹣3);(2)①对于y=a(x2﹣2mx﹣3m2),当y=0,则0=a(x2﹣2mx﹣3m2),解得:x1=﹣m,x2=3m,当x=0,y=﹣3am2,可得:A(﹣m,0)、B(3m,0),C(0,﹣3am2),∵抛物线过点C,∴﹣3am2=﹣3,则am2=1,∵CD∥AB交抛物线于点D,∴∠ADC=∠BAD,∴点D与点C关于抛物线的对称轴x=m对称,∴D(2m,﹣3),∵∠EAB=∠ADC,∴∠EAB=∠BAD,∴x轴平分∠BAD,∴点D关于x轴的对称点D'(2m,3)一定在直线AE上,∴直线AD′的解析式为:y=x+1,联立,整理得x2﹣3mx﹣4m2=0,解得x1=4m,x2=﹣m(舍去),∴E点的横坐标为4m,∴y=.∴点E的纵坐标为5.②存在,理由:当x=m时,y=a(m2﹣2m2﹣3m2)=﹣4am2=﹣4,∴F(m,﹣4),∵E(4m,5)、A(﹣m,0)、D(2m,﹣3),设P(b,0),∴PF2=(m﹣b)2+16,AD2=9m2+9,AE2=25m2+25,∴(m﹣b)2+16+9m2+9=25m2+25,解得:b1=﹣3m,b2=5m∴P(﹣3m,0)或(5m,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档