三角高程测量
三角高程测量

中铁七局集团武汉工程有限公司测绘分公司
专业、专注、专心
勇于跨越 追求卓越
1、基本要求
1.1布设原则: 1.1.1以高程导线布设测区的基本高程控制,其等级应与测区范围相适 应,满足加密需要,一般应与国家水准点连测。 1.1.2导线水准点的高程,采用正常高系统和“1985国家高程基准”。 1.1.3各等级高程导线网的最弱点相对于高等级点(或起始点)的高程 中误差不超过0.05m。 1.1.4高程导线一般应在高级点间布设成附合路线或高程导线网。当测 区远离国家水准点时,也可布设支线引测国家水准点高程,作为测区的 高程起算点。 1.1.5当采用支线引测高程时,引测路线的等级不应低于测区基本高程 控制等级。引测高程的起算点必须进行检测。引测支线的长度可按表1 的规定放宽0.5倍。 1.1.6高程导线测量可与同等级水准测量混合使用,但在同一测段中只 能使用一种方法。
专业、专注、专心
勇于跨越 追求卓越
两点距离D>300m时,考虑地球曲率和大气折光的影响
地球曲率的影响:
c D2 2R
大气折光的影响: 综合两项的影响:
r k D2 2R
f c - r (1 k)D2 2R
当D=300m,K取0.14时,f≈5.9mm
中铁七局集团武汉工程有限公司测绘分公司
1、边长误差 边长误差决定于距离丈量方法。用普通视距法测定距离,精度只有
1/300;用电磁波测距仪测距,精度很高,边长误差一般为几万分之一到 几十万分之一。边长误差对三角高程的影响与垂直角大小有关,垂直角愈 大,其影响也愈大。因此,尽可能利用短边传算高程。
2、垂直角误差 垂直角观测误差包括仪器误差、观测误差和外界环境的影响。垂直
环线或附合路线闭合差
三角高程测量

§4-6 三角高程测量一、三角高程测量原理及公式在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。
传统的经纬仪三角高程测量的原理如图4-12所示,设A点高程及AB两点间的距离已知,求B点高程。
方法是,先在A点架设经纬仪,量取仪器高i;在B点竖立觇标(标杆),并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角δ,则AB两点间的高差计算公式为:故(4-11)式中为A、B两点间的水平距离。
图4-12 三角高程测量原理当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正数简称为两差改正:设c为地球曲率改正,R为地球半径,则c的近似计算公式为:设g为大气折光改正,则g的近似计算公式为:因此两差改正为:,恒为正值。
采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。
采用光电测距仪测定两点的斜距S,则B点的高程计算公式为:(4-12)为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即测定hAB和hBA,最后取其平均值,由于hAB和hBA反号,因此可以抵销。
实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。
理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。
当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。
二、光电三角高程测量方法光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6。
表4-6 光电三角高程测量技术要求往返各注:表4-6中为光电测距边长度。
对于单点的光电高程测量,为了提高观测精度和可靠性,一般在两个以上的已知高程点上设站对待测点进行观测,最后取高程的平均值作为所求点的高程。
三角高程测量原理及公式

三角高程丈量
一、三角高程丈量原理
(一)合用于:地形起伏大的地域进行高程控制。
实践证明,电磁波三角高程的精度能够达到四等水平的要求。
(二)原理
h AB D tan i l
h AB Ssin i l
B点的高程:
H B H A h AB
注意:当两点距离较大(大于300m)时:
1、加球气差更正数:
f0.43 D
2 R
即有:
即有: h AB i Dtg l f
2、可采纳对向观察后取均匀的方法,抵消球气差的影响。
球差为正,气差为负
二、三角高程丈量的观察和计算
①布置经纬仪于测站上,量取仪高 i 和目标高 s。
读至,量取两次的结果之差≤ 1cm 时,取均匀值。
②中间丝对准目标时,将竖盘指标水平管气泡居中,读取竖盘读数。
一定以盘左、盘右进
行观察。
③竖直角观察测回数与限差应切合规定。
④用电磁波测距仪丈量两点间的倾斜距离D’,或用三角丈量方法计算得两点间的水平距离D。
三角高程测量技术的原理与应用

三角高程测量技术的原理与应用引言:三角高程测量技术是一种用于确定地面上各点的高程差的技术,广泛应用于土地测量、建筑工程、地质勘探等领域。
本文将介绍三角高程测量技术的原理以及其在实际应用中的一些案例。
一、三角高程测量技术的原理三角高程测量技术基于三角形的几何性质,利用三角形的内角和外角之和等于180°的特点,通过测量三角形内角或边长的变化来计算高程差。
1.三角形的内角和在平面几何中,三角形的内角和总是等于180°。
通过测量三角形的内角和可以计算出与地面平行的三角形的高程差。
2.三角形的边长比例当两个三角形有一个共边时,它们的边长比例与高程差之间存在一定的关系。
根据这个关系可以通过测量两个三角形的边长比例来计算高程差。
3.水平仪水平仪是一种测量仪器,可以用来测量物体相对于地面的水平度。
通过水平仪可以测量物体的高度差,并计算出高程差。
二、三角高程测量技术的应用案例三角高程测量技术在土地测量、建筑工程和地质勘探等领域有着广泛的应用。
下面将分别介绍这些领域中的一些应用案例。
1.土地测量在土地测量中,三角高程测量技术可以用于确定不同地块之间的高程差,从而帮助规划和设计土地利用。
例如,在城市规划中,通过测量不同街区的高程差,可以确定出最佳的排水系统设计,以应对雨水的排放。
2.建筑工程在建筑工程中,三角高程测量技术可以用于确定建筑物的高程差,从而保证建筑物的平整度和垂直度。
例如,在建造高楼大厦时,通过测量建筑物不同层之间的高程差,可以确保整个建筑物的垂直度。
3.地质勘探在地质勘探中,三角高程测量技术可以用于确定地质构造的高程差,从而提供地质勘探的基础数据。
例如,在勘探矿产资源时,通过测量不同地质构造点的高程差,可以确定出矿石的分布情况。
三、三角高程测量技术的优势与难点1.优势三角高程测量技术具有测量范围广、测量精度高的优势。
由于三角测量是一种基于三角形几何性质的测量方法,可以适用于不同尺度和不同地形的测量需求。
无量高全站仪三角高程测量

随着全站仪在工程测量中的普及,使用既可任意置站,又可减少误差来源,同时还无需每次量取仪器高及棱镜高度的棱镜跟踪杆配合全站仪测量高程方法,已愈发受到广大测量人员青睐。
通过已有工程实例证明,无量高全站仪三角高程测量法可使测量精度进一步提高、施测速度更快,特别适合于复杂环境下工程的应用。
1 无量高全站仪三角高程测量法1.1 测点高程H测高法(1)公式推导图1为传统三角高程测量示意。
设HB为B点高程,已知;H A为A点高程,未知;现通过全站仪测定其他待测点的标高图1中,D为A、B两点间的水平距离,即高斯投影平面上两点的距离;i为测站点的仪器高。
图1 传统三角高程测量示意H A=H B-D tanα-i+t式中:D tanα即V值可用仪器直接测出,i、t均未知,但因仪器置好后,i 值将随之不变,同时选取棱镜跟踪杆作为反射棱镜,棱镜高度值t也将不变。
故待测点的高程为:HA+i-t=H B-D tanα=H0。
H A+i-t在任意测站上固定不变,且可以计算出其测站点高程H0。
故有H求= H0+D'tanα'+i-t。
式中:H求为待测点高程;D'为测站点到待测点的水平距离;α'为测站点到待测点的观测垂直角。
当i=0、t=0时,H求= H0+D'tanα'。
(2)操作过程1)选择与已知高程点通视的位置将仪器任意置点。
2)测出V值,计算出H0。
3)重新设定仪器测站点高程为H0,且设置仪器高及棱镜高为0。
4)照准待测点,测出其高程。
1.2 借高三维Z坐标测高法(1)公式推导借高三维Z坐标值测高法测量如图2所示,B=BM为后视点B的高程代号。
假设B点的高程H;已知,C点的高程HC未知,A点为任意置站点,通过全站仪测定C点的高程HC。
图2 借高三维Z坐标值测高法测量示意由Z坐标测量原理可知:Z B=Z A+D tanα+i-t式中:D tanα即V值可以用仪器直接测出,测出V值后将仪器中仪高值i改设为(t-D tanα)值、将测站点ZA坐标设置为基准点高点H B。
中间法三角高程测量步骤

中间法三角高程测量步骤1.设定基准点:首先,确定一个已知高程的基准点,一般选用水准点或高程已知的控制点作为基准点。
将基准点的高程作为起始高程,进行后续高程测量。
2.布设测站:在需要测量高程的地点附近选择合适的测站,并使用三角仪或全站仪定位测站的坐标。
3.放样参考边:在测站附近放置一个参考边,参考边的两个端点与测站组成一个三角形。
参考边长度应尽可能大,以提高测量精度,通常选择具备较好外业可见性和控制点连续性的位置。
4.观测角度:使用三角仪或全站仪观测测站与参考边两个端点之间的角度,并记录下来。
5.测量距离:使用测量仪器测量测站与参考边两个端点之间的距离,并记录下来。
如果是使用全站仪,可以直接通过仪器内置的测距功能测量距离。
6.计算高程差:根据测量的角度和距离,使用三角函数计算出测站的高程差。
高程差等于参考边长乘以正切(θ)角度,其中θ为测站与两个参考点夹角的一半。
7.修正高程差:在进行计算时,需要考虑到仪器误差、气象条件和仪器的漂移等因素。
根据实际情况,校正或修正高程差的计算结果,以提高测量精度。
8.连续观测和校验:为了提高测量的准确性,可以多次观测同一个点,并进行比对和校验。
如果测量结果存在较大差异,需要重新观测和计算,直到结果稳定为止。
9.选择下一个测站:在得到一个测站的高程差后,选择附近的另一个测站作为下一个测量点,重复以上操作,依次测量所有需要测量的点。
10.计算高程:最后,将基准点的高程和各个测站的高程差相加,即可得到各个测站的绝对高程。
总结:中间法三角高程测量是一种常用的地形测量方法,通过布设测站,观测角度和测量距离,计算出测站和参考边的高程差,从而得到测站的绝对高程。
在测量过程中需要考虑仪器误差、气象条件和仪器漂移等因素,并进行修正和校正,以提高测量精度。
同时,连续观测和校验是保证测量结果准确性的重要步骤。
三角高程测量的计算公式
三角高程测量的计算公式三角高程测量是地理测量中常用的一种方法,用于测量地面上的点的高程。
本文将介绍三角高程测量的计算公式,并解释其原理和应用。
三角高程测量是基于三角法原理的一种测量方法。
它利用三角形的一些特性和测量数据,通过计算可以得到被测点的高程。
三角高程测量适用于各种地形条件,无论是平原、山地还是高原,都可以通过三角高程测量来确定各个点的高程。
三角高程测量的计算公式如下:h = H + d * tan(a)其中,h表示被测点的高程,H表示参考点的高程,d表示两个测点之间的水平距离,a表示两个测点之间的夹角。
根据这个公式,我们可以通过测量参考点和被测点之间的距离和夹角,再加上参考点的高程,就可以计算出被测点的高程。
这个公式的原理是基于三角形的相似性原理,即两个三角形的对应边的比例相等。
在实际测量中,我们首先需要选择一个参考点,可以是已知高程的点或者固定测量设备的位置。
然后,利用测量仪器测量参考点和被测点之间的水平距离和夹角。
最后,根据测量数据和计算公式,我们可以计算出被测点的高程。
三角高程测量在地理测量中具有广泛的应用。
它可以用于绘制地形图、制作地图、建筑工程设计等。
通过三角高程测量,我们可以快速准确地确定地面上各个点的高程,为地理信息系统的建设和规划提供重要的数据支持。
在实际应用中,三角高程测量需要考虑一些误差因素。
例如,测量仪器的精度、天气条件、地形复杂度等都会对测量结果产生影响。
因此,在测量过程中要注意选择合适的测量仪器、控制测量误差,并进行合理的数据处理和分析。
三角高程测量是一种常用的地理测量方法,通过测量参考点和被测点之间的距离和夹角,再结合计算公式,可以准确地确定被测点的高程。
它在地理信息系统、地形图制作、建筑工程设计等领域具有重要的应用价值。
在实际应用中,我们需要注意测量误差的控制和数据处理,以提高测量结果的精度和可靠性。
通过三角高程测量,我们可以更好地了解地球表面的地形特征,为人类的生活和发展提供有益的信息。
三角高程测量法的基本原理与实施步骤
三角高程测量法的基本原理与实施步骤高程测量是地理测量中的一个重要组成部分,它是确定地点在垂直方向上的高度差,从而推导出地形的起伏和变化情况。
三角高程测量法是一种常用且较为精确的高程测量方法之一,本文将介绍三角高程测量法的基本原理与实施步骤。
一、三角高程测量法的基本原理三角高程测量法基于三角形的相似性原理,它通过一个已知高度的基准点和两个相邻点之间的水平距离来计算出相邻点的高度差。
其基本原理如下:1. 角度测量:首先,我们需要测量出两个相邻点相对于基准点的水平方向的角度。
这可以通过定向测量仪等测量设备来完成。
测量精度要求高时,可以使用全站仪等高精度仪器。
2. 距离测量:在角度测量完成后,我们需要通过测距仪、测距杆等工具测量出基准点和相邻点之间的水平距离。
测距精度将直接影响测量结果的准确性。
3. 高度差计算:测量完成后,我们可以利用三角形的相似性原理,根据已知的角度和距离计算出两个相邻点的高度差。
具体计算方式是利用三角函数中的正切函数来求解高度差。
二、三角高程测量法的实施步骤实际进行三角高程测量时,我们需要按照一定的步骤来进行,以确保测量结果的准确性和可靠性。
下面是三角高程测量法的实施步骤:1. 确定基准点:首先,我们需要选择一个已知高度的基准点。
这个基准点可以是大地水准点、气象台、水坝等高程已知的地物。
在选择基准点时,需要考虑地理位置的便利性和高程的稳定性。
2. 设置测量站:在确定基准点后,我们需要设置测量站点,并在测量站点上安装测量设备,如全站仪等。
测量站点的选择应考虑到地势的平坦性和视线的通畅性,以确保能够准确测量角度和距离。
3. 开展测量:在测量站点设置完毕后,我们可以开始进行角度和距离的测量工作。
首先,利用测量设备测量出基准点和相邻点之间的水平角度;然后,利用测距仪等设备测量出基准点和相邻点之间的水平距离。
4. 计算高度差:在完成测量后,我们可以根据已知的角度、距离和基准点的高度,利用三角函数的运算来计算出相邻点的高度差。
三角高程测量
12
2019/1/19
例:设L=357°14′36″ R= 182°45′24″ 求α α=(L–R±180°)/2
=(357°14′36″-182°45′24″- 180°)/2
= - 2°45′24″
盘左读数在 270°~360° 之间,为俯角, 180°前面为 负号。
19
2019/1/19
竖直角观测记录表1
4
2019/1/19
调整竖盘指标水准管气泡居中, 使读数指标线处于正确位置。
竖盘指标水准管
竖盘指标水准
管微动螺旋
5
图中3号螺旋为 竖盘指标水准管 微动螺旋
2019/1/19
2.竖盘的注记形式 顺时针,逆时针。 望远镜水平时,竖盘读数为90°的整倍数。
竖盘逆时针注记(盘左高度角式)
6
2019/1/19
一.三角高程测量 原理
一、三角高程测量原理
hABv Stg i hAB Stg i v
B点的高程:
H H h B A AB H Stg iv A
直觇:在已知点设站,观测未知点; 反觇:在未知点设站,观测已知点;
1
2019/1/19
二、地球曲率与大气折射的影响 地球曲率的影响: DE = p 大气折光的影响: FG = r
13
2019/1/19Байду номын сангаас
3、竖盘指标差
1)定义
竖盘指标水准管气泡居 中(或自动归零装置打
开)且望远镜视线水平
时,竖盘读数与理论读
数 (90 的整倍数 ) 的差值
x称为竖盘指标差。
三角高程测量
J08-KC-08-A三角高程测量1 三角高程测量基本公式仪器高 1i觇标高 2v 参考椭球面 A ′B ′ 水准面 PE ,AF切线PC (水准面PE 的) 切线PM (也就是视线)光程曲线PN (切线PM 的光程曲线) 垂直角12α,实测的,但真正的垂直角应为0α,012αα-称为折光角图1 三角高程测量示意图高差计算公式为:NB MN EF CE MC BF h --++==12 (1)220120120221v s RK i s R tg s --++=α 2120120v i Cs tg s -++=α式中:C ——球气差系数,C =(1-K )/2R0s ——为实测的水平距离221s R ——地球弯曲差22s R K ——大气垂直折光差,K 为折光系数,一般在0.1~0.16之间,可用实验方法测定。
2 三角高程导线测量基本要求(1) 三、四等及等外高程导线测量,每公里高差中数的偶然中误差∆M 和全中误差wM 应符合表1的规定。
表 1 mm(2) 高程导线天顶距测量,一测回观测值中误差Z M 应符合以下规定。
三等 "3.1≤Z M 四等 "5.1≤Z M(3) 各等级高程导线的路线长度应符合表2的规定。
表 2 km(4) 高程导线的环线、附合路线闭合差和检查已测测段高差之差,不得超过表3的规定。
表 3 mm(5) 高程导线的视线长度和视线倾角应符合表4的规定。
J08-KC-08-A4 m表表5 m表 6 (°)3 三角高程导线测量流程3.1 路线设计与埋石(1)高程导线的路线设计应根据任务书的要求,收集测区及附近的地形图、交通图、水准点、气象等方面的资料,设计最佳方案,编写技术设计。
(2)测站和置觇点宜选择在高出周围地面的地形特征点上,尽量提高视线的高度。
视线高度和地面障碍物的距离不小于1.5m。
(3)视线和置觇点应尽量避免通过有强烈背景光和强磁场的地方,以及有吸热、散热变化大的区域,视线离较宽的水面和高压输电线的距离应大于2m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角高程测量以及误差分析与应用
1.三角高程测量的基本原理
应用水准测量的方法进行高程测量,得到的地面点的高程精度较高,但是对于地面起伏较大或不便于进行水准测量的地区,通常采用三角高程测量来传递高程,三角高程测量的方法灵活简便,受地形限制较少。
三角高程测量时根据由测站向照准点所观测的竖角(或天顶距)和他们之间的水平距离,计算测站点与照准点之间的高差。
如下图1.1,在地面上A、B两点之间测定高差,A点设置一起,在B点树立标尺,量取望远镜旋转轴中心I至地面点A的仪器高,用望远镜十字丝的横丝照准B点便池上的一点M,它距地面B点高度称为目标高,测出倾斜视线IM 和水平视线IN之间所夹的竖角,若A、B之间的水平距离已知为S,则由图1.1可得两点之间的高差为
(1-1)
若A点高程已知为,则B点的高程为:
(1-2)
当为仰角时取正号,当为俯角时取负号。
若在A点设置全站仪,在B点安置棱镜,并量取仪器高和棱镜高,测得两点斜距D和竖角以计算两点之间的高差,称为光电测距三角高程测量,A、B两点之间的高差为
(1-3)
图1.1 三角高程测量原理
2. 三角高程测量的精度
从三角高程测量的公式可以看出,三角高程测量的精度受到以下各方面的影响:
①竖直角观测误差
②边长误差
③球气差:大气折光和地球曲率对三角高程测量的误差
④仪器高和目标高的量测误差
⑤仪器等沉降引起的误差
⑥垂线偏差
对于以上误差,可采用相应的方法来减弱其对测量的影响。
2.1竖直角观测误差
竖直角测量误差是三角高程测量中的主要误差来源,在使用仪器时,要严格按照要求进行观测,需要对中整平的时候要严格对中整平。
得益于现代仪器的发展,现在竖直角误差主要是照准误差,外界环境如空气能见度等等都会给竖角测定带来影响,因此在环境较好时测量能一定程度上减弱竖直角误差;同时,该误差随着竖直角的增加而增大,因此在观测中最好是控制竖直角在15度以内;另一方面,竖直角观测误差对高差测定的影响与推算高差的边长成正比,因此要进行短边传递,同时要控制线路上的边数。
2.2边长误差
边长误差的大小取决于测量的方法,若边长根据两点之间的坐标正反算求得
或用全站仪、测距仪等测距仪器测得,其精度已经相当高,在距离不大的情况下,边长误差可以忽略不计。
尽管如此,在使用仪器测距时,选择好的天气、严格对中整平、尽量瞄准棱镜中心可以有效的减弱边长误差的影响。
2.3球气差
球气差是指地球曲率和大气折光对所测高差的影响;
由于地球并非是一个平面,因此在测量距离较大的时候要考虑地球曲率对高程测量的误差,一般会用实测距离推算出在不同条件下的距离(如有实测距离推出椭球面上的边长或者退出在高斯平面上的边长,进而计算高差),但是一般在距离不大(约300m)时,可以忽略地球曲率对三角高程测量的影响;三角高程测量中,可以将仪器设在两点中间进行观测,或则分别在两点上架设仪器进行对向观测,并各自计算高差,进行平均,也能很好的减弱甚至消除地球曲率的影响。
大气折光的影响与观测条件密切相关,大气垂直折光系数K,是随地区、气候、季节、地面覆盖物和视线超出地面高度等条件不同而变化的,要精确测定它的数值,目前尚不可能,通过实验发现,K指在一天内的变化大致在中午前后数值最小,也较稳定,日出、日落时数值最大,变化也较快,因此竖角观测时间最好是在10时到16时进行,此时K值约在0.08~0.14之;在三角高程测量中,折光影响还与距离平方成正比,因此,进行短边测量也能减弱折光影响。
2.4仪器高和目标高的量测误差
通过多次测量仪器高和目标高,对所测值进行取平均能有效减弱量测过程中的误差。
2.5仪器等沉降引起的误差
仪器沉降误差一般发生在观测过程中,观测时间越长,误差越大,因此要提高迁站速度,同时采用往返测来抵消部分误差,同时,架设仪器要选择较硬的稳定的地质。
2.6垂线偏差
在推导三角高程测量公式时,是假定测站点的垂线与发现方向一致的,并未顾及到垂线偏差对于竖角的影响,在地形起伏不大、垂线变化较小的地区或观测的边较短时时可行的,但在山区,垂线偏差变化较大,观测边长较长是要考虑垂线偏差对观测竖角的影响,一般会用垂线偏差改正公式进行改正。
综上所述,当现代化的测距工具出现后,三角高程测量就以其精度高、施测方便的优势越来越多的应用于实际,对于各种误差的影响,采用合理的方法施测和改正,能得到高精度效果。