南京市八年级上学期第二次月考数学试题
江苏省南京市八年级上第一学期第二次月考数学试卷

江苏省南京市八年级上第一学期第二次月考数学试卷一、选择题1.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .1 2.若分式15x -在实数范围内有意义,则实数x 的取值范围是( ) A .5x ≠ B .5x = C .5x > D .5x <3.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .104.下列各式从左到右变形正确的是( )A .0.220.22a b a b a b a b++=++ B .231843214332x y x y x yx y ++=-- C .n n a m m a -=- D .221a b a b a b+=++ 5.下列说法正确的是( ) A .(﹣3)2的平方根是3B 16±4C .1的平方根是1D .4的算术平方根是26.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m ≥-C .3n x m -≤≤D .以上都不对7.一组不为零的数a ,b ,c ,d ,满足a cb d =,则以下等式不一定成立的是( ) A .a c =b d B .a b b +=cd d + C .9a b -=9c d - D .99a b a b -+=99c d c d -+ 8.下列各式成立的是( )A 93=±B 235=C ()233-=± D .(233-= 9.下列二次根式中属于最简二次根式的是( ) A 32B 24x y C y x D 24+x y 10.2的整数部分用a 表示,小数部分用b 表示,42的整数部分用c 表示,小数部分用d 表示,则b d ac +值为( ) A .12 B .14 C .212 D .2+12二、填空题11.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为________.12.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.13.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.14.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是_____.15.在实数22,4π,227-,3.14,16中,无理数有______个. 16.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 17.如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为5和11,则b 的面积为__________.18.若x ,y 都是实数,且338y x x =-+-+,则3x y +的立方根是______.19.如图,直线1l x ⊥轴于点(1,0),直线2l x ⊥轴于点(2,0),直线3l x ⊥轴于点(3,0),…直线n l x ⊥轴于点(,0)n .函数y x =的图像与直线123,,n l l l l 分别变于点123,,,n A A A A ;函数3y x =的图像与直线123,,,n l l l l 分别交于点123,,,n B B B B ,如果11OA B ∆的面积记的作1S ,四边形1221A A B B 的面积记作2S ,四边形2332A A B B 的面积记作3S ,…四边形n 1n n n 1A A B B --的面积记作n S ,那么2020S =________.20.在第二象限内的点P 到x 轴的距离是1,到y 轴的距离是4,则点P 的坐标是_________.三、解答题21.如图,在平面直角坐标系xOy 中,已知正比例函数43y x =与一次函数7y x =-+的 图像交于点A .(1)求点A 的坐标;(2)在y 轴上确定点M ,使得△AOM 是等腰三角形,请直接写出点M 的坐标;(3)如图,设x 轴上一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交43y x =和7y x =-+的图像于点B 、C ,连接OC ,若BC =145OA ,求△ABC 的面积及点B 、点C 的坐标;(4)在(3)的条件下,设直线7y x =-+交x 轴于点D ,在直线BC 上确定点E ,使得△ADE 的周长最小,请直接写出点E 的坐标.22.如图,∠AOB =90°,OA =12cm ,OB =8cm ,一机器人在点B 处看见一个小球从点A出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿BC 方向匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,并且它们的运动时间也相等.(1)请用直尺和圆规作出C 处的位置,不必叙述作图过程,保留作图痕迹;(2)求线段OC 的长.23.建立模型:如图1,已知△ABC ,AC =BC ,∠C =90°,顶点C 在直线l 上.(1)操作:过点A 作AD ⊥l 于点D ,过点B 作BE ⊥l 于点E .求证:△CAD ≌△BCE .(2)模型应用:①如图2,在直角坐标系中,直线l :33y x =+与y 轴交于点A ,与x 轴交于点B ,将直线l 绕着点A 顺时针旋转45°得到直线m .求直线m 的函数表达式.②如图3,在直角坐标系中,点B (4,3),作BA ⊥y 轴于点A ,作BC ⊥x 轴于点C ,P 是直线BC 上的一个动点,点Q (a ,5a ﹣2)位于第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出此时a 的值,若不能,请说明理由.24.如图,在边长为12cm 的正方形ABCD 中,M 是AD 边的中点,点P 从点A 出发,在正方形边上沿A B C D →→→的方向以大于1 cm/s 的速度匀速移动,点Q 从点D 出发,在CD 边上沿D C →方向以1 cm/s 的速度匀速移动,P 、Q 两点同时出发,当点P 、Q 相遇时即停止移动.设点P 移动的时间为t(s),正方形ABCD 与PMQ ∠的内部重叠部分面积为y (cm 2).已知点P 移动到点B 处,y 的值为96(即此时正方形ABCD 与PMQ ∠的内部重叠部分面积为96cm 2).(1)求点P 的速度:(2)求y 与t 的函数关系式,并直接写出的取值范围.25.如图,某斜拉桥的主梁AD 垂直于桥面MN 于点D ,主梁上两根拉索AB 、AC 长分别为13米、20米.(1)若拉索AB ⊥AC ,求固定点B 、C 之间的距离;(2)若固定点B 、C 之间的距离为21米,求主梁AD 的高度.四、压轴题26.如图,直线2y x m =-+交x 轴于点A ,直线122y x =+交x 轴于点B ,并且这两条直线相交于y 轴上一点C ,CD 平分ACB ∠交x 轴于点D .(1)求ABC 的面积.(2)判断ABC 的形状,并说明理由.(3)点E 是直线BC 上一点,CDE △是直角三角形,求点E 的坐标.27.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式.28.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时,①若D 点的坐标为(﹣5,0),求点E 的坐标.②求证:M 为BE 的中点.③探究:若在点D 运动的过程中,OM BD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).29.如图,在平面直角坐标系中,直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,过点B 的另一条直线交x 轴正半轴于点C ,且OC =3.图1 图2(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;30.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】图中直线y=x+b与x轴负半轴,y轴正半轴分别交于A,B两点,可以根据两点的坐标得出OA=OB,由此可证明△AOD≌△OBE,证出OC=AD,BE=OD,在Rt△OBE中,运用勾股定理可求出BE的长,再根据线段的差可求出DE的长.【详解】直线y=x+b(b>0)与x轴的交点坐标A为(-b,0)与y轴的交点坐标B为(0,-b),所以,OA=OB,又∵AD⊥OC,BE⊥OC,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 2.A解析:A【解析】【分析】根据分式的定义即可求解.【详解】依题意得50x -≠,解得5x ≠,故选A.【点睛】此题主要考查分式的性质,解题的关键是熟知分式的性质.3.A解析:A【解析】【分析】由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,易得△BCF 的周长等于AB+BC ,则可求得答案.【详解】解:由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,所以△BCF 的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A .【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.4.B解析:B【解析】【分析】根据分式的基本性质,依次分析各个选项,选出正确的选项即可.【详解】A .分式的分子和分母同时乘以10,应得210102a b a b++,即A 不正确, B . 26(3)184321436()32x y x y x y x y ⨯++=-⨯-,故选项B 正确, C .分式的分子和分母同时减去一个数,与原分式不相等,即C 项不合题意,D .22a b a b ++不能化简,故选项D 不正确. 故选:B .【点睛】 此题考察分式的基本性质,分式的分子和分母需同时乘以(或除以)同一个不为0的整式,分式的值不变.不能在分子和分母中加减同一个整式,这是错误的.5.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A 、(﹣3)2的平方根是±3,故该项错误;B4,故该项错误;C 、1的平方根是±1,故该项错误;D 、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.6.C解析:C【解析】首先根据交点得出3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1)∴31,31m n k b +=-+=-∴33m n k b +=+,即3b n m k-=- 由图象,得0,0m k <>∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m≥- ∴不等式组的解集为:3n x m -≤≤ 故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.7.C解析:C【解析】【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可.【详解】 解:一组不为零的数a ,b ,c ,d ,满足a c b d=, ∴a b c d =,11a c b d +=+,即a b c d b d ++=,故A 、B 一定成立; 设a c k b d==, ∴a bk =,c dk =, ∴999999a b kb b k a b kb b k ---==+++,999999c d kd d k c d kd d k ---==+++, ∴9999a b c d a b c d --=++,故D 一定成立; 若99a c b d --=则99a c b b d d -=-,则需99b d=, ∵b 、d 不一定相等,故不能得出99a c b d--=,故D 不一定成立. 故选:C .本题考查了比例性质;根据比例的性质灵活变形是解题关键.8.D解析:D【解析】【分析】根据算术平方根的定义对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】=,所以A选项错误;解:A3B B选项错误;=,所以C选项错误;C3D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.9.D解析:D【解析】【分析】最简二次根式即被开方数不含分母且不含能开得尽方的因数或因式,由此判断即可.【详解】解:AB2CD故选:D.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的概念是解题的关键.10.A解析:A【解析】【分析】和4的值,确定其整数部分,再用原数减去其整数部分可得小数部分,将求得的值代入求解即可.【详解】解:∵1<2<4,∴1<2.∴a=1,b﹣1,∵2<4<3∴c=2,d=4﹣2=2.∴b+d=1,ac=2.∴b dac=12.故选:A.【点睛】本题考查了实数的估算,灵活的利用估算确定无理数的整数部分与小数部分是解题的关键.二、填空题11.y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数解析:y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数关系为:y=15+2x,故答案为:y=15+2x.【点睛】此题主要考查一次函数在实际问题的应用,找到所求量的等量关系是解决问题的关键.12.【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.--解析:(1,1)【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴2,由三角形的面积公式得:AC×OC=OA×CD,22=2CD,∴CD=1,∴OD=CD=1,∴B(-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B和C重合时,线段AB最短,题目比较典型,主要培养了学生的理解能力和计算能力.13.【解析】【分析】计算出当P在直线上时a的值,再计算出当P在直线上时a的值,即可得答案.【详解】解:当P在直线上时,,当P在直线上时,,则.故答案为【点睛】此题主要考查了一次函数与解析:0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.14.【解析】分析:连接AD 由PQ 垂直平分线段AB ,推出DA=DB ,设DA=DB=x ,在Rt△ACD 中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD .∵PQ 垂直平解析:85【解析】分析:连接AD 由PQ 垂直平分线段AB ,推出DA=DB ,设DA=DB=x ,在Rt △ACD 中,∠C=90°,根据AD 2=AC 2+CD 2构建方程即可解决问题;详解:连接AD .∵PQ 垂直平分线段AB ,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=175,∴CD=BC﹣DB=5﹣175=85,故答案为85.点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.15.2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义,属于无理数,所以无理数有2个.解析:2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义2,4属于无理数,所以无理数有2个.故答案为:2.【点睛】本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键.16.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 17.16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BC解析:16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC =∠DAE ,然后证明△ΔBCA ≌ΔAED ,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB =AD ,∠BCA =∠AED =90°,∴∠ABC =∠DAE ,∴ΔBCA ≌ΔAED (ASA ),∴BC =AE ,AC =ED ,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键.18.3【解析】【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【详解】解:根据题意得,x-3≥0且3-x≥0,解得x≥3且x≤3,所以解析:3【解析】【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【详解】解:根据题意得,x-3≥0且3-x≥0,解得x≥3且x≤3,所以x=3,y=8,x+3y=3+3×8=27,∴x+3y的立方根为3.故答案为:3.【点睛】本题考查二次根式的被开方数是非负数,立方根的定义,根据x的取值范围求出x的值是解题的关键.19.4039【解析】【分析】根据直线解析式求出An−1Bn−1,AnBn的值,再根据直线ln−1与直线ln互相平行并判断出四边形An−1AnBn Bn−1是梯形,然后根据梯形的面积公式求出Sn的表解析:4039【解析】【分析】根据直线解析式求出A n−1B n−1,A n B n的值,再根据直线l n−1与直线l n互相平行并判断出四边形A n−1A n B n B n−1是梯形,然后根据梯形的面积公式求出S n的表达式,然后把n=2020代入表达式进行计算即可得解.【详解】根据题意,A n−1B n−1=3(n−1)−(n−1)=3n−3−n+1=2n−2,A nB n=3n−n=2n,∵直线l n−1⊥x轴于点(n−1,0),直线l n⊥x轴于点(n,0),∴A n−1B n−1∥A n B n,且l n−1与l n间的距离为1,∴四边形A n−1A n B n B n−1是梯形,S n=12(2n−2+2n)×1=12(4n−2)=2n-1,当n=2020时,S2020=2×2020-1=4039故答案为:4039.【点睛】本题是对一次函数的综合考查,读懂题意,根据直线解析式求出A n−1B n−1,A n B n的值是解题的关键,要注意脚码的对应关系,这也是本题最容易出错的地方.20.(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,解析:(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,∴点P的横坐标是-4,纵坐标是1,∴点P的坐标为(-4,1).故答案为:(-4,1).【点睛】此题考查点的坐标,解题关键在于熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度.三、解答题21.(1)(3,4);(2)点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)点B(9,12)、C(9,﹣2);(4)点E坐标为(9,1).【解析】试题分析:(1)联立方程组,求解.(2)分类讨论在y轴上确定点OM= OA,OM=AM,总共有4种可能性.(3)设点B(a,43a),C(a,﹣a+7),利用BC=145OA,求a值.过点A作AQ⊥BC,求得△ABC的面积及点B、点C的坐标.(4)利用对称求最小值.试题解析:解:(1)联立得:437y xy x⎧=⎪⎨⎪=-+⎩,解得:34xy=⎧⎨=⎩,则点A的坐标为(3,4).(2)根据勾股定理得:OA=2234+=5,如图1所示,分四种情况考虑:当OM1=OA=5时,M1(0,5);当OM2=OA=5时,M2(0,﹣5);当AM3=OA=5时,M3(0,8);当OM4=AM4时,M4(0,258),综上,点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)设点B(a,43a),C(a,﹣a+7),∵BC=145OA=145×5=14,∴43a﹣(﹣a+7)=14,解得:a=9,过点A作AQ⊥BC,如图2所示,∴S△ABC=12BC•AQ=12×14×(9﹣3)=42,当a=9时,43a=43×9=12,﹣a+7=﹣9+7=﹣2,∴点B(9,12)、C(9,﹣2).(4)如图3所示,作出D关于直线BC的对称点D′,连接AD′,与直线BC交于点E,连接DE,此时△ADE 周长最小,对于直线y=﹣x+7,令y=0,得到x=7,即D(7,0),由(3)得到直线BC为直线x=9,∴D′(11,0),设直线AD′解析式为y=kx+b,把A与D′坐标代入得:34 110k bk b+=⎧⎨+=⎩,解得:12112kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD′解析式为y=﹣12x+112,令x=9,得到y=1,则此时点E坐标为(9,1).点睛:1.平面上最短路径问题(1)归于“两点之间的连线中,线段最短”.凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”.凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题.2.平面直角坐标系下,两个一次函数图像的交点坐标问题,可以看作二元一次方程组的解的问题.3.待定系数法求函数的解析式.22.(1)详见解析;(2)103cm.【解析】【分析】(1)作AB的垂直平分线,交OA于点C,则点C即为所求;(2)设BC=xcm,根据题意用x表示出AC和OC,根据勾股定理列出方程,解方程即可.【详解】解:(1)如图所示,作AB的垂直平分线,交OA于点C,则点C即为所求;(2)由作图可得:BC=AC,设BC=xcm,则AC=xcm,OC=(12﹣x)cm,由勾股定理得,BC 2=OB 2+OC 2,即x 2=82+(12﹣x )2,解得x =263. ∴OC =12﹣263=103 答:线段OC 的长是103cm . 【点睛】 本题考查的是勾股定理的应用和基本作图:线段的垂直平分线,掌握直角三角形中,两条直角边的平方和等于斜边的平方是解题的关键.23.(1)详见解析;(2)132y x =+;(3)32a =或14a =. 【解析】【分析】(1)根据AAS 即可证明△DAC ≌△ECB ;(2)过点B 作BC ⊥BA ,交直线l 2于点C ,过点C 作CD ⊥x 轴于点D .根据33y x =+得到AO =3,OB =1,根据△DCB ≌△OBA 可得点C 的坐标为(-4,1),再根据待定系数法即可求解;(3)根据题意分两种情况分别作图即可求解.【详解】(1)∵∠ACB =90°,∴∠ACD +∠BCE =90°∵AD ⊥l ,BE ⊥l ,∴∠ADC =∠CEB =90°,∴∠ACD +∠DAC =90° ,∴∠DAC =∠ECB∵在△DAC 和△ECB 中,∠ADC =∠CEB ,∠DAC =∠ECB ,AC =CB∴△DAC ≌△ECB (AAS )(2)过点B 作BC ⊥BA ,交直线l 2于点C ,过点C 作CD ⊥x 轴于点D .由直线l :33y x =+与y 轴交于点A ,与x 轴交于点B ,可求点A 坐标为(0,3),点B 坐标为(-1,0),∴AO =3,OB =1.由△DCB ≌△OBA 可得,DC =OB =1,DB =OA =3,∴点C 的坐标为(-4,1)设直线m 的解析式为:y =kx +b ,把(0,3),(-4,1)代入, 求得132y x =+ .(3)如图3,由△AEQ ≌△QFP 可得AE =QF ,3-(5a -2)=4-a ,求得14a=.如备用图,由△AEQ≌△QFP可得AE=QF,(5a-2)-3=4-a,求得32a=.【点睛】本题考查一次函数综合题,主要考查了点的坐标、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,需要考虑的多种情况,解题时注意分类思想的运用.24.(1)3 cm/s;(2)()()()144120418021481081289t ty t tt t⎧-≤≤⎪=-<≤⎨⎪-<≤⎩.【解析】【分析】(1)由于P的速度比Q的速度大,因此P到达B点时,Q在DC边上,此时重叠部分面积为正方形的面积减去△DQM和△ABM的面积,求解即可;(2)分三种情况讨论:当点P在边AB上时,当点P在边BC上时,当点P在边CD上时,根据题意列函数关系式即可.【详解】解:(1)由已知得,AB=AD=CD=BC=12,∵M是AD边的中点,∴AM=MD=6,由题意可知当P到达B点时Q在DC边上,DQ=t,∴ABM DMQABCDy S S S=--△△正方形,∴11961212612622t=⨯-⨯⨯-⨯⨯,解得,t=4,∴ P点的速度为12÷4=3 cm/s;(2)当点P在边AB上时,04t≤≤,APM DMQABCDy S S S=--△△正方形,111212636=144-1222y t t t =⨯-⨯⨯-⨯⨯ 当点P 在边BC 上时,48t <≤,DMQ ABCD AMPB y S S S =--△正方形梯形()1112123126126=180-2122y t t t =⨯-⨯-+⨯-⨯⨯ 当点P 在边CD 上时,8t <≤9,MQ y S =△P ,()112336=108-122y t t t =⨯⨯--⨯; 综上所述,y 与t 的函数关系式为()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【点睛】本题考查了四边形的动点问题,注意分类讨论是解题的关键.25.(1)BC2)12米.【解析】【分析】(1)用勾股定理可求出BC 的长;(2)设BD=x 米,则BD=(21-x )米,分别在Rt ABD ∆中和Rt ACD ∆中表示出2AD ,于是可列方程22221320(21)x x -=--,解方程求出x,然后可求AD 的长.【详解】解:(1)∵AB ⊥AC∴=(2)设BD=x 米,则BD=(21-x )米,在Rt ABD ∆中,2222213AD AB BD x =-=-在Rt ACD ∆中,2222220(21)AD AC CD x =-=--,∴22221320(21)x x -=--,∴x=5,∴12AD =(米).【点睛】本题考查了勾股定理的应用,根据勾股定理列出方程是解题关键. 四、压轴题26.(1)5;(2)直角三角形,理由见解析;(3)44,33E ⎛⎫-⎪⎝⎭或82,33E ⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)先求出直线122y x =+与x 轴的交点B 的坐标和与y 轴的交点C 的坐标,把点C 代入直线2y x m =-+,求出m 的值,再求它与x 轴的交点A 的坐标,ABC 的面积用AB 乘OC 除以2得到;(2)用勾股定理求出BC 的平方,AC 的平方,再根据AB 的平方,用勾股定理的逆定理证明ABC 是直角三角形;(3)先根据角平分线求出D 的坐标,再去分两种情况构造全等三角形,利用全等三角形的性质求出对应的边长,从而得到点E 的坐标.【详解】解:(1)令0x =,则10222y =⨯+=, ∴()0,2C ,令0y =,则1202x +=,解得4x =-, ∴()4,0B -,将()0,2C 代入2y x m =-+,得2m =,∴22y x =-+,令0y =,则220x -+=,解得1x =,∴1,0A ,∴5AB =,2OC =, ∴152ABC S AB OC =⋅=△; (2)根据勾股定理,222224220BC BO OC =+=+=,22222125AC AO OC =+=+=,且22525AB ==,∴222AB BC AC =+,则ABC 是直角三角形;(3)∵CD 平分ACB ∠, ∴12AD AC BD BC ==, ∴1533AD AB ==, ∴23OD AD OA =-=,∴2,03 D⎛⎫-⎪⎝⎭①如图,CED∠是直角,过点E作EN x⊥轴于点N,过点C作CM EN⊥于点M,由(2)知,90ACB∠=︒,∵CD平分ACB∠,∴45ECD∠=︒,∴CDE△是等腰直角三角形,∴CE DE=,∵90NED MEC∠+∠=︒,90NED NDE∠+∠=︒,∴MEC NDE∠=∠,在DNE△和EMC△中,NDE MECDNE EMCDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()DNE EMC AAS≅,设DN EM x==,EN CM y==,根据图象列式:DO DN CMEN EM CO+=⎧⎨+=⎩,即232x yx y⎧+=⎪⎨⎪+=⎩,解得2343xy⎧=⎪⎪⎨⎪=⎪⎩,∴43EN CM==,∴44,33E⎛⎫-⎪⎝⎭;②如图,CDE∠是直角,过点E作EG x⊥轴于点G,同理CDE△是等腰直角三角形,且可以证得()CDO DEG AAS≅,∴2DG CO==,23EG DO==,∴28233 GO GD DO=+=+=,∴82,33E⎛⎫-⎪⎝⎭,综上:44,33E⎛⎫-⎪⎝⎭,82,33E⎛⎫-⎪⎝⎭.【点睛】本题考查一次函数综合,解题的关键是掌握一次函数解析式的求解,与坐标轴交点的求解,图象围成的三角形面积的求解,还涉及勾股定理、角平分线的性质、全等三角形等几何知识,需要运用数形结合的思想去求解.27.(1)CP=3t,BQ=8-t;(2)见解析;(3)S=16-2t.【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC≅,得到∠PQC=∠BCQ,即可求证;(3)过点C作CM⊥AB,垂足为M,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t,BQ=8-t;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC≅∴∠PQC=∠B CQ∴PQ∥BC(3)过点C作CM⊥AB,垂足为M∵AC=BC,CM⊥AB∴AM=118422AB=⨯=(cm)∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm)∴118t4162 22BCQS BQ CM t ==⨯-⨯=-因此,S与t之间的关系式为S=16-2t.【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.28.(1)①E(3,﹣2)②见解析;③12OMBD=,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.29.(1)443y x=-+;(2)612(,)55M;(3)23(0,)7G或(0,-1)G【解析】【分析】(1)求出点B,C坐标,再利用待定系数法即可解决问题;(2)结合图形,由S△AMB=S△AOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组求得交点M的坐标;(3)分两种情形:①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x 轴,过点F,Q作该直线的垂线,垂足分别为M,N.求出Q(n-2,n-1).②当n<2时,如图2-2中,同法可得Q(2-n,n+1),代入直线BC的解析式解方程即可解决问题.。
江苏省南京市江宁区竹山中学2023-2024学年八年级上学期12月月考数学试题

江苏省南京市江宁区竹山中学2023-2024学年八年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2023次相遇点的坐标是()A .()2,0B .()1,1-C .()2,0-D .()1,1--二、填空题13.将函数22y x =+的图象向下平移式是.14.如图,ABC 中,AB AC =,于点E ,分别以A 、D 为圆心,大于线FG 恰好经过点E ,则BEG ∠17.计算机可以帮助我们又快又准地画出函数的图像.用34y x x =-的图像如图所示.则关于18.在平面直角坐标系xOy 中,一次函数A ,B 两点,若点(),1P m m -在三、解答题19.计算:(1)()231685---;22.如图,ABC 三个顶点的坐标分别为(1)请画出ABC 向左平移5个单位长度后得到的(2)ABC 与222A B C △与关于x 轴对称,点(3)在x 轴上有一点P ,能使PAB 23.如图,已知20AOB ∠=︒,点40CFO ∠=︒.(尺规作图,保留作图痕迹,不写出作法)24.如图,直线1l :4y mx =+与与y kx b =+经过点C ,且与1l 交于点(1)求直线1l 与2l 的解析式;(2)记直线2l 与y 轴的交点为D ,记直线1l 与y 轴的交点为E ,求ADE V 的面积;(3)根据图象,直接写出04mx kx b ≤+<+的解集.25.甲、乙两人从A 地前往B 地,先到终点的人在原地休息.已知甲先出发30s 后,乙才出发.在运动过程中,甲、乙两人离A 地的距离分别为1y (单位:m )、2y (单位:m ),都是甲出发时间x (单位:s )的函数,它们的图象如图①.设甲的速度为1v m /s ,乙的速度为2v m /s .(1)12:v v =______,=a ______;(2)求2y 与x 之间的函数表达式;(3)在图②中画出甲、乙两人之间的距离s (单位:m )与甲出发时间x (单位:s )之间的函数图象.26.建立模型如图1,等腰Rt ABC △中,90,ACB CB CA ∠=︒=,直线ED 经过点C ,过点A 作AD ED⊥于点D ,过点B 作BE ED ⊥于点E ,可证明得到BEC CDA≌模型应用(1)如图2,直线1:24l y x =-+与x 轴、y 轴分别交于A 、B 两点,经过点B 和第一象限点C 的直线2l ,且12,l l BA BC ⊥=,求点C 的坐标;(2)在(1)的条件下,求直线2l 的表达式;(3)如图3,在平面直角坐标系中,已知点(3,1)P -,连接OP ,在第二象限内是否存在一点Q ,使得OPQ △是等腰直角三角形,若存在,请直接写出点Q 的坐标:若不存在,请说明理由.。
南京市八年级(上)第二次月考数学试卷(含答案)

南京市八年级(上)第二次月考数学试卷(含答案)一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( )A .80°B .90°C .100°D .110° 2.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( )A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm 3.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .764.若分式242x x -+的值为0,则x 的值为( ) A .-2B .0C .2D .±2 5.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 6.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .7.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中能使△ABC ≌△DEF 的条件有( )A .1组B .2组C .3组D .4组8.下列标志中,不是轴对称图形的是( )A .B .C .D .9.下列计算正确的是( )A .5151+22+-=25B .512+﹣512-=2C .515122+-⨯=1D .515122--⨯=3﹣25 10.下列各数:4,﹣3.14,227,2π,3无理数有( ) A .1个 B .2个 C .3个 D .4个二、填空题11.1﹣π的相反数是_____.12.49的平方根为_______ 13.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.14.圆周率π=3.1415926…精确到千分位的近似数是_____.15.计算222m m m+--的结果是___________ 16.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组32y kx y x b=+⎧⎨=+⎩的解为____. 17.如图,函数3y x =-和4y ax =+的图像相交于点A (m ,3),则不等式34x ax ->+的解集为____.18.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,且50A ∠=︒,则EBC ∠的度数是__________.19.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿y 轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为____.20.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.三、解答题21.已知a 、b 23440a b b --+=.(1)求a ,b 的值;(2)若a ,b 为ABC 的两边,第三边c 5ABC 的面积.22.甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的13,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?23.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,当△PCD的周长最小时,在图中画出点P的位置,并求点P的坐标.24.如图1,已知ED垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.(1)求证:∠AFE=∠CFD;(2)如图2.在△GMN中,P为MN上的任意一点.在GN边上求作点Q,使得∠GQM=∠PQN,保留作图痕迹,写出作法并作简要证明.25.已知直线AB:y=kx+b经过点B(1,4)、A(5,0)两点,且与直线y=2x-4交于点C.(1)求直线AB的解析式并求出点C的坐标;(2)求出直线y=kx+b、直线y=2x-4及与y轴所围成的三角形面积;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x-4于点Q,若线段PQ的长为3,求点P的坐标.四、压轴题26.在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:222110a b a b--++-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(-3,m),如图(1)所示.若SΔABC=16,求点D 的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.求证:∠BCD=3(∠CEP-∠OPE).27.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.28.如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角BPQ,连接CQ ,当点P 在线段OA 上,求证:PA=CQ ;(3)在(2)的条件下若C 、P ,Q 三点共线,直接写出此时∠APB 的度数及P 点坐标29.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)30.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒).(1)用含t 的代数式表示线段PC 的长度;(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点v 以原来的运动速度从点B 同时出发,都顺时针沿三边运动,求经过多长时间,点P 与点Q 第一次在ABC 的哪条边上相遇?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C.【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5810-⨯=0.00008,∴近似数5810-⨯是精确到十万分位,即0.00001.故选:C .【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.3.B解析:B【解析】【分析】由垂直平分线的性质可得AE=BE ,进而可得∠EAB=∠ABE ,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC 的度数.【详解】∵DE 是AC 的垂直平分线,∴AE=BE ,∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE ,∴∠A=76°÷2=38°,∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.4.C解析:C【解析】由题意可知:24020x x =⎧-⎨+≠⎩, 解得:x=2,故选C.5.C解析:C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k 的值.【详解】由完全平方式的形式(a±b)2=a2±2ab+b2可得:kx=±2•2x•13,解得k=±43.故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b)2=a2±2ab+b2是关键.6.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:B.【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,7.C解析:C【解析】【分析】根据全等三角形的判定方法:SSS、SAS、ASA及AAS,即可判定.【详解】①满足SSS,能判定三角形全等;②满足SAS,能判定三角形全等;③满足ASA,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等.∴能使ABC DEF△≌△全等的条件有3组.故选:C.【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.8.B解析:B【解析】【分析】根据轴对称图形的性质对各项进行判断即可.【详解】A. 是轴对称图形;B. 不是轴对称图形;C. 是轴对称图形;D. 是轴对称图形;故答案为:B .【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.9.C解析:C【解析】【分析】利用二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;利用完全平方公式对D 进行判断.【详解】解:A ==A 选项错误;B 212==,所以B 选项错误; C 15151124--==,所以C 选项正确;D 、15152-=,所以D 选项错误. 故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.B 解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π2个.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.二、填空题11.π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是.故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号. 解析:π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是()11ππ=﹣﹣﹣. 故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.12.【解析】【分析】利用平方根立方根定义计算即可.【详解】∵,∴的平方根是±,故答案为±.【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根 解析:23【分析】利用平方根立方根定义计算即可.【详解】∵224=39⎛⎫±⎪⎝⎭,∴49的平方根是±23,故答案为±2 3 .【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.13.【解析】【分析】过点C作直线AB的垂线段CD,利用三角形的面积即可求出CD的长.【详解】连接AC,过点C作CD⊥AB,则CD的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:16 5【解析】【分析】过点C作直线AB的垂线段CD,利用三角形的面积即可求出CD的长.【详解】连接AC,过点C作CD⊥AB,则CD的长最短,如图,对于直线334y x=+令y=0,则3304x+=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴5 ∵C (0,-1),∴OC=1,∴BC=3+1=4, ∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.14.142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5 大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分解析:142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5 大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点睛】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.15.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母.16..【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数与的图象的交点的坐标为(−1,2),∴方程组的解是.【点睛】本题考查了一次函数和二元一次方程(组)解析:12x y =-⎧⎨=⎩. 【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数3y kx =+与2y x b =+的图象的交点的坐标为(−1,2),∴方程组32y kx y x b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.17.x <-1.【解析】由图象可知,在点A 的左侧,函数的图像在的图像的上方,即,所以求出点A 的坐标后结合图象即可写出不等式的解集.【详解】解:∵和的图像相交于点A (m ,3),∴∴∴解析:x <-1.【解析】【分析】由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,即34x ax ->+,所以求出点A 的坐标后结合图象即可写出不等式34x ax ->+的解集.【详解】解:∵3y x =-和4y ax =+的图像相交于点A (m ,3),∴33m =-∴1m =-∴交点坐标为A (-1,3),由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方, 即34x ax ->+∴不等式34x ax ->+的解集为x <-1.故答案是:x <-1.【点睛】此题主要考查了一次函数与一元一次不等式的关系,用图象法解不等式的关键是找到y 相等时的分界点,观察分界点左右图象的变化趋势,即可求出不等式的解集,重点要掌握利用数形结合的思想.18.15°【解析】【分析】根据等边对等角和三角形的内角和定理,即可求出∠ABC,然后根据垂直平分线的性质和等边对等角即可求出∠EBA,从而求出的度数.【详解】解:∵,∴∠ABC=∠ACB=(解析:15°【解析】根据等边对等角和三角形的内角和定理,即可求出∠ABC ,然后根据垂直平分线的性质和等边对等角即可求出∠EBA ,从而求出EBC ∠的度数.【详解】解:∵AB AC =,50A ∠=︒∴∠ABC=∠ACB=12(180°-∠A )=65° ∵ED 垂直平分线段AB∴EA=EB ∴∠EBA=∠A=50°∴EBC ∠=∠ABC -∠EBA=15°故答案为:15°.【点睛】此题考查的是等腰三角形的性质、垂直平分线的性质和三角形的内角和,掌握等边对等角、垂直平分线的性质和三角形的内角和定理是解决此题的关键.19.(2,).【解析】【分析】据轴对称判断出点C 变换后在y 轴的右侧,根据平移的距离求出点C 变换后的纵坐标,最后写出即可.【详解】∵△ABC 是等边三角形,AB=3﹣1=2,∴点C 到y 轴的距离为解析:(22019).【解析】【分析】据轴对称判断出点C 变换后在y 轴的右侧,根据平移的距离求出点C 变换后的纵坐标,最后写出即可.【详解】∵△ABC 是等边三角形,AB =3﹣1=2,∴点C 到y 轴的距离为1+2×12=2,点C 到AB , ∴C (2,把等边△ABC 先沿y 轴翻折,得C’(-2,再向下平移1个单位得C’’( -2 故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y 轴右侧,点C 的横坐标为2,纵坐标为3+1﹣2020=3﹣2019,所以,点C的对应点C'的坐标是(2,3﹣2019).故答案为:(2,3﹣2019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.20.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴331k b k b -+=⎧⎨+=⎩, 解得:1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为y =﹣12x +52, 当x =0时,y =52, ∴点C 的坐标为(0,52), 故答案为:(0,52). 【点睛】 此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式.三、解答题21.(1)3a =,2b =;(2【解析】【分析】(1)利用完全平方公式整理,再根据非负数的性质列方程求解即可;(2)利用勾股定理逆定理判断出△ABC 是直角三角形,再根据直角三角形的面积等于两直角边的乘积的一半列式计算即可得解.【详解】解:(12440b b -+=整理得:()220b -=∴3a =,2b =;(2)∵2222529c b ,2239a ==∴222c b a +=,∴△ABC 是直角三角形,90A ∠=︒, ∴△ABC 的面积1122255bc .【点睛】本题考查了二次根式的应用和非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了勾股定理逆定理.22.(1)乙骑自行车的速度为200m/min ;(2)乙同学离学校还有1600m【解析】【分析】(1)设乙骑自行车的速度为x m/min ,则甲步行速度是13x m/min ,公交车的速度是3x m/min ,根据题意列方程即可得到结论;(2)200×8=1600米即可得到结果.【详解】解:(1)设乙骑自行车的速度为xm/min ,则公交车的速度是3x m/min ,甲步行速度是13x m/min. 由题意得: 320020032002008133x x x --=+, 解得x =200,经检验x =200原方程的解答:乙骑自行车的速度为200m/min.(2)当甲到达学校时,乙同学还要继续骑行8分钟200×8=1600m ,答:乙同学离学校还有1600m.【点睛】此题主要考查了分式方程的应用,根据题意列出方程是解题关键.23.图见详解;P (197,127) 【解析】【分析】过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ,DP CP DP EP ED +=+=的值最小,即可得到P 点;通过A 和B 点的坐标,运用待定系数法求出直线AB 的函数表达式,再通过D 和E 点的坐标,运用待定系数法求出直线DE 的函数表达式,联合两个表达式解方程组求出交点坐标即可.【详解】解:如图所示,过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ;∵△PCD 的周长=CD DP CP ++∴DP CP DP EP ED +=+=时,可取最小值,图中P 点即为所求;又∵BD =3,DC =1∴平面直角坐标系中每一个小方格的边长为1,即:A(5,4),B(1,0),D(4,0),E(1,4) 设直线AB 的解析式为AB AB AB y k x b =+,代入点A 和B 得:540AB AB k b k b +=⎧⎨+=⎩解得:11AB ABk b =⎧⎨=-⎩ ∴1AB y x =-设直线DE 的解析式为DE DE DE y k x b =+,代入点D 和E 得:404DE DE DE DE k b k b +=⎧⎨+=⎩解得:43163DE DE k b ⎧=-⎪⎪⎨⎪=⎪⎩∴416+33DE y x =- ∴联合两个一次函数可得: ∴1416+33y x y x =-⎧⎪⎨=-⎪⎩解得197127x y ⎧=⎪⎪⎨⎪=⎪⎩∴P (197,127) 【点睛】 本题主要考查了轴对称最短路径的画法,待定系数法求一次函数解析式,两直线的交点与二元一次方程组的解,求出一次函数的解析式组建二元一次方程组是解题的关键.24.(1)证明见解析;(2)答案见解析.【解析】【分析】(1)根据垂直平分线的性质证明三角形CFB 是等腰三角形,进而证明∠AFE =∠CFD ;(2)作点P关于GN的对称点P′,连接P′M交GN于点Q,结合(1)即可证明∠GQM =∠PQN.【详解】(1)∵ED垂直平分BC,∴FC=FB,∴△FCB是等腰三角形.∵FD⊥BC,由等腰三角形三线合一可知:FD是∠CFB的角平分线,∴∠CFD=∠BFD.∵∠AFE=∠BFD,∴∠AFE=∠CFD.(2)作点P关于GN的对称点P',连接P'M交GN于点Q,点Q即为所求.∵QP=QP',∴△QPP'是等腰三角形.∵QN⊥PP',∴QN是∠PQP'的角平分线,∴∠PQN=∠P'QN.∵∠GQM=∠P'QN,∴∠GQM=∠PQN.【点睛】本题考查了作图−复杂作图,解决本题的关键是掌握线段垂直平分线的性质.25.(1)y=-x+5;点C(3,2);(2)S=272;(3)P点坐标为(2,3)或(4,1).【解析】【分析】(1)根据待定系数法求出直线AB解析式,再联立两函数解出C点坐标;(2)依次求出y=-x+5和y=2x-4与y轴交点坐标,根据三角形的面积公式即可求解;(3)设P点(m,-m+5) Q点坐标为(m,2m-4),根据线段PQ的长为3,分情况即可求解.【详解】(1)∵直线y=kx+b 经过点A (5,0),B (1,4),∴ 504k b k b +⎧⎨+⎩== 解得 15k b =-⎧⎨=⎩ ∴直线AB 的解析式为:y=-x+5;∵若直线y=2x-4与直线AB 相交于点C ,∴ 524y x y x =-+⎧⎨-⎩= 解得 32x y =⎧⎨=⎩∴点C (3,2);(2)∵y=-x+5与y 轴交点坐标为(0,5),y=2x-4与y 轴交点坐标为(0,-4) ,C 点坐标为(3,2)∴S=932722⨯= (3)设P 点(m ,-m+5) Q 点坐标为(m,2m-4)则-m+5-(2m-4)=3 或者2m-4-(-m+5)=3解得m= 2 或m=4∴P 点坐标为(2,3)或(4,1).【点睛】此题主要考查一次函数图像与几何综合,解题的关键是熟知一次函数的图像与性质、待定系数法的应用.四、压轴题26.(1)A (0,3),B (4,0);(2)D (1,-265);(3)见解析 【解析】【分析】(1)根据非负数的性质求解;(2)如图1中,设直线CD 交y 轴于E .首先求出点E 的坐标,再求出直线CD 的解析式以及点C 坐标,利用平移的性质得到点D 坐标;(3)如图2中,延长AB 交CE 的延长线于M .利用平行线的性质以及三角形的外角的性质求证;【详解】(1)∵220a b --=,∴220a b --==,∴2202110a b a b --=⎧⎨+-=⎩ ,∴34a b =⎧⎨=⎩,∴A (0,3),B (4,0);(2)如图1中,设直线CD 交y 轴于E .∵CD//AB ,∴S △ACB =S △ABE , ∴12AE×BO=16, ∴12×AE×4=16,∴AE=8,∴E (0,-5),设直线AB 的解析式为y=kx+b ,将点A (0,3),(4,0)代入解析式中得:343k b ⎧=-⎪⎨⎪=⎩ ,∴直线AB 的解析式为y=334x -+,∵AB//CD ,∴直线CD 的解析式为y=34x c -+,又∵点E (0,-5)在直线CD 上,∴c=5,即直线CD 的解析式为y=354x --,又∵点C (-3,m )在直线CD 上,∴m=115,∴C (-3, 115), ∵点A (0,3)平移后的对应点为C (-3,115), ∴直线AB 向下平移了265个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,∴点D 的坐标为(1,-265); (3)如图2中,延长AB 交CE 的延长线于点M .∵AM ∥CD ,∴∠DCM=∠M , ∵∠BCE=2∠ECD ,∴∠BCD=3∠DCM=3∠M ,∵∠M=∠PEC-∠MPE ,∠MPE=∠OPE ,∴∠BCD=3(∠CEP-∠OPE ).【点睛】考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.27.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+2或9﹣2或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6. 故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.28.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒∠= 【解析】【分析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】解:(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,因为AB BC ⊥,所以.∠ABO+∠CBH=90°,所以∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO BCH ∴∆≅∆:BH=OA=3,CH=OB=1,:OH=OB+BH=4,所以C 点的坐标为(1,-4);(2)因为∠PBQ=∠ABC=90°,,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩PBA QBC ∴∆≅∆:.PA=CQ ;(3) ()135,1,0APB P ︒∠=BPQ∆是等腰直角三角形,:所以∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,∴∆≅∆;由(2)可知,PBA QBC所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P点坐标为(1,0) .【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.29.(1)见解析;(2)CD AD+BD,理由见解析;(3)CD+BD【解析】【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE AD,可得结论;AD,由AD=AE,(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=2AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE AD,∵CD=DE+CE,∴CD AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH3,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.30.(1)6-2t;(2)全等,理由见解析;(3)83;(4)经过24s后,点P与点Q第一次在ABC的BC边上相遇【解析】【分析】(1)根据题意求出BP,由PC=BC-BP,即可求得;(2)根据时间和速度的关系分别求出两个三角形中,点运动轨迹的边长,由∠B=∠C,利用SAS判定BPD△和CQP全等即可;(3)根据全等三角形的判定条件探求边之间的关系,得出BP=PC,再根据路程=速度×时间公式,求点P的运动时间,然后求点Q的运动速度即得;(4)求出点P、Q的路程,根据三角形ABC的三边长度,即可得出答案.【详解】(1)由题意知,BP=2t,则PC=BC-BP=6-2t,故答案为:6-2t;(2)全等,理由如下:∵p Q V V =,t=1,∴BP=2=CQ ,∵AB=8cm ,点D 为AB 的中点,∴BD=4(cm ),又∵PC=BC-BP=6-2=4(cm ),在BPD △和CQP 中BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴BPD △≌CQP (SAS )故答案为:全等.(3)∵p Q V V ≠,∴BP CQ ≠,又∵BPD △≌CPQ ,∠B=∠C ,∴BP=PC=3cm ,CQ=BD=4cm ,∴点,P Q 运动时间322BP t ==(s ), ∴48332Q CQ V t===(cm/s ), 故答案为:83;(4)设经过t 秒时,P 、Q 第一次相遇,∵2/p V cm s =,8/3Q V cm s =, ∴2t+8+8=83t ,解得:t=24此时点Q 走了824643⨯=(cm ),∵ABC 的周长为:8+8+6=22(cm ),∴6422220÷=,∴20-8-8=4(cm ),经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇,故答案为:24s ,在 BC 边上相遇.【点睛】考查了全等三角形的判定和性质,路程,速度,时间的关系,全等三角形中的动点问题,动点的追及问题,熟记三角形性质和判定,熟练掌握全等的判定依据和动点的运动规律是解题的关键,注意动点中追及问题的方向.。
南京市初二数学上学期第二次月考试卷

南京市初二数学上学期第二次月考试卷 一、选择题 1.下列各组数中互为相反数的是( )A .2-与2B .2-与38-C .2-与12-D .2-与()22-2.在平面直角坐标系中,下列各点位于第四象限的点是( )A .(2,3)-B .()4,5-C .(1,0)D .(8,1)--3.下列四个图标中,是轴对称图形的是( )A .B .C .D .4.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四5.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)6.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 7.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b 的图象大致是( )A .B .C .D .8.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)9.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 10.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)-二、填空题 11.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 12.2(5)-=_____.13.矩形ABCD 中,其中三个顶点的坐标分别是(0,0)、(5,0)、(5,3),则第四个顶点的坐标是______.14.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.15.当a =_______时,分式2123a a a +--的值为1. 16.若171a +=,则352020a a -+=__________. 17.比较大小:-2______-3.18.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______.19.比较大小:5-_______6-.20.已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为_____.三、解答题21.如图,等边三角形ABC 的边长为8,点E 是边BC 上一动点(不与点,B C 重合),以BE 为边在BC 的下方作等边三角形BDE ,连接,AE CD .(1)在运动的过程中,AE 与CD 有何数量关系?请说明理由.(2)当BE=4时,求BDC ∠的度数.22.小明和小华加工同一种零件,己知小明比小华每小时多加工15个零件,小明加工300个零件所用时间与小华加工200个零件所用的时间相同,求小明每小时加工零件的个数.23.如图,AO BO ⊥,DO EO ⊥,AO BO =,DO EO =.求证:AE BD =.24.已知一次函数y kx b =+的图象经过点()3,3P ,()1,3Q -.(1)求这个一次函数表达式;(2)若函数y kx b =+的图象与x 轴的交点是A ,与y 轴交于点B ,求ABO ∆的面积(其中O 为坐标原点).25.如图,正方形网格中每个小正方形的边长为1,格点△ABC 的顶点A (2,3)、B (﹣1,2),将△ABC 平移得到△A ′B ′C ′,使得点A 的对应点A ′,请解答下列问题:(1)根据题意,在网格中建立平面直角坐标系;(2)画出△A ′B ′C ′,并写出点C ′的坐标为 .四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.27.已知ABC 是等腰直角三角形,∠C=90°,点M 是AC 的中点,延长BM 至点D ,使DM =BM ,连接AD .(1)如图①,求证:DAM ≌BCM ;(2)已知点N 是BC 的中点,连接AN .①如图②,求证:ACN ≌BCM ;②如图③,延长NA 至点E ,使AE =NA ,连接,求证:BD ⊥DE .28.在等边△ABC 的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D 、E 处,请问:(1)如图1,在爬行过程中,CD 和BE 始终相等吗,请证明?(2)如果将原题中的“由A 向B 和由C 向A 爬行”,改为“沿着AB 和CA 的延长线爬行”,EB 与CD 交于点Q ,其他条件不变,蜗牛爬行过程中∠CQE 的大小保持不变,请利用图2说明:∠CQE =60°;(3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F ”,其他条件不变,如图3,则爬行过程中,证明:DF =EF29.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.30.一次函数y=kx+b的图象经过点A(0,9),并与直线y=53x相交于点B,与x轴相交于点C,其中点B的横坐标为3.(1)求B点的坐标和k,b的值;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于272?请求出点Q的坐标;(3)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据相反数的性质判断即可;【详解】A中-2=2,不是互为相反数;B2=-,不是相反数;C中两数互为倒数;D中两数互为相反数;故选:D.【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.3.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.C解析:C【解析】试题分析:直线y=﹣5x+3与y轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.故选C.考点:一次函数的图象和性质.5.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.6.C解析:C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k的值.【详解】由完全平方式的形式(a±b)2=a2±2ab+b2可得:kx=±2•2x•13,解得k=±43. 故选:C 【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b )2=a 2±2ab+b 2是关键.7.A解析:A【解析】试题分析:根据一次函数的性质得到k <0,而kb <0,则b >0,所以一次函数y=kx+b 的图象经过第二、四象限,与y 轴的交点在x 轴是方.解:∵一次函数y=kx+b ,y 随着x 的增大而减小,∴k <0,∴一次函数y=kx+b 的图象经过第二、四象限;∵kb <0,∴b >0,∴图象与y 轴的交点在x 轴上方,∴一次函数y=kx+b 的图象经过第一、二、四象限.故选A .考点:一次函数的图象.8.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.9.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A2=,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.10.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.二、填空题11..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.≠.解析:x2【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.12.5【解析】根据二次根式的性质知:5.解析:5【解析】=5.13.(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直解析:(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直,对边平行.本题画出图后可很快求解.14.【解析】【分析】先根据一次函数y=kx+b 的图象经过点(,m )可知,由图像可知,当时,,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(,m ),则当时,,由图像可知,解析:3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,∴0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.15.-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】解:根据题意得:=1,即可得到解得 :根据中 得到舍弃所以故答案为:-3.【点睛】此题主要考查了可化为一元解析:-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】 解:根据题意得:2123a a a +--=1,即可得到 2123a a a +-=-解得 :3a =± 根据2123a a a +--中 30a -≠ 得到3a ≠舍弃3a =所以3a =-故答案为:-3.【点睛】此题主要考查了可化为一元二次方程的分式方程,关键是根据题意列出分式方程. 16.2024【解析】【分析】,代入a 值,根据乘法法则进行计算即可.【详解】===4+2020=2024故答案为:2024【点睛】考核知识点:二次根式运算.掌握运算法则,运用乘法公解析:2024【解析】【分析】352020a a -+=()252020a a -+,代入a 值,根据乘法法则进行计算即可.【详解】352020a a -+=()225202052020a a ⎡⎤⎢⎥-+=-+⎢⎥⎝⎭⎣⎦=52020⎤+⎥⎣⎦=11202022⨯+ =4+2020=2024故答案为:2024【点睛】 考核知识点:二次根式运算.掌握运算法则,运用乘法公式是关键.17.>【解析】, .解析:>【解析】23<,23∴->- .18.65°或25°【解析】【分析】分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度解析:65°或25°【解析】【分析】分两种情况:①当ABC为锐角三角形;②当ABC为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度数.【详解】解:①当ABC为锐角三角形时:∠BAC=90°-40°=50°,∴∠C=12(180°-50°)=65°;②当ABC为钝角三角形时:∠BAC=90°+40°=130°,∴∠C=12(180°-130°)=25°;故答案为:65°或25°.【点睛】此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.19.>【解析】【分析】先把两个数分别平方,再根据两个负数的比较方法比较即可.【详解】解:∵,∵5<6∴.【点睛】本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个解析:>【解析】【分析】先把两个数分别平方,再根据两个负数的比较方法比较即可.【详解】解:∵2(5=,2(6=∵5<6∴>【点睛】本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个负数,绝对值大的反而小.20.m >2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y解析:m >2.【解析】【分析】根据(x 1﹣x 2)(y 1﹣y 2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x 1﹣x 2)(y 1﹣y 2)<0,即:121200x x y y >⎧⎨<⎩﹣﹣或121200x x y y <⎧⎨>⎩﹣﹣, 也就是,y 随x 的增大而减小,因此,2﹣m <0,解得:m >2,故答案为:m >2.【点睛】本题主要考查了一次函数的图象和性质,掌握一次函数的增减性以及适当的转化是解决问题的关键.三、解答题21.(1)AE=CD ,理由见解析;(2)90°【解析】【分析】(1)如图,证明△ABE ≌△CBD ,即可解决问题.(2)证明AE ⊥BC ,证明∠BDC=∠AEB ,即可解决问题.【详解】解:(1)AE=CD ;理由如下:∵△ABC 和△BDE 等边三角形∴AB=BC ,BE=BD ,∠ABC=∠EBD=60°;在△ABE 与△CBD 中,AB BC ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBD (SAS ),∴AE=CD .(2)∵BE=4,BC=8∴E 为BC 的中点;又∵等边三角形△ABC ,∴AE ⊥BC ;由(1)知△ABE ≌△CBD ,∴∠BDC=∠AEB=90°.【点睛】本题考查全等三角形的判定及其性质的应用问题;解题关键是观察图形,准确找出图形中隐含的等量关系、全等关系.22.45【解析】【分析】设小明每小时加工零件x 个,则小华每小时加工(x-15)个, 根据时间关系,得30020015x x =- 【详解】 解:设小明每小时加工零件x 个,则小华每小时加工(x-15)个由题意,得30020015x x =- 解得:x =45经检验:x =45是原方程的解,且符合题意.答:小明每小时加工零件45个.【点睛】考核知识点:分式方程应用.理解题,根据时间关系列方程是关键.23.见解析【解析】【分析】利用SAS 证出△AOE ≌△BOD ,然后根据全等三角形的性质即可得出结论.【详解】解:∵AO BO ⊥,DO EO ⊥,∴∠DOE =∠AOB =90°∴∠DOE +∠AOD =∠AOB +∠AOD∴∠AOE=∠BOD在△AOE 和△BOD 中AO BO AOE BOD EO DO =⎧⎪∠=∠⎨⎪=⎩∴△AOE ≌△BOD (SAS )∴AE BD =【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS 判定两个三角形全等是解决此题的关键.24.(1)36y x =-;(2)6.【解析】【分析】(1)将P 点和Q 点分别代入,直接利用待定系数法即可求得一次函数解析式;(2)先分别求得A 、B 的坐标,由坐标即可求得AO 和BO 的长度,继而求得ABO ∆的面积.【详解】解:(1)分别将()3,3P ,()1,3Q -代入y kx b =+得333k b k b =+⎧⎨-=+⎩,解得33k b =⎧⎨=-⎩, ∴一次函数的表达式为:36y x =-;(2)当y=0时,036x =-,解得2x =,故(2,0)A ,OA=2,当x=0时,066y =-=-,故(0,6)B -,OB=6,∴ABO ∆的面积为:1126 6.22OA OB ⋅=⨯⨯= 【点睛】本题考查待定系数法求一次函数解析式,熟知待定系数法求一次函数解析式一般步骤是解决此题的关键.25.(1)见解析;(2)(﹣3,﹣4)【解析】【分析】(1)根据点A 和点B 的坐标可建立平面直角坐标系;(2)利用平移变换的定义和性质可得答案.【详解】解:(1)如图所示,(2)如图所示,△A ′B ′C ′即为所求,其中点C ′的坐标为(﹣3,﹣4),故答案为:(﹣3,﹣4).【点睛】本题考查的知识点是作图-平移变换,找出三角形点A 的平移规律是解此题的关键.四、压轴题26.(1)5y x =+;(2)223)PB 的长为定值52 【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+. 当0y =时,5x =-.当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m=.∴直线L 的解析式为5y x =+.(2)5OA =,17AM =.∴由勾股定理,2222OM OA AM =-=.180AOM AOB BON ∠+∠+∠=︒.90AOB ∠=︒.90AOM BON ∴∠+∠=︒.90AOM OAM ∠+∠=︒.BON OAM ∴∠=∠.在AMO ∆与OBN ∆中,90BON OAM AMO BNO OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS ∴∆≅∆.22BN OM ∴==..(3)如图所示:过点E 作EG y ⊥轴于G 点.AEB ∆为等腰直角三角形,AB EB ∴=90ABO EBG ∠+∠=︒.EG BG ⊥,90GEB EBG ∴∠+∠=︒.ABO GEB ∴∠=∠.AOB EBG ∴∆≅∆.5BG AO ∴==,OB EG =OBF ∆为等腰直角三角形,OB BF ∴=BF EG ∴=.BFP GEP ∴∆≅∆.1522BP GP BG ∴===. 【点睛】 本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB ,求OM ,用勾股定理求AB ,再证AMO OBN ∆≅∆,构造 AOB EBG ∆≅∆,求BG ,再证BFP GEP ∆≅∆.27.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M 是AC 中点知AM=CM ,结合∠AMD=∠CMB 和DM=BM 即可得证; (2)①由点M ,N 分别是AC ,BC 的中点及AC=BC 可得CM=CN ,结合∠C=∠C 和BC=AC 即可得证;②取AD 中点F ,连接EF ,先证△EAF ≌△ANC 得∠NAC=∠AEF ,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE ≌△DFE 得∠EAD=∠EDA=∠ANC ,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM 即可得证.【详解】解:(1)∵点M 是AC 中点,∴AM=CM ,在△DAM 和△BCM 中,∵AM CM AMD CMB DM BM =⎧⎪∠=∠⎨⎪=⎩,∴△DAM ≌△BCM (SAS );(2)①∵点M 是AC 中点,点N 是BC 中点,∴CM=12AC ,CN=12BC , ∵△ABC 是等腰直角三角形,∴AC=BC ,∴CM=CN ,在△BCM 和△ACN 中,∵CM CN C C BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△BCM ≌△ACN (SAS );②证明:取AD 中点F ,连接EF ,则AD=2AF ,∵△BCM ≌△ACN ,∴AN=BM ,∠CBM=∠CAN ,∵△DAM ≌△BCM ,∴∠CBM=∠ADM ,AD=BC=2CN ,∴AF=CN ,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC ,由(1)知,△DAM ≌△BCM ,∴∠DBC=∠ADB ,∴AD ∥BC ,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.28.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG为等边三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.29.(1)①见解析;②DE=297;(2)DE的值为517【解析】【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.30.(1)点B(3,5),k=﹣43,b=9;(2)点Q(0,9)或(6,1);(3)存在,点P的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478)【解析】【分析】(1)53y x相交于点B,则点(3,5)B,将点A、B的坐标代入一次函数表达式,即可求解;(2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
南京市初二数学上学期第二次月考试卷

南京市初二数学上学期第二次月考试卷 一、选择题1.下列各组数中互为相反数的是( )A .2-与2B .2-与38-C .2-与12-D .2-与()22-2.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .3.下列志愿者标识中是中心对称图形的是( ).A .B .C .D .4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是( )A .AB DC =B .BE CE =C .AC DB =D .A D ∠=∠ 5.7的平方根是( )A .±7B .7C .-7D .7 6.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4) 7. 4的平方根是( )A .2B .±2C .16D .±168.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.89.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( )A .k <3B .k >3C .k <2D .k >210.下列说法中,不正确的是( )A .2﹣3的绝对值是2﹣3B .2﹣3的相反数是3﹣2C .64的立方根是2D .﹣3的倒数是﹣13二、填空题11.如图,点O 是边长为2的等边三角ABC 内任意一点,且OD AC ⊥,OE AB ⊥,OF BC ⊥,则OD OE OF ++=__________.12.如图,直线l 1:y =﹣12x +m 与x 轴交于点A ,直线l 2:y =2x +n 与y 轴交于点B ,与直线l 1交于点P (2,2),则△PAB 的面积为_____.13.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.14.已知一次函数()12y k x =-+,若y 随x 的增大而减小,则k 的取值范围是___.15.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.16.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.17.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.18.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.19.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.20.化简:23(3)2716--+=_____.三、解答题21.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,ADE ∆与CFE ∆全等吗?试说明理由.22.如图,已知ABC ∆各顶点的坐标分别为()3,2A -,()4,3B --,()1,1C --,直线l 经过点()1,0-,并且与y 轴平行,111A B C ∆与ABC ∆关于直线l 对称.(1)画出111A B C ∆,并写出点1 A 的坐标 . (2)若点()P m n ,是ABC ∆内一点,点1P 是111 A B C ∆内与点P 对应的点,则点1P 坐标 .23.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7×13-6×14=7,17×23-16×24=7,不难发现,结果都是7.①请你再选择一个类似的部分试一试,看看是否符合这个规律;②请你利用整式的运算对以上的规律加以证明.24.如图,在△ABC 中,AD ⊥BC ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD=DE .(1)若∠BAE=40°,求∠C 的度数;(2)若△ABC 周长为15cm ,AC=6cm ,求DC 长.25.(新知理解)如图①,若点A 、B 在直线l 同侧,在直线l 上找一点P ,使AP BP +的值最小. 作法:作点A 关于直线l 的对称点A ',连接A B '交直线l 于点P ,则点P 即为所求. (解决问题)如图②,AD 是边长为6cm 的等边三角形ABC 的中线,点P 、E 分别在AD 、AC 上,则PC PE +的最小值为 cm;(拓展研究)如图③,在四边形ABCD 的对角线AC 上找一点P ,使APB APD ∠=∠.(保留作图痕迹,并对作图方法进行说明)四、压轴题26.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式.27.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.28.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.29.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫ ⎪⎝⎭都是“白马有理数对”. (1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)30.如图,已知直线l 1:y 1=2x +1与坐标轴交于A 、C 两点,直线l 2:y 2=﹣x ﹣2与坐标轴交于B 、D 两点,两直线的交点为P 点.(1)求P 点的坐标;(2)求△APB 的面积;(3)x 轴上存在点T ,使得S △ATP =S △APB ,求出此时点T 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据相反数的性质判断即可;【详解】A中-2=2,不是互为相反数;B382-=-,不是相反数;C中两数互为倒数;D中两数互为相反数;故选:D.【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x,∵4-0.5x≥0,∴x≤8,∴x的取值范围是0≤x≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.3.C解析:C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、不是中心对称图形,故选项错误.故选:C.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.C解析:C【解析】【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【详解】A.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;B.∵BE=CE,∴∠DBC=∠ACB.∵∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C.∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D.∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误.故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.5.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】)2=7,∴7.故选:D.【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.6.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.7.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即2±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根.8.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则2.71.5v svt s=⎧⎨=⎩解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.9.A解析:A【解析】【分析】将点A,点B坐标代入解析式可求k−3=b da c--,即可求解.【详解】∵A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,∴b=ka﹣3a+2,d=kc﹣3c+2,且a≠c,∴k﹣3=b da c --.∵m=(a﹣c)(b﹣d)<0,∴k<3.故选:A.【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−3=b d a c --是关键,是一道基础题.10.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A,故A选项不正确,所以本选项符合题意;B,正确,所以本选项不符合题意;C82,正确,所以本选项不符合题意;D、﹣3的倒数是﹣13,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.二、填空题11.【解析】【分析】过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.【详解】解:过点A作AG⊥BC【解析】【分析】过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.【详解】解:过点A作AG⊥BC于点G,连接OA,OB,OC,∵AB=AC=BC=2,∴BG=12BC=1,∴22213∵S△ABC=S△ABO+S△BOC+S△AOC,∴12AB×(OD+OE+OF)=12BC•AG,∴3.3【点睛】本题考查的是等边三角形的性质,以及勾股定理,熟知等边三角形三线合一的性质是解答此题的关键.12.【解析】【分析】把点P(2,2)分别代入y=﹣x+m和y=2x+n,求得m=3,n=﹣2,解方程得到A(6,0),B(0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P(2,解析:【解析】【分析】把点P(2,2)分别代入y=﹣12x+m和y=2x+n,求得m=3,n=﹣2,解方程得到A(6,0),B(0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P(2,2)分别代入y=﹣12x+m和y=2x+n,得,m=3,n=﹣2,∴直线l1:y=﹣12x+3,直线l2:y=2x﹣2,对于y=﹣12x+3,令y=0,得,x=6,对于y=2x﹣2,令x=0,得,y=﹣2,∴A(6,0),B(0,﹣2),∵直线l1:y=﹣12x+3与y轴的交点为(0,3),∴△PAB的面积=12×5×6﹣12×5×2=10,故答案为:10.【点睛】本题考查了两直线相交与平行问题,三角形的面积的计算,正确的识别图形是解题的关键.13.【解析】【分析】由题意,可知点A坐标为(1,),点B坐标为(2,0),由直线与△OAB的边界总有两个公共点,有截距b在线段CD之间,然后分别求出点C坐标和点D坐标,即可得到答案.【详解】解解析:231b-<<-【解析】【分析】由题意,可知点A坐标为(1,3),点B坐标为(2,0),由直线y x b=+与△OAB 的边界总有两个公共点,有截距b在线段CD之间,然后分别求出点C坐标和点D坐标,即可得到答案.【详解】解:如图,过点A作AE⊥x轴,.∵△ABC是等边三角形,且边长为2,∴OB=OA=2,OE=1,∴22213AE-=∴点A为(13B为(2,0);当直线y x b=+经过点A(13ABC边界只有一个交点,则1b +=1b =,∴点D 的坐标为(1);当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,则20b +=,解得:2b =-,∴点C 的坐标为(0,2-);∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,∴实数b 的范围是:21b -<<;故答案为:21b -<<.【点睛】本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论. 14.k <1.【解析】【分析】一次函数y=kx+b ,当k <0时,y 随x 的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y 随x 的增大而减小,∴k-1<0,解得k解析:k <1.【解析】【分析】一次函数y=kx+b ,当k <0时,y 随x 的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y 随x 的增大而减小,∴k-1<0,解得k <1,故答案是:k <1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b ,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.15.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.16.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.17.t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m 气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m 气温下降6℃,∴每升高1m 气温下降0.006℃,∴气温解析:t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m 气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m 气温下降6℃,∴每升高1m 气温下降0.006℃,∴气温t (℃)与高度h (m )的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.18.【解析】试题分析:解:设y=x+b ,∴3=2+b,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析:1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.19.3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,解析:3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.20.4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】解:故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键. 解析:4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】3344=-+=故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.三、解答题21.证明见解析.【解析】【分析】先根据平行线的性质证明A C ∠=∠,ADE CFE ∠=∠ ,然后根据“AAS ”即可证明ADE ∆与CFE ∆全等.【详解】解:AED CFE ∆≅∆,∵//FC AB ,∴A ACC ∠=∠,ADE CFE ∠=∠ ,在AED ∆与CFE ∆中A ACF ADE CFE DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AED CFE ∆≅∆.【点睛】本题考查了平行线的性质,以及全等三角形的判定,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )是解题的关键.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.(1) (1,2) ; (2) ()2,m n --.【解析】【分析】(1)根据轴对称的性质找到各点的对应点,然后顺次连接即可,画出图形即可直接写出坐标.(2)根据轴对称的性质可以直接写出1P .【详解】(1)如图所示:直接通过图形得到1A (1,2)(2) 由题意可得:由于()P m n ,与1P 关于x=-1 对称所以()12,P m n --.【点睛】此题主要考查了轴对称作图的知识,注意掌握轴对称的性质,找准各点的对称点是关键.23.(1)见解析;(2)证明见解析.【解析】【分析】(1)直接利用已知数据求出即可;(2)利用数字之间的变化规律得出一般式,进而验证即可.【详解】(1)例如11×17-10×18=7;3×9-2×10=7;(2)设最小的一个数为x ,其他三个分别为x+1,x+7,x+8,则:(x+1)(x+7)-x (x+8),=x 2+8x+7-x 2-8x ,=7.【点睛】此题考查了数字的变化规律,整式的混合运算,由特殊到一般,利用日历表中数字的特点得出一般性结论解决问题.24.(1)35°;(2)4.5cm.【解析】【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=8cm,即可得出答案.【详解】解:(1)∵AD⊥BC,BD=DE∴AD垂直平分BE,∵EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=12∠AED=35°;(2)∵△ABC周长15cm,AC=6cm,∴AB+BE+EC=9cm,即2DE+2EC=9cm,∴DE+EC=DC=4.5cm.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.25.(1)2)作图见解析.【解析】试题分析:(1)作点E关于AD的对称点F,连接PF,则PE=PF,根据两点之间线段最短以及垂线段最短,得出当CF⊥AB时,PC+PE=PC+PF=CF(最短),最后根据勾股定理,求得CF的长即可得出PC+PE的最小值;(2)根据轴对称的性质进行作图.方法1:作B关于AC的对称点E,连接DE并延长,交AC于P,连接BP,则∠APB=∠APD.方法2:作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,连接DP,则∠APB=∠APD.试题解析:(1)【解决问题】如图②,作点E关于AD的对称点F,连接PF,则PE=PF,当点F,P,C在一条直线上时,PC+PE=PC+PF=CF(最短),当CF⊥AB时,CF最短,此时BF=12AB=3(cm),∴Rt△BCF中,CF=2222=63=33BC BF--(cm),∴PC+PE的最小值为33cm;(2)【拓展研究】方法1:如图③,作B关于AC的对称点E,连接DE并延长,交AC于P,点P即为所求,连接BP,则∠APB=∠APD.方法2:如图④,作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,点P 即为所求,连接DP,则∠APB=∠APD.四、压轴题26.(1)CP=3t,BQ=8-t;(2)见解析;(3)S=16-2t.【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC≅,得到∠PQC=∠BCQ,即可求证;(3)过点C作CM⊥AB,垂足为M,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t,BQ=8-t;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C作CM⊥AB,垂足为M∵AC=BC,CM⊥AB∴AM=118422AB=⨯=(cm)∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm)∴118t4162 22BCQS BQ CM t ==⨯-⨯=-因此,S与t之间的关系式为S=16-2t.【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.27.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】 (1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.28.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【解析】【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明. 【详解】解:(1)21280a b a b --+-=, 又∵|21|0a b --≥280a b +-,|21|0a b ∴--=,280a b +-=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示,则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示,则OGP BPE∠=∠,PE平分OPB∠,OPE BPE∴∠=∠,OGP OPE∴∠=∠,由平移得//CD AB,//OG FE∴,FEP OGP∴∠=∠,FEP OPE∴∠=∠,CEP CEF FEP∠=∠+∠,CEP CEF OPE∴∠=∠+∠,CEF CEP OPE∴∠=∠-∠,3()BCD CEP OPE∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.29.(1)35,2⎛⎫⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab+=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1,∴35,2⎛⎫⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.30.(1)P(﹣1,﹣1);(2)32;(3)T(1,0)或(﹣2,0).【解析】【分析】(1)解析式联立构成方程组,该方程组的解就是交点坐标;(2)利用三角形的面积公式解答;(3)求得C的坐标,因为S△ATP=S△APB,S△ATP=S△ATC+S△PTC=|x+12|,所以|x+12|=32,解得即可.【详解】解:(1)由212y xy x=+⎧⎨=--⎩,解得11xy=-⎧⎨=-⎩,所以P(﹣1,﹣1);(2)令x=0,得y1=1,y2=﹣2∴A(0,1),B(0,﹣2),则S△APB=12×(1+2)×1=32;(3)在直线l1:y1=2x+1中,令y=0,解得x=﹣12,∴C(﹣12,0),设T(x,0),∴CT=|x+12 |,∵S△ATP=S△APB,S△ATP=S△ATC+S△PTC=12•|x+12|•(1+1)=|x+12|,∴|x+12|=32,解得x=1或﹣2,∴T(1,0)或(﹣2,0).【点睛】本题考查一次函数与二元一次方程组,解题的关键是准确将条件转化为二元一次方程组,并求出各点的坐标.。
江苏省南京市联合体学校八年级上学期第二次月考模拟数学试题

江苏省南京市联合体学校八年级上学期第二次月考模拟数学试题 一、选择题1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .2.下列根式中是最简二次根式的是( )A .23B .3C .9D .123.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥-4.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h 5.在平面直角坐标系中,把直线23y x =-沿y 轴向上平移2个单位后,所得直线的函数表达式为( )A .22y x =+B .25y x =-C .21y x =+D .21y x =- 6.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 7.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.5 8.如图,在平面直角坐标系xOy 中,直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B ,M是y 轴上的点(不与点B 重合),若将△ABM 沿直线AM 翻折,点B 恰好落在x 轴正半轴上,则点M 的坐标为( )A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 ) 9.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( )A .(﹣3,﹣2)B .(﹣2,﹣3)C .(3,2)D .(3,﹣2) 10.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,AC 为5cm ,则△ABC 的周长为( )A .24cmB .21cmC .20cmD .无法确定二、填空题11.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.12.一次函数y =2x +b 的图象沿y 轴平移3个单位后得到一次函数y =2x +1的图象,则b 值为_____.13.计算:52x x ⋅=__________.14.等腰三角形的顶角为76°,则底角等于__________.15.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.16.化简:|32|-=__________.17.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.18.等腰三角形的一个内角是100︒,则它的底角的度数为_________________.19.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。
江苏省南京市八年级(上)第二次月考数学试卷解析版

江苏省南京市八年级(上)第二次月考数学试卷解析版一、选择题1.若点P 在y 轴负半轴上,则点P 的坐标有可能是( ) A .()1,0-B .()0,2-C .()3,0D .()0,4 2.若一个数的平方等于4,则这个数等于( )A .2±B .2C .16±D .16 3.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( ) A . B . C . D .4.用科学记数法表示0.000031,结果是( )A .53.110-⨯B .63.110-⨯C .60.3110-⨯D .73110-⨯5. 4的平方根是( )A .2B .±2C .16D .±166.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m ≥-C .3n x m -≤≤D .以上都不对7.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( )A .(﹣3,﹣2)B .(﹣2,﹣3)C .(3,2)D .(3,﹣2)8.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,AC 为5cm ,则△ABC 的周长为( )A .24cmB .21cmC .20cmD .无法确定 9.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( ) A . B . C .D .10.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题11.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 12.地球的半径约为6371km ,用科学记数法表示约为_____km .(精确到100km )13.如图,已知等腰三角形ABC ,AB =AC ,若以点B 为圆心,BC 长为半径画弧,分别与腰AB ,AC 交于点D ,E .给出下列结论:正确的结论有:_____(把你认为正确的结论的序号都填上).①AE =BE ;②AD =DE ;③∠EBC =∠A ;④∠BED =∠C .14.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.15.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,且50A ∠=︒,则EBC ∠的度数是__________.16.小明体重约为62.36千克,如果精确到0.1千克,其结果为____千克.17.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.18.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为____.19.如图,等边△ABC 的周长是18,D 是AC 边上的中点,点E 在BC 边的延长线上.如果DE =DB ,那么CE 的长是_____.20.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .三、解答题21.(13168-;(2)求x 的值:2(2)90x .22.如图,Rt ABC ∆中,90ACB ∠=︒.(1)尺规作图(保留作图痕迹,不写作法与证明):①作B 的平分线BD 交边AC 于点D ;②过点D 作DE AB ⊥于点E ;(2)在(1)所画图中,若3CD =,8AC =,则AB 长为________________.23.如图,在平面直角坐标系中,点B 的坐标是()0,2,动点A 从原点O 出发,沿着x 轴正方向移动,以AB 为斜边在第一象限内作等腰直角三角形ABP ∆,设动点A 的坐标为()(),00t t ≥.(1)当2t =时,点P 的坐标是 ;当1t =时,点P 的坐标是 ;(2)求出点P 的坐标(用含t 的代数式表示);(3)已知点C 的坐标为()1,1,连接PC 、BC ,过点P 作PQ y ⊥轴于点Q ,求当t 为何值时,当PQB ∆与PCB ∆全等.24.(12216-(3)(3)8+-(2)化简:22x 9x 31-69x 4x x -+÷-++ 25.如图,己知,A (0, 4),B (t ,0)分别在y 轴,x 轴上,连接AB ,以AB 为直角边分别作等腰Rt △ABD 和等腰Rt △ABC .直线BC 交y 轴于点E. 点G (-2,3)、H (-2,1)在第二象限内.(1)当t =-3时,求点D 的坐标.(2)若点G 、H 位于直线AB 的异侧,确定t 的取值范围.(3)①当t 取何值时,△ABE 与△ACE 的面积相等.②在①的条件下,在x 轴上是否存在点P ,使△PCB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.四、压轴题26.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明.27.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠.(初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.28.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE .(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.29.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.30.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据y 轴上的点的坐标特点,横坐标为0,然后根据题意求解.【详解】解:∵y 轴上的点的横坐标为0,又因为点P 在y 轴负半轴上,∴(0,-2)符合题意故选:B【点睛】本题考查坐标轴上的点的坐标特点,利用数形结合思想解题是本题的解题关键.2.A解析:A【解析】【分析】平方为44,由此可得出答案.【详解】 4±2.所以这个数是:±2.故选:A .【点睛】本题考查了平方根的知识,比较简单,注意不要漏解.解析:B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.4.A解析:A【解析】【分析】根据科学记数法的表示形式10(1||10)na a ⨯≤<(n 为整数)即可求解【详解】0.000031-5=3.110⨯,故选:A .【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键. 5.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即2±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根.6.C解析:C【分析】 首先根据交点得出3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1)∴31,31m n k b +=-+=-∴33m n k b +=+,即3b n m k-=- 由图象,得0,0m k <>∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m≥- ∴不等式组的解集为:3n x m -≤≤ 故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.7.C解析:C【解析】【分析】直接利用关于y 轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M (﹣3,2)关于y 轴对称的点的坐标为:(3,2).故选:C .【点睛】本题考查的知识点是关于x 轴、y 轴对称的点的坐标,属于基础题目,易于掌握.8.B解析:B【解析】【分析】由垂直平分线可得AD =DC ,进而将求△ABC 的周长转换成△ABD 的周长再加上AC 的长度即可.【详解】∵DE 是AC 的垂直平分线,∴AD=DC ,∵△ABD 的周长=AB+BD+AD=16,∴△ABC 的周长为AB+BC+AC=AB+BD+AD+AC=16+5=21.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD =DC ,进而将求△ABC 的周长转换成△ABD 的周长再加上AC 的长度.9.A解析:A【解析】【分析】根据自正比例函数的性质得到k <0,然后根据一次函数的性质得到一次函数y=x+k 的图象经过第一、三象限,且与y 轴的负半轴相交.【详解】解:∵正比例函数y=kx (k≠0)的函数值y 随x 的增大而减小,∴k <0,∵一次函数y=x+k 的一次项系数大于0,常数项小于0,∴一次函数y=x+k 的图象经过第一、三象限,且与y 轴的负半轴相交.故选A .【点睛】本题考查了一次函数图象:一次函数y=kx+b (k 、b 为常数,k≠0)是一条直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;图象与y 轴的交点坐标为(0,b ).10.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题11..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x 2≠.试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.12.4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答解析:4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答案为:6.4×103【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.13.③【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=B解析:③【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=BC,∴∠ACB=∠BEC,∠BDE=∠BED,∴∠BEC=∠ABC=∠ACB,∴∠EBC=∠A,无法得到①AE=BE;②AD=DE;④∠BED=∠C.故答案为:③.【点睛】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.14.a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.15.15°【解析】【分析】根据等边对等角和三角形的内角和定理,即可求出∠ABC,然后根据垂直平分线的性质和等边对等角即可求出∠EBA,从而求出的度数.【详解】解:∵,∴∠ABC=∠ACB=(解析:15°【解析】【分析】根据等边对等角和三角形的内角和定理,即可求出∠ABC ,然后根据垂直平分线的性质和等边对等角即可求出∠EBA ,从而求出EBC ∠的度数.【详解】解:∵AB AC =,50A ∠=︒∴∠ABC=∠ACB=12(180°-∠A )=65° ∵ED 垂直平分线段AB∴EA=EB ∴∠EBA=∠A=50°∴EBC ∠=∠ABC -∠EBA=15°故答案为:15°.【点睛】此题考查的是等腰三角形的性质、垂直平分线的性质和三角形的内角和,掌握等边对等角、垂直平分线的性质和三角形的内角和定理是解决此题的关键.16.4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.【点睛】本题考查了近似数和有效数字:近似数与精确数的解析:4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.17.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.18.x2+y2=1【解析】因为原点为圆心,过点P(1,0)的圆即是以(0,0)半径为1的圆,则标准方程为: (x-0)2+(y-0)2=1,即x2+y2=1,故答案为: x2+y2=1.解析:x2+y2=1【解析】因为原点为圆心,过点P(1,0)的圆即是以(0,0)半径为1的圆,则标准方程为:(x-0)2+(y-0)2=1,即x2+y2=1,故答案为: x2+y2=1.【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E=30°,再证出∠CDE=∠E,得出CD=CE=AC=3即可.【详解】∵△ABC为等边解析:3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=12AC=3即可.【详解】∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,∴∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为18,∴AC=6,且∠ACB=60°,∴∠CDE=∠ACB-∠E=30°,∴∠CDE=∠E,∴CD=CE=12AC=3.故答案为:3.【点睛】此题考查了等边三角形的性质、等腰三角形的判定以及三角形的外角性质等知识;熟练掌握等边三角形的性质,证明CD=CE是解题的关键.20.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=×4×4=8cm2.故答案为:8.解析:8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=12×4×4=8cm2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.三、解答题21.(1)6;(2)x=1或x=5.【解析】【分析】(1)本题涉及算术平方根、立方根2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)移项后,两边直接开平方即可得到x+2=3,x+2=﹣3,求解即可.【详解】(1)原式=4-(-2)=4+2=6;(2)x+2=±3.x+2=3,x+2=-3.x=1或x=-5.【点睛】本题考查了实数运算和直接开平方法解一元二次方程,关键是掌握算术平方根、立方根各知识点.22.(1)①详见解析;②详见解析;(2)10.【解析】【分析】(1)①按角的平分线的作法步骤作图即可;②按垂线的作法步骤作图即可;(2)根据角平分线的性质得到DE=CD.在△AED中利用勾股定理得到AE的长.设AB=x,则BE=AB-AE=x-4.证明Rt△BDC≌Rt△BDE,得到BC=DE=x-4.在Rt△ABC中,利用勾股定理列方程即可得到结论.【详解】(1)①如图,BD就是所要求作的图形.②如图,DE就是所要求作的图形.(2)∵∠C =90°,DE ⊥AB ,BD 平分∠ABC ,∴DE =CD =3.∵AC =8,∴AD =AC -DC =8-3=5,∴AE 222253AD DE -=-.设AB =x ,则BE =AB -AE =x -4.在Rt △BDC 和Rt △BDE 中,∵BD =BD ,DC =DE ,∴Rt △BDC ≌Rt △BDE ,∴BC =DE =x -4.在Rt △ACB 中,∵222AC BC AB +=,∴2228(4)x x +-=,解得:x =10.∴AB =10.【点睛】本题考查了基本作图和角平分线的性质以及勾股定理.掌握角平分线的性质是解答本题的关键.23.(1) (2,2);(32,32); (2) P(2t 2+,2t 2+);(3) 22+2. 【解析】【分析】(1) 当2t =时,三角形AOB 为等腰直角三角形, 所以四边形OAPB 为正方形,直接写出结果;当1t =时,作PN ⊥y 轴于N ,作PM ⊥x 轴与M ,求出△BNP ≌△AMP ,即可得到ON+OM=OB-BN+OA+AM=OB+OA ,即可求出;(2) 作PE ⊥y 轴于E ,PF ⊥x 轴于F ,求出△BEP ≌△AFP ,即可得到OE+OF=OB+BE+OA+AF=OB+OA ,即可求出;(3) 根据已知求出BC 值,根据上问得到OQ=2t 2+ ,△PQB ≌△PCB ,BQ=BC ,因为OQ=BQ+OB ,即可求出t.【详解】(1) 当2t =时,三角形AOB 为等腰直角三角形如图所以四边形OAPB为正方形,所以P(2,2)当1t 时,如图作PN⊥y轴于N,作PM⊥x轴与M∴四边形OMPN为矩形∵∠BPN+∠NPA=∠APM+∠NPA=90°∴∠BPN =∠APM∵∠BNP=∠AMP∴△BNP≌△AMP∴PN=PM BN=AM∴四边形OMPN为正方形,OM=ON=PN=PM ∴ON+OM=OB-BN+OA+AM=OB+OA=2+1=3∴OM=ON=PN=PM=32∴ P(32,32)(2) 如图作PE ⊥y 轴于E ,PF ⊥x 轴于F ,则四边形OEPF 为矩形 ∵∠BPE+∠BPF=∠APF+∠BPF=90°∴ ∠BPE =∠APF ∵∠BEP=∠AFP∴ △BEP ≌△AFP∴PE=PF BE=AF∴四边形OEPF 为正方形,OE=OF=PE=PF∴OE+OF=OB+BE+OA+AF=OB+OA=2+t∴ OE=OF=PE=PF=2t 2+ ∴ P(2t 2+,2t 2+); (3) 根据题意作PQ ⊥y 轴于Q ,作PG ⊥x 轴与G∵ B(0,2) C(1,1)∴2由上问可知P(2t 2+,2t 2+),OQ=2t 2+ ∵△PQB ≌△PCB ∴2∴2+2=2t 2+ 解得 t=22+2.【点睛】此题主要考查了正方形的性质、全等三角形、直角坐标系等概念,关键是作出正方形求出相应的全等三角形.24.(1) 2; (2)73 x--【解析】【分析】(1)首先计算平方根和立方根,然后进行加减运算即可;(2)根据分式的除法和减法进行计算.【详解】解:(1)原式=4332-+-=2;(2)原式=()()()2334 133x x xxx+-+ -⨯+-=4 13xx+ --=343x xx----=73 x--【点睛】本题考查分式的混合运算和二次根式的混合运算,解题的关键是明确它们各自的计算方法.25.(1)D(-7,3);(2)88-3t-<<;(3)①-2;②存在,P(6,0),P(12,0),P(-,0),,0)【解析】【分析】(1)当t=-3时,过点D作DM⊥x轴于点M,证明△ABO≌△BDM,得出DM=BO和MB=OA,从而得出点D坐标.(2)设出AB解析式y=kx+4,分别求出点G,H在线段AB上的时点B的坐标;(3)①假设△ABE与△ACE的面积相等,利用等底同高求出t值;②根据等腰三角形的性质,分BP=BC、CP=CB、PC=PB三种情况讨论.【详解】(1)当t=-3时,过点D作DM⊥x轴于点M,∵△ABD为等腰直角三角形,AB=BD,∠ABD=90°∴∠ABO+∠DBM=180°-90°=90°又∵DM⊥x轴于点M∴∠DMB=90°∴∠DBM+∠MDB=90°∴∠MDB=∠ABO在△ABO和△BDM中ABO BDMAB BDDMB BOA∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABO≌△BDM∴DM=BO=3,MB=OA=4∴MO=MB+BO=4+3=7∴D(-7,3)(2)∵A(0,4),B(t,0),设直线AB的解析式为y=kx+4当点G(-2,3)在直线AB上时3=-2k+4,12k=此时AB的解析式142y x=+当y=0时,1042x=+,x=-8此时B(-8,0)当点H(-2,1)在直线AB上时1=-2k+4,32k此时AB的解析式243y x=+当y=0时,3042x=+,x=83-此时B(83-,0)∵点G, H位于直线AB的异侧,∴由图像可知直线AB与线段MN相交,且点M,N不在直线AB上∴88-3t-<<(3)①t=-2时,△ABE与△ACE的面积相等.如图,过点B做x轴垂线,构造直角三角形ARB和直角三角形BQC,∵∠RAB+∠ABR=90°,∠ABR+∠BCQ=90°∴∠ABR=∠BCQ,在△ARB和△BQC中,=R QABR BCQAB BC∠=∠⎧⎪∠∠⎨⎪=⎩,∴△ARB≌△BQC(AAS)∴AR=BQ,BR=QC=4,若△ABE与△ACE的面积相等,则BE=EC,∴BO=CN=2,∴B(-2,0)②P(6,0),P(12,0),5,0),5,0)由②可得C(2,-2)当BP=BC时,2242+25∴BP=25∴5,0)或5,0)当CP=CB时,BP=8,∴P(6,0)当PC=PB时,如图,过E作BC的垂线,交x轴于点P,过C作x轴垂线于点S,设BP=m=PC,则PS=4-m,在△PSC中,PS2+SC2=PC2,即22+(4- m)2= m 2,解得m=52,∴OP=52-2=12,∴P(12,0).综上:P(6,0),P(12,0),P(-25-2,0),P(25-2,0).【点睛】本题是一道综合性较强的题,难点在于等腰三角形的存在性问题,同时根据图像数形结合来得出t的取值范围.四、压轴题26.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.27.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到DB ECAB AC,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM为△ADE中DE边上的高,∴AM=EM=MD,∴AM+BD=CM;故答案为:90°,AM+BD=CM;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE的面积始终保持不变,△ADE与△ADC面积的和达到最大,∴△ADC面积最大,∵在旋转的过程中,AC始终保持不变,∴要△ADC面积最大,∴点D到AC的距离最大,∴DA⊥AC,∴△ADE与△ADC面积的和达到的最大为2+12×AC×AD=5+2=7,故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.28.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=12 CE,∵BD=CE,∴CF=OF=12 BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A ,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.29.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.30.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(8-,0).【解析】【分析】(1)根据A ,(0,B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=,DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)A ,(0,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD , ∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=-,∴OD=OA−DA=8-,∴点D 的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.。
2024-2025学年初中八年级上学期9月月考数学试题及答案(人教版)

人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.2. 以下列数据为三边长能构成三角形的是( )A. 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4 3. 下列各组图形中,BD 是ABC 的高的图形是( )A B.C. D.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 95. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形7. 如图,已知ABC 六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A 50° B. 45° C. 40° D. 25°9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB ∥CF ,E 为AC 的中点,若FC =6cm ,DB =3cm ,则AB =________.12. 如图,A B C D E F ∠+∠+∠+∠+∠+∠=______.的.13. 一个n 边形内角和等于1620°,则边数n 为______.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.三.解答题(共9小题,满分72分)17. 如果一个三角形一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形周长.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.的的19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.20. 将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,ACDE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求∠21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高BE ;(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了全等图形.根据全等图形的定义(能够完全重合的两个图形叫做全等形)逐项判断即可得.【详解】解:A 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意; B 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意;C 、两个图形能够完全重合,是全等图形,则此项符合题意;D 、两个图形的形状不相同,不能够完全重合,不是全等图形,则此项不符合题意;故选:C .2. 以下列数据为三边长能构成三角形的是( )A 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4【答案】B【解析】【分析】利用三角形三边关系进行判定即可.【详解】解:A 、123+=,不符合三角形三边关系,错误,不符合题意;B 、234+>,成立,符合题意;C 、4913+<,不符合三角形三边关系,错误,不符合题意;D 、247+<,不符合三角形三边关系,错误,不符合题意;故选B .【点睛】本题考查三角形三边关系,判定形成三角形的标准是两小边之和大于最大边,熟练掌握运用三角形.三边关系是解题关键.3. 下列各组图形中,BD 是ABC 的高的图形是( )A. B.C. D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知,只有选项B 中的线段BD 是△ABC 的高,故选:B .【点睛】考查了三角形的高的概念,掌握高的作法是解题的关键.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 9 【答案】C【解析】【分析】先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则5-3<x <5+3,即2<x <8,只有选项C 符合题意.故选C .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边. 5. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS【答案】C【解析】 【分析】根据全等三角形的判定和性质定理以及角平分线的定义即可得结论,从而作出判断.【详解】解:根据题意可得:90ABM ACM ∠=∠=°,∴ABM 和ACM △都是直角三角形,在Rt ABM 和Rt ACM 中,AB AC AM AM = =∴()Rt Rt HL ABM ACM ≌,∴BAM CAM ∠=∠,∴AM 为PAQ ∠的平分线,故选:C .【点睛】本题考查角平分线的判定和全等三角形的判定和性质的应用,解题的关键是掌握全等三角形的判定方法.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形【答案】B【解析】【分析】本题考查了多边形的内角和公式,根据多边形的内角和公式解答即可.【详解】设边数为n ,根据题意,得 ()2180720n −⋅°=°,解得6n =. ∴这个多边形为六边形,故选:B .7. 如图,已知ABC 的六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙【答案】B【解析】 【分析】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,分别利用全等三角形的判定方法逐个判断即可.【详解】解:在ABC 中,边a 、c 的夹角为50°,∴与乙图中的三角形满足SAS ,可知两三角形全等,在丙图中,由三角形内角和可求得另一个角为58°,且58°角和50°角的夹边为a ,ABC ∴ 和丙图中的三角形满足ASA ,可知两三角形全等,在甲图中,和ABC 满足的是SSA ,可知两三角形不全等,综上可知能和ABC 全等的是乙、丙,故选:B .8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A. 50°B. 45°C. 40°D. 25°【答案】A【解析】 【分析】本题主要考查了平行线的性质,三角形内角和定理,角平分线的定义,根据平行线的性质和角平分线的定义,可以求得BCD ∠的度数,再根据三角形内角和.即可求得B ∠的度数.【详解】解:∵AE CD ∥,235∠=°,∴1235∠=∠=°,∵AC 平分BCD ∠,∴2170BCD ∠=∠=°,∵60D ∠=°,∴180180607050B D BCD ∠=°−∠−∠=°−°−°=°,故选:A .9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意; 故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40【答案】B【解析】 【分析】由于BD=2DC ,那么结合三角形面积公式可得S △ABD =2S △ACD ,而S △ABC =S △ABD +S △ACD ,可得出S △ABC =3S △ACD ,而E 是AC 中点,故有S △AGE =S △CGE ,于是可求S △ACD ,从而易求S △ABC . 【详解】.解:BD =2DC ,∴S △ABD =2S △ACD , ∴S △ABC =3S △ACD ,∵E 是AC 的中点,∴S△AGE=S△CGE,又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故选B.【点睛】此题考查三角形的面积公式、三角形之间的面积加减计算.解题关键在于注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________.【答案】9cm【解析】【详解】试题解析:AB∥CF,∴∠=∠∠=∠A FCE ADE CFE..E为AC的中点,∴=AE CE.△ADE≌△CFE,∴==DA FC6.AB AD DB cm∴=+=+=639.cm故答案为9.∠+∠+∠+∠+∠+∠=______.12. 如图,A B C D E F【答案】180°##180度【解析】【分析】本题主要考查三角形的外角的性质,三角形的内角和为180°,将所求角的度数转化为某些三角形的内角和是解题的关键;将所求的角的度数转化为HNG △的内角和,即可得到答案.【详解】解:,,A B GHN C D GNH E F HGN ∠+∠=∠∠+∠=∠∠+∠=∠ ,∴180A B C D E F GNH GHN HGN ∠+∠+∠+∠+∠+∠=∠+∠+∠=°,故答案为:180°.13. 一个n 边形内角和等于1620°,则边数n 为______.【答案】11【解析】【分析】根据多边形内角和公式,列方程求解即可.【详解】解:由题意,得()18021620n −=,解得:11n =,故答案为:11.【点睛】本题考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .【答案】1【解析】【分析】此题考查了三角形中线的性质,根据三角形的中线分得的两个三角形的面积相等,就可证得12BEF BEC S S = ,12BDE ABD S S = ,12DE CD S S =△C △A ,12ABD ABC S S = ,再由ABC 的面积为4,就可得到BEF △的面积,解题的关键是熟练掌握三角形中线的性质及其应用.【详解】解:∵点F 是CE 的中点, ∴12BEF BEC S S = , ∵点E 是AD 的中点, ∴12BDE ABD S S = , 同理可证12DE CD S S =△C △A , ∵点D 是BC 的中点, ∴114222ABD ABC S S ==×= , ∴1212BDE CDE S S ==×= , ∴112BEC S =+= , ∴1212BEF S =×=△, 故答案为:1.15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.【答案】12BDC A ∠=∠+∠+∠【解析】【分析】本题考查了三角形的外角性质,延长BBBB 交AC 于点E ,由三角形外角性质可得1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,进而即可求解,正确作出辅助线是解题的关键.【详解】解:延长BBBB 交AC 于点E ,如图,∵BEC ∠是ABE 的外角,∴1BEC A ∠=∠+∠,∵BDC ∠是CDE 的外角,∴2BDC BEC ∠=∠+∠,即12BDC A ∠=∠+∠+∠,故答案为:12BDC A ∠=∠+∠+∠.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.【答案】70°或30°【解析】【分析】根据AD 的不同位置,分两种情况进行讨论:AD 在△ABC 的内部,AD 在△ABC 的外部,分别求得∠BAC 的度数.【详解】①如图,当AD 在△ABC 的内部时,∠BAC=∠BAD+∠CAD=50°+20°=70°.②如图,当AD 在△ABC 的外部时,∠BAC=∠BAD -∠CAD=50°-20°=30°.故答案为:70°或30°.【点睛】本题主要考查了三角形高的位置情况,充分考虑三角形的高在三角形的内部或外部进行分类讨论是解题的关键.三.解答题(共9小题,满分72分)17. 如果一个三角形的一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形的周长.【答案】(1)7<x <11(2)20cm【解析】【分析】(1)根据三角形的三边关系得到有关第三边的取值范围即可;(2)根据(1)得到的取值范围确定第三边的值,从而确定三角形的周长.【小问1详解】由三角形的三边关系得:9292x −<<+,即711x <<;【小问2详解】∵第三边长的范围为711x <<,且第三边长为奇数,∴第三边长为9,则三角形的周长为:99220cm ++=【点睛】本题考查了三角形的三边关系,解题的关键是能够根据三角形的三边关系列出有关x 的取值范围,难度不大.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.【答案】证明见解析【解析】【分析】根据两直线平行,内错角相等,得出ABC DEF ∠=∠,再根据线段之间的数量关系,得出BC EF =,再根据“边角边”,即可得出结论.【详解】证明:∵AB DE ∥,∴ABC DEF ∠=∠,∵BF EC =,∴BF FC EC FC +=+,∴BC EF =,在ABC 和DEF 中,AB DE ABC DEF BC EF = ∠=∠ =, ∴()ABC DEF SAS ≌.【点睛】本题考查了平行线的性质、全等三角形的判定定理,解本题的关键在熟练掌握全等三角形的判定方法.19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.【答案】(1)67°(2)92°【解析】【分析】本题考查角平分线定义及三角形外角性质.(1)根据三角形外角性质求出ECD ∠;(2)由已知可求出ACE ∠,根据三角形外角性质求出BAC ∠即可.【小问1详解】解:ECD ∠ 是BCE 的外角,ECD B E ∴∠=∠+∠,42B ∠=° ,25E ∠=°,∴67ECD ∠=°;【小问2详解】解:EC 平分ACD ∠,67ACE ECD ∠=∠=°∴,BAC ∠ 是ACE △的外角,BAC ACE E ∴∠=∠+∠,672592BAC ∴∠=°+°=°.20. 将两个三角形纸板ABC 和DBE 按如图所示方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求BED ∠的度数.【答案】(1)见解析 (2)36BED ∠=°【解析】【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=°,即可得解.【小问1详解】解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBEBAC BDE AC DE∠=∠ ∠=∠ = ,所以()AAS ABC DBE ≌.【小问2详解】因为ABC DBE ≌△△,所以BD BA =,BCA BED ∠=∠.的在DBC △和ABC 中,DC AC CB CB BD BA = = =,所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=°, 所以36BED BCA ∠=∠=°.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等.21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.【答案】(1)见解析 (2)见解析(3)见解析 (4)见解析【解析】【分析】本题考查作图-应用与设计作图,全等三角形的判定与性质等知识,作三角形的高,三角形内角和,勾股定理,解题的关键是学会利用数形结合的思想解决问题.(1)利用全等三角形的判定方法,构造全等三角形即可;(2)取格点T ,连接BT 交AC 于点E ,线段BE 即为所求;(3)构造全等三角形即可;(4)利用勾股定理可知45A ∠=°,根据三角形内角和定理,作45QBC A ∠=∠=°,QB 交AC 点P 即可.【小问1详解】如图1,ABD △即为所求;【小问2详解】如图,BE 即为所求;【小问3详解】如图,AFC ∠即为所求;【小问4详解】如图,点P 即为所求.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围. 小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.【答案】(1)27AD <<;(2)AC BQ ∥,证明见解析;(3)见解析 【解析】【分析】(1)先证()SAS BDQ CDA ≌ ,推出5BQCA ==,再利用三角形三边关系求解; (2)根据BDQ CDA ≌可得BQD CAD ∠=∠,即可证明AC BQ ∥; (3)(3)延长AD 至点G ,使GD AD =,连接CG ,先证明()SAS ≌ADB GDC ,即可得出AB GC G BAD =∠=∠,,再根据AE EF =,得出AFE FAE ∠=∠,最后根据等角对等边,即可求证AB CF =.【详解】解:(1)延长AD 到Q ,使得DQ AD =,再连接BQ ,∵AD 是ABC 的中线,∴BD CD =,又∵DQ AD =,BDQ CDA ∠=∠, ∴()SAS BDQ CDA ≌ ,∴5BQCA ==, 在ABQ 中,AB BQ AQ AB BQ −<<+,∴9595AQ −<<+,即414AQ <<,∴27AD <<,故答案为:27AD <<;(2)AC BQ ∥,证明如下:由(1)知BDQ CDA ≌,∴BQD CAD ∠=∠, ∴AC BQ ∥;(3)延长AD 至点G ,使GD AD =,连接CG ,∵AD 为BC 边上中线,∴BD CD =,在ADB 和GDC 中,的BD CD ADB GDC AD GD = ∠=∠ =, ∴()SAS ≌ADB GDC ,∴AB GC G BAD =∠=∠,,∵AE EF =,∴AFE FAE ∠=∠,∴DAB AFE CFG ∠=∠=∠,∴∠=∠G CFG ,∴CG CF =,∴AB CF =.【点睛】本题考查全等三角形的判定和性质,平行线的判定和性质,三角形三边关系的应用等,解题的关键是通过倍长中线构造全等三角形.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.【答案】(1)见解析 (2)见解析(3)EG BG DE =+,证明见解析【解析】【分析】本题考查了全等三角形的判定与性质、四边形内角和定理以及角的计算;根据全等三角形的性质找出相等的边角关系是关键.(1)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出30DAC ∠=°,60DCA ∠=°,即可求解;(2)通过角的计算得出D CBF ∠=∠,证出()CDE CBF SAS ≌,由此即可得出CE CF =; (3)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出60BCA DCA ∠=∠=°,再根据60ECG ∠=°即可得出DCE ACG ∠=∠,ACE BCG ∠=∠,由(2)可知CDE CBF △△≌,进而得知DCE BCF ∠=∠,根据角的计算即可得出ECG FCG ∠=∠,结合DE DF =即可证出CEG CFG ≌ ,即得出EG FG =,由相等的边与边之间的关系即可证出DE BG EG +=.【小问1详解】解:ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,BCA DCA ∴∠=∠,DAC BAC ∠=∠,60120DAB DCB ∠=°∠=° ,,1302DAC DAB ∴∠=∠=°,1602DCA DCB ∠=∠=°, 180D DAC DCA ∠+∠+∠=° ,180306090D ∴∠=°−°−°=°;【小问2详解】证明:36060120D DAB ABC DCBDAB DCB ∠+∠+∠+∠=°∠=°∠=°,, , 36060120180D ABC ∴∠+∠=°−°−°=°.180CBF ABC ∠+∠=° ,D CBF ∴∠=∠.在CDE 和CBF 中,DC BC D CBF DE BF = ∠=∠ =, ()CDE CBF SAS ∴ ≌.CE CF ∴=.【小问3详解】解:猜想DE EG BG 、、之间的数量关系为:DE BG EG +=.理由如下:在在ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,111206022BCA DCA DCB °=°∴∠=∠=∠=×. 60ECG ∠=° ,DCE ACG ACE BCG ∴∠=∠∠=∠,.由(2)可得:CDE CBF △△≌,DCE BCF ∴∠=∠.60BCG BCF ∴∠+∠=°,即60FCG ∠=°.ECG FCG ∴∠=∠.在CEG 和CFG △中,CE CF ECG FCG CG CG = ∠=∠ =, ()CEG CFG SAS ∴ ≌,EG FG ∴=.DE BF FG BF BG ==+, ,DE BG EG ∴+=.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?【答案】(1)DE AD BE =+;(2)不成立,理由见解析;(3)当9.2t =或14或16秒时,MPC 与NQC 全等【解析】【分析】(1)根据AD m ⊥,BE m ⊥,得90ADC CEB ∠=∠=°,而90ACB ∠=°,根据等角的余角相等得CAD BCE ∠=∠,然后根据“AAS”可判断()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =+=+;(2)同(1)易证()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =−=−;(3)只需根据点M 和点N 的不同位置进行分类讨论即可解决问题.【详解】(1)猜想:DE AD BE =+(2)不成立;理由:∵AD m ⊥,BE m ⊥,∴90ADC CEB ∠=∠=°,∵90ACB ∠=°,∴90ACD CAD ACD BCE ∠+∠=∠+∠=°,∴CAD BCE ∠=∠,在ACD 和CBE △中,ADC CEB CAD BCE AC CB ∠=∠ ∠=∠ =∴()ACD CBE AAS ∆∆≌,∴=AD CE ,CD BE =,∴DE CE CD AD BE =−=−;(3)①当08t ≤<时,点M 在AC 上,点N 在BC 上,如图,此时2AM t =,3BN t =,16AC =,30CB =,则MC AC AM =−,NC BC BN =−,当MC NC =,即162303t t −=−,解得:14t =,不合题意;②当810t ≤<时,点M 在BC 上,点N 也在BC 上,此时相当于两点相遇,如图,∵MC NC =,点M 与点N 216303t t −=−,解得:9.2t =; ③当46103t ≤<时,点M 在BC 上,点N 在AC 上,如图,∵MC NC =,∴216330t t −=−,解得:14t =; ④当46233t ≤≤时,点N 停在点A 处,点M 在BC 上,如图,∵MC NC =,∴21616t −=,解得:16t =;综上所述:当9.2t =或14或16秒时,MPC ∆与NQC ∆全等.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,同角的余角相等,判断出ACD CBE ∆∆≌是解本题的关键,还用到了分类讨论的思想.25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA 的延长线于点D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等 【解析】【分析】(1)根据OA=OE 即可解决问题.(2)根据ASA 证明三角形全等即可解决问题.(2)设运动的时间为t 秒,分三种情况讨论:当点P 、Q 分别在y 轴、x 轴上时;当点P 、Q 都在y 轴上时;当点P 在x 轴上,Q 在y 轴时若二者都没有提前停止,当点Q 提前停止时;列方程即可得到结论.【详解】(1)∵A (0,5),∴OE =OA =5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠ = ∠=∠, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t =174(秒), ③当点P x 轴上,Q 在y 轴上时,若二者都没有提前停止,则PO =得:t ﹣5=3t ﹣12,解得t =72(秒)不合题意; 当点Q 运动到点E 提前停止时,有t ﹣5=5,解得t =10(秒), 综上所述:当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等. 【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京市八年级上学期第二次月考数学试题一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.若a 满足3a a =,则a 的值为( ) A .1 B .0 C .0或1 D .0或1或1-3.如图,∠AOB=60°,OA=OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A .平行B .相交C .垂直D .平行、相交或垂直4.若+1x 有意义,则x 的取值范围是( ).A .x >﹣1B .x ≥0C .x ≥﹣1D .任意实数5.下列交通标识中,是轴对称图形的是( )A .B .C .D .6.在平面直角坐标系中,把直线23y x =-沿y 轴向上平移2个单位后,所得直线的函数表达式为( )A .22y x =+B .25y x =-C .21y x =+D .21y x =-7.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2B .b>-2C .b<2D .b<-2 8.给出下列实数:227、2539 1.442π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有( )A .2个B .3个C .4个D .5个9.若关于x 的分式方程211x a x -=+的解为负数,则字母a 的取值范围为( ) A .a ≥﹣1 B .a ≤﹣1且a ≠﹣2C .a >﹣1D .a <﹣1且a ≠﹣2 10.下列说法中,不正确的是( )A .2﹣3的绝对值是2﹣3B .2﹣3的相反数是3﹣2C .64的立方根是2D .﹣3的倒数是﹣13二、填空题11.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.12.一次函数y =2x +b 的图象沿y 轴平移3个单位后得到一次函数y =2x +1的图象,则b 值为_____.13.2(5)-=_____.14.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______.15.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_____.16.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.17.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.18.已知一次函数()12y k x =-+,若y 随x 的增大而减小,则k 的取值范围是___.19.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;20.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________三、解答题21.如图,在Rt ABC ∆中,90ACB ︒∠=,60B ︒∠=,CD 是AB 边上的中线,那么BC 与AB 有怎样的数量关系?试证明你的结论.22.如图1,在Rt △ABC 中,∠ACB =90°,动点M 从点A 出发沿A -C -B 向点B 匀速运动,动点N 从点B 出发沿B -C -A 向点A 运动.设MC 的长为y 1(cm),NC 的长为y 2(cm),点M 的运动时间为x (s);y 1、y 2与x 的函数图像如图2所示.(1)线段AC = cm ,点M 运动 s 后点N 开始运动;(2)求点P 的坐标,并写出它的实际意义;(3)当∠CMN =45°时,求x 的值.23.计算与求值:(1)计算:()203120195274+-+--. (2)求x 的值:24250x -=24.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米;(2)求快车和慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.25.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E .(1)若BC=6,求△ADE的周长.(2)若∠DAE=60°,求∠BAC的度数.四、压轴题26.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?∆中,线段AM为BC边上的中线.动点D在直线AM上时,以27.如图,在等边ABC∆,连结BE.CD为一边在CD的下方作等边CDE∠的度数;(1)求CAM∆≅∆;(2)若点D在线段AM上时,求证:ADC BEC∠是否(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB为定值?并说明理由.28.如图,以直角△AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).29.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.30.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△;(2)求证:点G 是EF 的中点.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y 、x 的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x ,∵4-0.5x ≥0,∴x ≤8,∴x 的取值范围是0≤x ≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.2.C解析:C【解析】【分析】只有0和1的算术平方根与立方根相等.【详解】=∴a为0或1.故选:C.【点睛】本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.也考查了算术平方根.3.A解析:A【解析】【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出△AOC≌△ABD,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BAD AC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;②当点C在OB的延长线上时,如图2,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BADAC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.4.C解析:C【解析】【分析】根据二次根式的意义可得出x+1≥0,即可得到结果.【详解】解:由题意得:x+1≥0,解得:x≥﹣1,故选:C.【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.5.B解析:B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B是轴对称图形,故选B6.D解析:D【解析】【分析】根据平移法则“上加下减”可得出平移后的解析式.【详解】解:直线23y x =-沿y 轴向上平移2个单位后的解析式为:y=2x-3+2,即y=2x-1. 故选:D .【点睛】本题考查一次函数图象平移问题,掌握平移法则“左加右减,上加下减”是解决此题的关键.7.D解析:D【解析】分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解.详解:∵点A (m ,n )在一次函数y=3x+b 的图象上,∴3m+b=n .∵3m-n >2,∴3m-(3m+b)>2,即-b>2,∴b <-2.故选D .点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n >2,得出-b >2是解题的关键.8.B解析:B【解析】【分析】根据无理数是无限不循环小数,可得答案.【详解】解:−5,实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个02π、-0.1010010001…(每相邻两个1之间依次多一个0)共3个.故选:B .【点睛】 本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.9.D解析:D【解析】【分析】先求出分式方程的解,由分式方程有意义的条件可知1x ≠-,即方程的解1≠-,由解为负数可知分式方程的解小于0,可得字母a 的取值范围.【详解】解:方程两边同时乘以(x +1),得2x ﹣a =x +1,解得:x =a +1,∵解为负数,∴a +1<0,∴a <﹣1,因为分式有意义,则10x +≠,1x ≠-,即11a +≠-,解得2a ≠-∴a <﹣1且a ≠﹣2,故选:D .【点睛】本题考查了分式方程,根据分式方程解的情况确定参数的取值范围,解题过程中易忽视分式有意义的条件,熟练掌握分式方程的解法是解题的关键.10.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A ,故A 选项不正确,所以本选项符合题意;B ,正确,所以本选项不符合题意;C 82,正确,所以本选项不符合题意;D 、﹣3的倒数是﹣13,正确,所以本选项不符合题意. 故选:A .【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键. 二、填空题11.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m 是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】(k是常数,k≠0)的函数叫做正比本题考查的是正比例函数的定义,一般地形如y kx例函数.12.﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1解析:﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1.∴b±3=1,解得:b=﹣2或4.故答案为:﹣2或4.【点睛】本题考查了直线的平移,属于基本题型,熟练掌握直线的平移规律是解答的关键.13.5【解析】根据二次根式的性质知:5.解析:5【解析】=5.14.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m -和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.15.70°.【解析】【分析】根据全等三角形的性质得出AB =AD ,∠BAC =∠DAE ,求出∠BAD =∠EAC =40°,根据等腰三角形的性质得出∠B =∠ADB ,即可求出答案.【详解】解:∵△ABC解析:70°.【解析】【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=12(180°﹣∠BAD)=70°,故答案为:70°.【点睛】本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理等知识点,能根据全等三角形的性质得出AB=AD和求出∠BAD=∠EAC是解此题的关键.16.【解析】【分析】由题意,可知点A坐标为(1,),点B坐标为(2,0),由直线与△OAB的边界总有两个公共点,有截距b在线段CD之间,然后分别求出点C坐标和点D坐标,即可得到答案.【详解】解解析:231b-<<-【解析】【分析】由题意,可知点A坐标为(1,3),点B坐标为(2,0),由直线y x b=+与△OAB 的边界总有两个公共点,有截距b在线段CD之间,然后分别求出点C坐标和点D坐标,即可得到答案.【详解】解:如图,过点A作AE⊥x轴,.∵△ABC 是等边三角形,且边长为2,∴OB=OA=2,OE=1,∴AE =∴点A 为(1B 为(2,0);当直线y x b =+经过点A (1ABC 边界只有一个交点,则1b +=1b =,∴点D 的坐标为(1);当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,则20b +=,解得:2b =-,∴点C 的坐标为(0,2-);∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,∴实数b 的范围是:21b -<<;故答案为:21b -<<.【点睛】本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论. 17.(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).18.k <1.【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,∴k-1<0,解得k解析:k<1.【解析】【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,∴k-1<0,解得k<1,故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.19.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 20.(3,4)分析:首先根据点A 和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A 的坐标为(-4,-1),A′的坐标为(-2,2), ∴平移法则为:先向 解析:(3,4)【解析】分析:首先根据点A 和点A ′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B ′的坐标.详解:∵A 的坐标为(-4,-1),A ′的坐标为(-2,2), ∴平移法则为:先向右平移2个单位,再向上平移3个单位, ∴点B ′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.三、解答题21.2AB BC =,证明见解析.【解析】【分析】根据直角三角形斜边上的中线得到CD BD AD ==,再根据60B ∠=︒得到DBC ∆为等边三角形,故可求解.【详解】2AB BC =因为90ACB ∠=,CD 是AB 边上的中线,所以CD BD AD ==.因为60B ∠=︒,所以DBC ∆为等边三角形,所以BC BD =.所以CB BD AD ==,即2AB BC =.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.22.(1)10,1;(2)P 为(103,0);点P 的实际意义为:点M 运动到点C ,MC=0;(3)当∠CMN=45°时,x 的值为2或4.【解析】【分析】 (1)由函数图像可知,AC=10,点M 运动1秒后,点N 开始运动;(2)由点M 为匀速运动,则先计算点M 的速度,然后求出点M 运动到点C 时的时间,即求出点P 的坐标;(3)先求出点N 在BC 上的运动速度和在AC 上的运动速度,结合∠CMN=45°,则CM=CN ,可分为两种情况进行分析:①点M 在AC 上,点N 在BC 上;②点M 在BC 上,点N 在AC 上;分别列式求解即可.【详解】解:(1)根据函数的图像可知,当点M 与点A 重合时,AC=MC=10cm ,当点N 与点B 重合时,BC=NC=8cm ,由图可知,点M 运动1秒后,点N 开始运动,故答案为:10,1;(2)由题意,点M 为匀速运动,则点M 的速度为:1083/6cm s +=, ∴当点M 运动到点C 时,MC=0,则点P 的横坐标为:103, ∴点P 的坐标为:(103,0); 点P 的实际意义为:点M 运动到点C ,MC=0;(3)由图可知,点N 在BC 上运动的速度为:84/31cm s =-, 点N 在AC 上运动的速度为:102/83cm s =-; ∵∠CMN=45°,∴△CMN 是等腰直角三角形,即MC=NC ,①如图,当点M 在AC 上,点N 在BC 上时,有设x 秒后,∠CMN=45°,∴103MC x =-,84(1)NC x =--,∴10384(1)x x -=--,解得:2x =;②如图,当点M 在BC 上,点N 在AC 上时,有点N 到达点C 所用的时间为3x =,设x 秒后,∠CMN=45°,∴310MC x =-,2(3)NC x =-,∴3102(3)x x -=-,解得:4x =;综合上述,当∠CMN=45°时,x 的值为2或4.【点睛】本题考查了等腰直角三角形的判定和性质,从函数图像获取信息,解一元一次方程,线段动点问题,解题的关键是弄清函数图像,根据函数图像找到关键点,从而进行计算,注意运用分类讨论的思想进行解题.23.(1)52;(2)52x =±. 【解析】【分析】(1)分别计算零指数幂,利用平方根的性质化简,计算立方根和算术平方根,然后把所得的结果相加减;(2)依次移项,系数化为1,两边同时开平方即可.【详解】解:(1)原式=115(3)2++-- =52; (2)移项得:2425x =,系数化为1得:2254x =, 两边同时开平方得:52x =±. 【点睛】 本题考查实数的混合运算和利用平方根解方程.(12||a a =,2)(0)a a a =≥;(2)中需注意的是方程右边的常数项(正数)有正负两个平方根,不要漏解.24.(1)560;(2)快车的速度是80km/h ,慢车的速度是60km/h .(3)y=-60x+540(8≤x≤9).【解析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D,E点坐标,进而得出函数解析式.【详解】(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20,∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴90 860 k bk b+⎧⎨+⎩==,解得:60540kb-⎧⎨⎩==.∴线段DE所表示的y与x之间的函数关系式为:y=-60x+540(8≤x≤9).【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E点坐标是解题关键.25.(1)6;(2)120°【解析】【分析】(1)根据线段垂直平分线性质得出AD=BD,CE=AE,求出△ADE的周长=BC,即可得出答案;(2)由∠DAE=60°,即可得∠ADE+∠AED=120°,又由DA=DB,EA=EC,即可求得∠BAC 的度数.【详解】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于D、E,∴DB=DA,EA=EC,∴△ADE的周长=AD+DE+EA=BD+DE+EC=BC=6,(2)∵∠DAE=60°,∴∠ADE+∠AED=120°∵DB=DA,EA=EC,∴∠B=∠BAD,∠C=∠CAE∴∠ADE=∠B+∠BAD=2∠B,∠AED=∠C+∠CAE=2∠C∴2∠B+2∠C=120°∴∠B+∠C=60°∴∠BAC=180°﹣(∠B+∠C)=120°【点睛】本题考查的知识点是线段垂直平分线的性质,熟记性质内容是解此题的关键.四、压轴题26.(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)154;(4)经过803s点P与点Q第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP、CQ的长;(2)利用SAS可证三角形全等;(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,点Q的运动速度与点P的运动速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.27.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE∴∠+∠=∠+∠=︒,ACD BCE∠∠∴=,在ACD∆和BCE∆中AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS∴∆≅∆,CBE CAD∴∠=∠,同理可得:30CAM∠=︒150CBE CAD∴∠=∠=︒30CBO∴∠=︒,∵30BAM∠=︒,903060BOA∴∠=︒-︒=︒.综上,当动点D在直线AM上时,AOB∠是定值,60AOB∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.28.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.29.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.30.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) ∵FH AG ⊥,90AEH EAH ∴∠+∠=︒,90FAC ∠=︒,90FAH CAD ∴∠+∠=︒,AFH CAD ∴∠=∠,在AFH ∆和CAD ∆中,90AHF ADC AFH CADAF AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AFH CAD AAS ∴∆≅∆,(2)由(1)得AFH CAD ∆≅∆,FH AD ∴=,作FK AG ⊥,交AG 延长线于点K ,如图;同理得到AEK ABD ∆≅∆,EK AD ∴=,FH EK ∴=,在EKG ∆和FHG ∆中,90EKG FHG EGK FGHEK FH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()∴∆≅∆,EKG FHG AAS∴=.即点G是EF的中点.EG FG【点睛】此题考查了全等三角形的判定与性质,熟练掌握K字形全等进行证明是解本题的关键.。