用向量坐标法求夹角与距离.

合集下载

1.4.2用空间向量研究距离、夹角问题(备课件

1.4.2用空间向量研究距离、夹角问题(备课件

A.5
B.8
C. 60 13
D.13 3
【答案】C
【解析】解:以 D 为坐标原点, DA , DC , DD1 的方向分别为 x,y,z 轴的正方向建立如
图所示的空间直角坐标系, 设 B(x,12,0),B1(x,12,5)(x>0),平面 A1BCD1 的法向量为 n =(a,b,c),则 C(0,12,
B1B n n
60 , 13
因为 B1C1∥BC,BC 平面 A1BCD1,B1C1 平面 A1BCD1,
所以 B1C1∥平面 A1BCD1,所以 B1C1 到平面 A1BCD1 的距离即为点 B1 到平面 A1BCD1 的距离,
所以直线
B1C1
到平面
A1BCD1
的距离为
60 13
,故选:C.
知识点01 线面角的向量
1.已知在长方体 ABCD-A1B1C1D1 中,AB=BC=1,AA1=2,E 是侧棱 BB1 的中点,则直线 AE 与平面
A1ED1 所成角的大小为( )
A.60°
B.90°
C.45°
D.以上都不对
【答案】B 【解析】 以点 D 为原点,分别以 DA,DC,DD1 所在直线为 x 轴,y 轴,z 轴,建立如图所示的空间 直角坐标系,
0),D1(0,0,5), CD1
0, 12,5
, BC
x, 0, 0
,由
n n
BC CD1
,得
n n
BC a x
CD1 a 0
b0 b 12
c0 c
5
ax 0 12b
5c
0
,所以
a=0,b= 152
c,取 n
=(0,5,12),

用空间向量研究距离、夹角问题全文

用空间向量研究距离、夹角问题全文

MN ( 1 1 )2 (0 1 )2 ( 1 0)2 2 .
22
22
2
y
x
【巩固训练3】如图,正方体ABCD和ABEF的边长都是1,且它们所在平面互相垂 直,点M在AC上,点N在BF上,若CM = BN = 2,求MN的长.
2
解2:设 AB a, AD b, AF c . 则
2. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为线段DD1的中点,F为线段BB1
的中点.
z
(4) 求直线FC1到平面AB1E的距离.
D1
C1
解 : FC1 //平面AB1E,直线FC1到平面AB1E的距离 A1
B1
等于点C1到平面AB1 E的距离.
E
由(3)知平面AB1E的一个法向量为n (1, 2, 2). 易知C1(0,1,1), B1(1,1,1),C1B1 (1,0,0).
D1 A1
E
D
C1 B1
F
C
A
B
2. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为线段DD1的中点,F为线段BB1
的中点.
z
(1) 求点A1到直线B1E的距离;
D1
C1
解 : 如图示,以D为原点建立空间直角坐标系, 则有
A1
B1
1 A1(1, 0,1), B1(1,1,1), E(0, 0, 2).
z0 ,
0
取y
1, 则z
1,
x
1.
∴平面D1CB1的一个法向量为n (1,1,1).
D
A x
C y
B
点B到平面D1CB1
的距离为
|
BC n |n|

用空间向量研究距离和夹角问题说课

用空间向量研究距离和夹角问题说课

用空间向量研究距离和夹角问题说课空间向量是指具有大小和方向的向量,通常用来描述物体在三维空间中的位置和运动。

在数学和物理学中,空间向量经常被用来研究距离和夹角的问题。

我将从距离和夹角两个方面来阐述空间向量的相关知识。

首先,让我们来谈谈空间向量的距离问题。

在三维空间中,两个点的距离可以通过它们对应的空间向量来计算。

假设有两个点A 和B,它们分别对应空间向量OA和OB,那么点A和点B之间的距离可以表示为向量AB的模长。

具体而言,向量AB的模长可以通过以下公式计算,|AB| = √((x_B x_A)^2 + (y_B y_A)^2 + (z_Bz_A)^2),其中(x_A, y_A, z_A)和(x_B, y_B, z_B)分别是点A和点B的坐标。

这个公式实质上就是三维空间中两点之间的距离公式,它利用空间向量的坐标表示来计算点之间的距离。

其次,让我们来探讨空间向量的夹角问题。

在三维空间中,两个向量的夹角可以通过它们的数量积来计算。

假设有两个向量a和b,它们的夹角θ可以通过以下公式计算,cosθ = (a·b) / (|a||b|),其中a·b表示a和b的数量积,|a|和|b|分别表示a和b的模长。

这个公式实质上就是利用数量积的定义来计算两个向量之间的夹角,从而可以通过空间向量的坐标表示来求解夹角问题。

总的来说,通过空间向量的研究,我们可以很好地解决距离和夹角问题。

通过对空间向量的坐标表示和数量积的运用,我们可以准确地计算两点之间的距离和两向量之间的夹角,这对于数学和物理学中的问题都具有重要的意义。

希望通过这样的说课,能够让学生更好地理解和运用空间向量的相关知识。

1.4.2 用空间向量研究距离、夹角问题(课件)

1.4.2 用空间向量研究距离、夹角问题(课件)

二面角的大小为
.
π4或34π 解析: cos〈m,n〉=|mm|·|nn|= 22,∴〈m,n〉=π4. ∴两平面所成二面角的大小为π4或34π.
经典例题
角度1:点线距
题型一 利用空间向量求距离
用向量法求点到直线的距离时需注意以下几点: (1)不必找点在直线上的垂足以及垂线段. (2)在直线上可以任意选点,但一般选较易求得坐标的特殊点. (3)直线的方向向量可以任取,但必须保证计算正确.
则 在法向量 n 上的投影向量的长度即为异面直线 a,b 的距离,所以距离为
.
自主学习
二.空间角的向量求法 空间角包括线线角、线面角、二面角,这三种角的定义确定了它
们相应的取值范围,结合它们的取值范围可以用向量法进行求解.
自主学习
角的分类
向量求法
范围
两异面直线 l1 与 l2 所成的角为 θ
设 l1 与 l2 的方向向量分别为 u,v,
经典例题
题型一 利用空间向量求距离
例 2 在三棱锥 S-ABC 中,△ABC 是边长为 4 的正三角形,平面 SAC⊥平面 ABC,
SA=SC=2 3,M,N 分别为 AB,SB 的中点,如图所示.求点 B 到平面 CMN 的 距离.
取 AC 的中点 O,连接 OS,OB. ∵SA=SC,AB=BC,∴AC⊥SO,AC⊥BO. ∵平面 SAC⊥平面 ABC,平面 SAC∩平面 ABC=AC, ∴SO⊥平面 ABC. 又 BO⊂平面 ABC,∴SO⊥BO. 又∵△ABC 为正三角形,O 为 AC 的中点,∴AO⊥BO. 如图所示,分别以 OA,OB,OS 所在直线为 x 轴,y 轴,z 轴, 建立空v>|
则 cosθ=
|u·v| = |u||v|

用空间向量研究距离、夹角问题

用空间向量研究距离、夹角问题

用空间向量研究距离问题课程标准学习目标1.能用向量方法解决点到直线、点到平面、相互平行的直线、相互平行的平面的距离问题.2.体会向量方法在研究几何问题中的作用 1.借助直线的方向向量和平面的法向量,能计算点到直线的距离、点到平面的距离,并知道两条平行直线之间的距离、直线与平面平行时两者间的距离、两个平行平面之间的距离. 2.能分析和解决一些立体几何中的距离问题,体会向量方法与综合几何方法的共性和差异,体会直线的方法向量和平面的法向量的作用,感悟向量是研究几何问题的有效工具知识点 用空间向量研究距离问题 1.点到直线的距离如图1-4-18,已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设AP ⃗⃗⃗⃗⃗ =a ,则向量AP ⃗⃗⃗⃗⃗ 在直线l 上的投影向量AQ ⃗⃗⃗⃗⃗ =(a ·u )u.在Rt △APQ 中,由勾股定理,得PQ= = .图1-4-182.点到平面的距离如图1-4-19,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP⃗⃗⃗⃗⃗ 在直线l 上的投影向量QP ⃗⃗⃗⃗⃗ 的长度.因此PQ=AP ⃗⃗⃗⃗⃗ ·n|n |= = . 图1-4-19【诊断分析】 判断正误.(请在括号中打“√”或“×”)(1)平面α外一点A 到平面α的距离,就是点A 与平面α内一点B 所成向量AB⃗⃗⃗⃗⃗ 的长度.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.()(3)若平面α∥平面β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.()3.解决立体几何中问题的步骤用空间向量解决立体几何问题的“三步曲”可以概括为“一化二算三译”六字诀.“一化”就是把立体几何问题转化为向量问题;“二算”就是通过向量运算,研究点、线、面之间的位置关系以及它们之间的距离问题;“三译”就是把向量的运算结果“翻译”成相应的几何意义.探究点一点到直线的距离例1 如图1-4-20,在空间直角坐标系中有长方体ABCD-A'B'C'D',AB=1,BC=2,AA'=3,求点B到直线A'C的距离.图1-4-20变式1 [2020·潍坊高二期末] 已知A(0,0,2),B(1,0,2),C(0,2,0),则点A到直线BC的距离为()B.1A.2√23C.√2D.2√2变式2 已知正方体ABCD-A1B1C1D1中,E,F分别是C1C,D1A1的中点,求点A到直线EF的距离.[素养小结]用向量法求点到直线的距离的一般步骤:(1)建立空间直角坐标系;(2)求直线的方向向量;(3)计算所求点与直线上某一点所构成的向量在直线上的投影向量的长度;(4)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.探究点二点到平面的距离例2 如图1-4-21,已知正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别是C1C,D1A1,AB的中点,求点A到平面EFG的距离.图1-4-21变式如图1-4-22所示,在四棱锥P-ABCD中,四边形ABCD为正方形,PD⊥平面ABCD,PD=DA=2,F,E分别为AD,PC的中点.(1)求证:DE∥平面PFB;(2)求点E到平面PFB的距离.图1-4-22[素养小结]用向量法求点到平面的距离的步骤:(1)建系:建立恰当的空间直角坐标系;(2)求点的坐标:写出(求出)相关点的坐标;(3)求向量:求出相关向量的坐标;(4)利用公式即可求得点到平面的距离.探究点三线面距和面面距例3 如图1-4-23所示,在直棱柱ABCD-A1B1C1D1中,底面为直角梯形,AB∥CD且∠ADC=90°,AD=1,CD=√3,BC=2,AA1=2,E是CC1的中点,求直线A1B1到平面ABE的距离.图1-4-23变式如图1-4-24,在棱长为1的正方体ABCD-A1B1C1D1中,求平面A1BC1与平面ACD1的距离.图1-4-24[素养小结](1)求线面距离可以转化为求直线上任意一点到平面的距离,利用求点到平面的距离的方法求解即可.(2)求两个平行平面间的距离可以转化为求点到平面的距离,利用求点到平面的距离的方法求解即可.拓展如图1-4-25,四棱锥P-ABCD的底面是边长为1的正方形,PD⊥平面ABCD,且PD=1,E,F 分别为AB,BC的中点.求:图1-4-25(1)点D到平面PEF的距离;(2)直线AC到平面PEF的距离.1.已知正方体ABCD-A1B1C1D1的棱长为2,点E是A1B1的中点,则点A到直线BE的距离为()A.6√55B.4√55C.2√55D.√552.在三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=PB=PC=1,则点P到平面ABC的距离是()A.√66B.√63C.√36D.√333.若正方体ABCD-A1B1C1D1的棱长为3,则点B到平面ACD1的距离为()A.√3B.√33C.3√22D.324.如图1-4-26,在长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点F,G分别是AB,CC1的中点,则点D1到直线GF的距离为.图1-4-265.在长方体ABCD-A 1B 1C 1D 1中,AA 1=1,AD=DC=√3,Q 是线段A 1C 1上一点,且C 1Q=13C 1A 1,则点Q 到平面A 1DC 的距离为 .用空间向量研究距离问题参考答案【课前预习】知识点1.√|AP ⃗⃗⃗⃗⃗ |2-|AQ ⃗⃗⃗⃗⃗ |2 √a 2-(a ·u )22.|AP ⃗⃗⃗⃗⃗ ·n |n |||AP ⃗⃗⃗⃗⃗ ·n ||n |诊断分析 (1)× (2)√ (3)√ 【课中探究】探究点一例1 解:因为AB=1,BC=2,AA'=3, 所以A'(0,0,3),C (1,2,0),B (1,0,0), 所以直线A'C 的方向向量A'C ⃗⃗⃗⃗⃗⃗ =(1,2,-3). 又BC ⃗⃗⃗⃗⃗ =(0,2,0),所以BC ⃗⃗⃗⃗⃗ 在A 'C ⃗⃗⃗⃗⃗⃗ 上的投影向量的长度为|BC ⃗⃗⃗⃗⃗ ·A 'C ⃗⃗⃗⃗⃗⃗||A 'C ⃗⃗⃗⃗⃗⃗|=√14,所以点B 到直线A'C 的距离d=√|BC ⃗⃗⃗⃗⃗ |2-(|BC ⃗⃗⃗⃗⃗ ·A 'C ⃗⃗⃗⃗⃗⃗ ||A 'C ⃗⃗⃗⃗⃗⃗|) 2=√4-1614=2√357. 变式1 A [解析] ∵A (0,0,2),B (1,0,2),C (0,2,0),AB ⃗⃗⃗⃗⃗ =(1,0,0),BC ⃗⃗⃗⃗⃗ =(-1,2,-2),∴点A 到直线BC 的距离d=|AB ⃗⃗⃗⃗⃗ |√1-(cos <AB ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ >)2=1×√1-(-11×3)2=2√23.故选A .变式2 解:连接AF ,以D 为原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,如图所示,设DA=2,则A (2,0,0),E (0,2,1),F (1,0,2),则EF ⃗⃗⃗⃗⃗ =(1,-2,1),FA ⃗⃗⃗⃗⃗ =(1,0,-2). |EF⃗⃗⃗⃗⃗ |=√12+(-2)2+12=√6,FA ⃗⃗⃗⃗⃗ ·EF⃗⃗⃗⃗⃗ =1×1+0×(-2)+(-2)×1=-1, FA ⃗⃗⃗⃗⃗ 在EF ⃗⃗⃗⃗⃗ 上的投影向量的长度为|FA ⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ ||EF ⃗⃗⃗⃗⃗|=√6, 所以点A 到直线EF 的距离d=√|FA |2-(√6) 2=√296=√1746. 探究点二例2 解:以D 为坐标原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0), 所以AG ⃗⃗⃗⃗⃗ =(0,1,0),GE ⃗⃗⃗⃗⃗ =(-2,1,1),GF ⃗⃗⃗⃗⃗ =(-1,-1,2). 设n=(x ,y ,z )是平面EFG 的法向量, 点A 到平面EFG 的距离为d ,则{n ·GE⃗⃗⃗⃗⃗ =0,n ·GF⃗⃗⃗⃗⃗ =0,所以{-2x +y +z =0,-x -y +2z =0,取z=1,得n=(1,1,1),所以d=|AG ⃗⃗⃗⃗⃗ ·n ||n |=√3=√33,即点A 到平面EFG 的距离为√33.变式 解:(1)证明:以D 为原点,建立如图所示的空间直角坐标系,则P (0,0,2),F (1,0,0),B (2,2,0),E (0,1,1), 所以FP⃗⃗⃗⃗⃗ =(-1,0,2),FB ⃗⃗⃗⃗⃗ =(1,2,0),DE ⃗⃗⃗⃗⃗ =(0,1,1), 所以DE ⃗⃗⃗⃗⃗ =12FP ⃗⃗⃗⃗⃗ +12FB ⃗⃗⃗⃗⃗ ,又因为DE ⊄平面PFB , 所以DE ∥平面PFB. (2)因为DE ∥平面PFB ,所以点E 到平面PFB 的距离等于点D 到平面PFB 的距离. 设平面PFB 的法向量为n=(x ,y ,z ), 则{n ·FB ⃗⃗⃗⃗⃗ =0,n ·FP ⃗⃗⃗⃗⃗ =0,即{x +2y =0,-x +2z =0,取x=2,得n=(2,-1,1). 因为FD ⃗⃗⃗⃗⃗ =(-1,0,0),所以点D 到平面PFB 的距离d=|FD ⃗⃗⃗⃗⃗ ·n ||n |=√6=√63,所以点E 到平面PFB 的距离为√63.探究点三例3 解:如图,以D 为坐标原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则A 1(1,0,2),A (1,0,0),E (0,√3,1),C (0,√3,0). 过点C 作AB 的垂线交AB 于点F ,易得BF=√3, ∴B (1,2√3,0),∴AB ⃗⃗⃗⃗⃗ =(0,2√3,0),BE ⃗⃗⃗⃗⃗ =(-1,-√3,1). 设平面ABE 的法向量为n=(x ,y ,z ), 则{n ·AB⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{2√3y =0,-x -√3y +z =0,取x=1,得n=(1,0,1).∵AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),∴点A 1到平面ABE 的距离d=|AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ·n ||n |=√2=√2.∵直线A 1B 1到平面ABE 的距离等于点A 1到平面ABE 的距离, ∴直线A 1B 1到平面ABE 的距离为√2.变式 解:如图,建立空间直角坐标系,AC ⃗⃗⃗⃗⃗ =(-1,1,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),设平面ACD 1的法向量为n=(x ,y ,z ),由n ⊥AC ⃗⃗⃗⃗⃗ ,n ⊥AD 1⃗⃗⃗⃗⃗⃗⃗ 得{-x +y =0,-x +z =0,取x=1,得n=(1,1,1),所以平面ACD 1的一个法向量为n=(1,1,1),因为AB ⃗⃗⃗⃗⃗ =(0,1,0),所以点B 到平面ACD 1的距离d=|AB ⃗⃗⃗⃗⃗ ·n ||n |=√3=√33. 因为平面A 1BC 1与平面ACD 1的距离等于点B 到平面ACD 1的距离, 所以平面A 1BC 1与平面ACD 1的距离为√33.拓展 解:(1)连接DE.∵PD ⊥平面ABCD ,∴PD ⊥AD ,PD ⊥CD ,又AD ⊥CD , ∴可建立如图所示的空间直角坐标系,则P (0,0,1),A (1,0,0),C (0,1,0),E 1,12,0,F 12,1,0,∴PE ⃗⃗⃗⃗⃗ =1,12,-1,EF ⃗⃗⃗⃗⃗ =-12,12,0. 设平面PEF 的法向量为n=(x ,y ,z ), 则{n ·EF ⃗⃗⃗⃗⃗ =0,n ·PE ⃗⃗⃗⃗⃗ =0,即{-12x +12y =0,x +12y -z =0,取x=1,则平面PEF 的一个法向量为n=1,1,32.易知DE⃗⃗⃗⃗⃗ =1,12,0,设D 到平面PEF 的距离为d , 则d=|DE ⃗⃗⃗⃗⃗⃗ ·n ||n |=|1+12|√172=3√1717, 故点D 到平面PEF 的距离为3√1717.(2)由(1)知,平面PEF 的一个法向量为n=1,1,32.∵EF ⃗⃗⃗⃗⃗ =-12,12,0,AC ⃗⃗⃗⃗⃗ =(-1,1,0), ∴AC ⃗⃗⃗⃗⃗ =2EF ⃗⃗⃗⃗⃗ ,∴AC ⃗⃗⃗⃗⃗ ∥EF⃗⃗⃗⃗⃗ . ∵AC ,EF 不共线,∴AC ∥EF ,又∵AC ⊄平面PEF ,EF ⊂平面PEF ,∴AC ∥平面PEF. 易得AE ⃗⃗⃗⃗⃗ =0,12,0,设直线AC 到平面PEF 的距离为h , 则h=|AE ⃗⃗⃗⃗⃗ ·n ||n |=12√172=√1717, 故直线AC 到平面PEF 的距离为√1717. 【课堂评价】1.B [解析] 如图,以B 为原点,分别以BC ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ ,BB 1⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则BA ⃗⃗⃗⃗⃗ =(0,2,0),BE ⃗⃗⃗⃗⃗ =(0,1,2),设∠ABE=θ,则cos θ=|BA ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗||BA ⃗⃗⃗⃗⃗ ||BE ⃗⃗⃗⃗⃗ |=2×√5=√55,则sin θ=√1-cos 2θ=2√55,故点A 到直线BE 的距离d=|AB⃗⃗⃗⃗⃗ |sin θ=2×2√55=4√55. 2.D [解析] 以P 为原点,分别以PA ,PB ,PC 所在的直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (1,0,0),B (0,1,0),C (0,0,1),则PA⃗⃗⃗⃗⃗ =(1,0,0),AB ⃗⃗⃗⃗⃗ =(-1,1,0),AC ⃗⃗⃗⃗⃗ =(-1,0,1),易得平面ABC 的一个法向量为n=(1,1,1),则P 到平面ABC 的距离d=|PA ⃗⃗⃗⃗⃗ ·n ||n |=√33.3.A [解析] 如图,以D 为原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则B (3,3,0),A (3,0,0),C (0,3,0),D 1(0,0,3),所以AC ⃗⃗⃗⃗⃗ =(-3,3,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-3,0,3),AB ⃗⃗⃗⃗⃗ =(0,3,0).设平面ACD 1的法向量为n=(x ,y ,z ),则{n ·AC ⃗⃗⃗⃗⃗ =-3x +3y =0,n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =-3x +3z =0,取x=1,得n=(1,1,1),∴点B 到平面ACD 1的距离d=|AB ⃗⃗⃗⃗⃗ ·n ||n |=√3=√3.故选A . 4.√423 [解析] 连接GD 1.以D 为坐标原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则D 1(0,0,2),F (1,1,0),G (0,2,1),所以GF ⃗⃗⃗⃗⃗ =(1,-1,-1),GD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-2,1),所以GF ⃗⃗⃗⃗⃗ ·GD 1⃗⃗⃗⃗⃗⃗⃗⃗ |GF ⃗⃗⃗⃗⃗ |=2-1√3=1√3,|GD 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√5,所以点D 1到直线GF 的距离为√5-13=√423. 5.√33 [解析] 连接DQ ,建立如图所示的空间直角坐标系,则D (0,0,1),C (0,√3,1),A 1(√3,0,0),C 1(0,√3,0),由C 1Q=13C 1A 1,得Q √33,2√33,0,∴DC ⃗⃗⃗⃗⃗ =(0,√3,0),DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√3,0,-1),DQ ⃗⃗⃗⃗⃗⃗ =√33,2√33,-1.设平面A 1DC 的法向量为n=(x ,y ,z ),由{n ·DC ⃗⃗⃗⃗⃗ =0,n ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{√3y =0,√3x -z =0,可取n=(1,0,√3),∴点Q 到平面A 1DC 的距离d=|DQ ⃗⃗⃗⃗⃗⃗ ·n ||n |=√33.。

空间向量的夹角与距离求解公式-高中数学知识点讲解

空间向量的夹角与距离求解公式-高中数学知识点讲解

空间向量的夹角与距离求解公式1.空间向量的夹角与距离求解公式【知识点的认识】1.空间向量的夹角公式→→设空间向量푎=(a1,a2,a3),푏=(b1,b2,b3),→→cos<푎,푏>=→→푎⋅푏→→|푎|⋅|푏|=푎1푏1+푎2푏2+푎3푏3푎12+푎22+푎32⋅푏12+푏22+푏32注意:→→→→(1)当 cos<푎,푏>= 1时,푎与푏同向;→→→→(2)当 cos<푎,푏>=― 1时,푎与푏反向;→→→→(3)当 cos<푎,푏>= 0时,푎⊥푏.2.空间两点的距离公式设A(x1,y1,z1),B(x2,y2,z2),则→퐴퐵=(푥2―푥1,푦2―푦1,푧2―푧1)→d A,B=|퐴퐵| =→퐴퐵⋅→퐴퐵=(푥2―푥1)2+(푦2―푦1)2+(푧2―푧1)2.【解题思路点拨】1.求空间两条直线的夹角建系→写出向量坐标→利用公式求夹角2.求空间两点的距离建系→写出点的坐标→利用公式求距离.【命题方向】(1)利用公式求空间向量的夹角→→例:已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量퐴퐵与퐴퐶的夹角为()1/ 3A.30°B.45°C.60°D.90°→→→分析:由题意可得:퐴퐵=(0,3,3),퐴퐶=(―1,1,0),进而得到퐴퐵⋅→→→→→퐴퐶与|퐴퐵|,|퐴퐶|,再由cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→可得答案.|퐴퐵||퐴퐶|解答:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以→→퐴퐵=(0,3,3),퐴퐶=(―1,1,0),→所以퐴퐵⋅→→→퐴퐶═0×(﹣1)+3×1+3×0=3,并且|퐴퐵|=3 2,|퐴퐶| = 2,→→所以 cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→|퐴퐵||퐴퐶|=332×2=12,→→∴퐴퐶的夹角为 60°퐴퐵与故选C.点评:解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题.(2)利用公式求空间两点的距离例:已知空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),则A,B 两点间的距离是()A.3B. 29C.25D.5分析:求出AB 对应的向量,然后求出AB 的距离即可.解答:因为空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),→→所以퐴퐵=(﹣3,0,﹣4),所以|퐴퐵|=(―3)2+02+(―4)2= 5.故选D.点评:本题考查空间两点的距离求法,考查计算能力.2/ 33/ 3。

1.4空间向量的应用-1.4.2用空间向量研究距离、夹角问题

空间向量的应用
用空间向量研究距离、夹角问题
第1课时
距离问题
核心素养
能用向量方法解决点到
直线、点到平面、互相
平行的直线、互相平行
的平面的距离问题.(直
观想象、数学运算)
思维脉络
激趣诱思
知识点拨
某人在一片丘陵上开垦了一块田地,在丘陵的上方架有一条直的水
渠,此人想从水渠上选择一个点,通过一条管道把水引到田地中的
·1 = 0,
取 z=1,则 x=y=2,所以 n=(2,2,1).
|·1 1 |
所以点 B1 到平面 AD1C 的距离 d=
||
8
= 3.
探究一
探究二
素养形成
当堂检测
利用空间向量求点线距
例1已知直三棱柱ABC-A1B1C1中,AA1=1,AB=4,BC=3,∠ABC=90°,求
点B到直线A1C1的距离.
)
3
A.
2
2
B.
2
C. 3
D.3 2
答案:B
解析:∵两平行平面 α,β 分别经过坐标原点 O 和点 A(2,1,1),
=(2,1,1),且两平面的一个法向量 n=(-1,0,1),
|· |
∴两平面间的距离 d=
||
=
|-2+0+1|
2
=
2
2
.故选 B.
探究一
探究二
素养形成
当堂检测
2.若三棱锥P-ABC的三条侧棱两两垂直,且满足PA=PB=PC=1,则点
所以点 B 到直线 A1C1 的距离
1 1
2
d= |1 | - 1 ·|
= 8-
-1+3+0

空间向量的夹角和距离公式(讲课)

aba1b1a2b2a3b3 ;
a//b a 1 b 1 ,a 2 b 2 ,a 3 b 3 ( R ) ;
a 1/b 1a 2/b 2a 2/b 2 . a b a1b 1a2b2a3b30;
二、距离与夹角 (1)空间两点间的距离公式
在空间直角坐标系中,已知 A(x1 , y1 , z1) 、 B(x2 , y2 ,z2),则
例2 如图,在正方体 A B C DA 1B 1C 1D 1中,B1E1
D1F1
A1B1 4
,求
BE1

D
F1
所成的角的余弦值。
z
D1
F1
C1
D F 1 0 , 1 4, 1 (0 ,0 ,0 ) 0 , 1 4, 1 .
A1
E1 B1
B E 1D F 1 0 0 1 4 1 4 1 1 1 1 6 5,
| AM| 5 30 6.故 点 A到 直 线 EF的 距 离 为6.
2 10 4
4
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .
D1
F A1
C1 B1
E
2021/3/11
D A
C B
9
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .

空间向量的距离和夹角公式


例2 在正方體ABCD-A1B1C1D1中,E、F分別是BB1、 D1 B1的中點,求證:EF⊥ DA1
例3 在正方體ABCD-A1B1C1D1中,E、F分別是BB1、 CD的中點,求證:D1F⊥ 平面ADE
例4 如圖,在正方體ABCD-A1B1C1D1中,已知
B1E1
D1F1
1 4
AB
,與BE1與DF1所成的角的余弦值。
BC=1,AA1=√6,M是棱CC1的中點,
求證:A1B⊥AM
C1
B1
A1
M
C
B
A
3、在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別
是DD1,DB中點,G在棱CD上,CD=4CG,H是C1G的
中點,
z
(1) 求證:EF⊥B1C ;
D1
C1
A1 E
B1 H
D
G
C y
F
A
B
x
3、在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別
| a| | b |
a12 a22 a32 b12 b22 b32
(2) 空間兩點間的距離公式 在空間直角坐標系中,已知A(x1 , y1 , z1),
B(x2 , y2 , z2),則
AB (x2 x1, y2 y1, z2 z1)
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2
是DD1,DB中點,G在棱CD上,CD=4CG,H是C1G的
中點,
z
(2) 求EF與C1G所成的角的余弦; D1
C1
(3) 求FH的長。A1 EB1 H NhomakorabeaD
G
C y
F

用空间向量研究距离、夹角问题(第1课时+用空间向量研究距离问题)课件

= -,
·1 = 2 + 2 = 0,
所以
所以 = -.
· = 2 + 2 = 0.
取x=1,则y=-1,z=-1.
所以,n=(1,-1,-1)是平面A1BD的一个法向量.
所以点 D1 到平面 A1BD 的距离
|1 1 ·|
d= ||
=
2
3
=
2 3
.
3
(2)根据题意,知A1D1
, ,
2 6 3
,
3
=4,a·u= 3 .
所以点 C 到直线 AB1 的距离为
2
2
-(·)
=
33
.
3
探究二
点到平面的距离
【例2】 设正方体ABCD-A1B1C1D1的棱长为2,求:
(1)点D1到平面A1BD的距离;
(2)平面A1BD与平面B1CD1间的距离.
分析:(1)由平面 A1BD 的法向量和向量1 1 可求出点 D1 到平面 A1BD 的
|1 |
= -
2
2
,0,
2
2
.
所以,点 M 到直线 AD1 的距离
d=
2 -(·)2
当 m=-
-
3

2
=
=
2
+
2 1
(-) - 2 (-)2
=
3 2
-
2

1 2
时,根式内的二次函数取得最小值3a .
3
故 d 的最小值为
3
a.
3
+
1 2
.
2
反思感悟 用向量方法求直线外一点N到直线的距离的步骤
人教A版 数学 选择性必修
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棱长为4的正方体 且 B1 E D1 F
z

⑵解∵A(4,0,0),E(4,3,4),F(0,1,4)
D
FE (4,2,0),
x
C B
y
∴ FA (4,1,4),
∴ | FA | 33
A
| FE | 2 5
| FA FE | | FE | 7 5
设FA在FE上的射影的长度为 n

n | FA | | COS FA, FB |
2 2

2 145 ∴ d | FA | n 5
ABCD A1 B1C1 D1 中, F D 1 点E在线段 A1 B1上,点F在线段 C1 D1 上,
棱长为4的正方体 且 B1 E D1 F
z
1
A1
E B1
C1
⑶求A到平面BEF的距离m ⑷求AF与平面BEF的夹角φ。 ⑶解∵B(4,4,0), E(4,3,4),F(0,1,4) ∴ BE (0,1,4), FE (4,2,0), 设平面BEF的一个法向量为
D
x
C B
y
A
BE (0,1,4), DF (0,1,4),
| BE DF |
15 ∴ cos | cos BE , DF | | BE | | DF | 17
15 ∴ arccos 17
ABCD A1 B1C1 D1 中, C1 D1 F 点E在线段 A1 B1上,点F在线段 C1 D1 上, EB
ABCD A1 B1C1 D1中,
点M是B1C1 的中点,点N是C1 D1 的中点。
B1 到平面CMN的距离d ⑵求 CB 与平面CMN的夹角θ。 1
⑴求 ⑶求AM与BN的夹角φ ⑷求D到MN的距离m ⑸求MD与
C B C1 A N
D
B1 D1 的夹角β
M B1
D1 A1
谢谢! 再见!
a b b a1b1 a2b2 a3b3 b b b
2 1 2 2 2 3
d a cos a, b

若a 且b 则a // b
a ,则 a称叫做平面α的法向量。
⑦ 平面α的法向量:若

求平面法向量的方法:待定系数法。
ABCD A1 B1C1 D1 中, C1 D1 F 点E在线段 A1 B1上,点F在线段 C1 D1 上, EB H
a (a1 , a2 , a3 )
a b a1b1 a2b2 a3b3
⑤当
b0

a // b a b a1 b1 , a2 b2 , a3 b3

a b a b a1b1 a2b2 a3b3 0
已知:
则: ⑦

2
)
cos cos AB , CD
3、求点A到直线BC的距离d: ①
AB CD AB CD
m BA cos BA, BC
BA BC BC

d BA m
2
2
4、求点P到平面ABC的距离d :
n ( x, y, z )(方法:待定系数法) ①求平面ABC的一个法向量:
A( x1 , y1 , z1 )
B( x2 , y2 , z2 )
C( x, y, z)
AB ( x2 x1 , y2 y1 , z2 z1 )

x1 x2 y1 y2 z1 z 2 AC CB x ,y ,z 1 1 1
⑨ AB的中点

2
16 21 m 21
| FA n | |n|
16 77 ∴ arcsin 231
16 77 ∴ sin 231 | FA |
m
16 21 21
已知:△ABC中,∠ACB=90°,将△ABC沿着平面ABC
的法向量平移到△ A1 B1C1的位置,且
D是 A1 B1 的中点,E是 A1C1的中点
CA CB 3 CC1 3 , z
E A1 A
C1 C
D
B1 B
y
x ∴A(3,0,0),B(0,3,0),C(0,0,0), D(1.5,1.5,1),E(1.5,0,1) ∴ AE (1.5,0,1),
CA CB 3CC1 3
BD (1.5,1.5,1),
| AE BD | | AE | | BD | 5 286 286
15 ∴∠GEB=arccos 17
ABCD A1 B1C1 D1 中, C1 D1 F 点E在线段 A1 B1上,点F在线段 C1 D1 上, EB
棱长为4的正方体 且 B1 E D1 F
z
1
A1
1
⑴求BE与DF的夹角θ
解:⑴[方法2]: 如图建立空间直角坐标系o-xyz, (分别以DA、DC、DD1为x、y、z轴) ∵AB=4∴B(4,4,0),D(0,0,0),E(4,3,4),F(0,1,4) ∴
2
2 3
AB ( x2 x1 ) 2 ( y2 y1 ) 2 ( z2 z1 ) 2
a1b1 a2b2 a3b3 cos a, b 2 2 2 2 2 2 a a a b b b ab 1 2 3 1 2 3 a b


a在b上的射影的长度 d :
∴ cos | cos AE , BD |
∴ arccos
5 286 286
已知:△ABC中,∠ACB=90°,将△ABC沿着平面ABC
的法向量平移到△ A1 B1C1的位置,且
D是 A1 B1 的中点,E是 A1C1的中点
CA CB 3CC1 3 ,
z
⑵求A到BE的距离d
AE 2 EF 2 AF 2 5 286 ∴ cosAEF 2 AE EF 286
5 286 ∴ arccos 286
已知:△ABC中,∠ACB=90°,将△ABC沿着平面ABC
的法向量平移到△ A1 B1C1的位置,且
D是 A1 B1 的中点,E是 A1C1的中点 ⑴求BD与AE的夹角θ ⑴[方法2]: 如图建立空间直角坐标系o-xyz,(分 别以CA、CB、CC1为x、y、z轴) ∵
棱长为4的正方体 且 B1 E D1 F
1
A1
1
⑴求BE与DF的夹角θ
解:⑴[方法1]:
D A
GE EB 17
2 2 2
C
G
在线段AB上取中点G,则GE//DF,∴∠GEB为所求的角,
在△GEB中:GB=2,
B
GE EB GB 15 ∴ cosGEB 2GE EB 17
⑵ 解∵A(3,0,0),B(0,3,0), E(1.5,0,1) ∴ ∴
E BA (3,3,0), BE (1.5,3,1), A1
| BA | 3 2
C1 C
D
B1 B
y
| BE | 3.5
| BA BE | | BE | 27 7
设BA 在BE上的射影的长度为 n xA
0
又∵

2
26 ∴ sin 13 | BA | 26 ∴ arcsin 13
四、小结 1、用用向量坐标法解题的步骤:①建立o-xyz直角坐标系,②求 相应点的坐标,③求相应向量的坐标,④应用向量性质与公式求 解或证明。
2、求异面直线AB与CD的夹角θ: (0
6 13 13
CE (1.5,0,1), BA (3,3,0),
∴ n CB 3 y 0且 n CE 1.5x Z 0 令x=2得 ∴ | n |
13 ∴ m | BA | | COS BA, n |
| BA n | |n|
已知:△ABC中,∠ACB=90°,将△ABC沿着平面ABC
CA CB 3CC1 3 , C1 B1
⑴求BD与AE的夹角θ
解:⑴[方法1]: 在线段BC上取中点F,则ED//FB且ED=FB
E A1
D
C
F
B
∴∠AEF或其补角中最小的为所求的角, 13 ∵ CA CB 3CC1 3 ∴ AE EF 2
A
22 2
3 5 AF 2
D
x
C B
y
A
n ( x, y, z)
∴ n BE y 4z 0 n FE 4x 2 y 0 令y=4得 n (2,4,1)
又∵ FA (4,1,4), ∴ m | FA | | COS FA, n |
⑷由⑶得: | FA | 33 又∵ 0
E ⑶求A到平面BDE的距离 m A1 ⑶解∵DE//BC ∴平面BDE也就是平面BCE,
设平面BCE的一个法向量为 n ( x, y, z) ∵A(3,0,0),B(0,3,0),C(0,0,0), E(1.5,0,1) x ∴ CB (0,3,0),
C1 C
D
B1 B
y
A
n (2,0,3)
用向量坐标法求夹角与距离
德化一中 蔡志平
一、复习向量的直角坐标运算:
已知: a
(a1 , a2 , a3 ) b (b1 , b2 , b3 ) R
a b (a1 b1 , a2 b2 , a3 b3 )
则: ① ②
③ ④
a b (a1 b1 , a2 b2 , a3 b3 )
②求 PA (A是平面ABC中的任一点),
5、求AP与平面ABC的夹角θ: (0 由4得:
相关文档
最新文档