空间向量的夹角和距离公式
空间向量的夹角和距离公式讲课

a ?b ? a1b1 ? a2b2 ? a3b3
;
a // b ? a1 ? ? b1, a2 ? ? b2 , a3 ? ? b3 (? ? R) ; ? a1 / b1 ? a2 / b2 ? a2 / b2 .
a ? b ? a1b1 ? a2b2 ? a3b3精品?PP0T ;
二、距离与夹角 (1)空间两点间的距离公式
精品PPT
三、应用举例
例1 已知 A(3 , 3 ,1)、B(1, 0 , 5) ,求:A
线段 AB 的中点坐标和长度;
M
B
解:设 M(x , y , z) 是 AB的中点,则
uuuur OM
?
1
uuur (OA
?
2
uuur OB)
?
1 2
??(3 , 3 ,1)
?
?1,
0 , 5??? ?
? ??
解: 建立如图的空间直角坐标系O ? xyz, 得
11
z
A(1,0,0), E (1,1, ), F ( ,0,1). D
uuur FA
?
(
1
,0,
?
1),
uu2ur
FE
?
(
2
1 ,1,?
1
).
A F1
1
C1 B1 E
2
22
D
O
C y
uuur | FA |?
5
,|
uuur FE
|?
6 .
A
B
x
uuur uuu2r FE gFA
§9.6 空间向量的夹角和距离公式
精品PPT
一、向量的直角坐标运算
设a ? (a1, a2 , a3 ), b ? (b1, b2 , b3)则 a ? b ? (a 1? b1, a2 ? b2, a3 ? b3) ;
1.4.2用空间向量研究距离、夹角问题之二:夹角问题

法向量的夹角即可.
典型例题
例5如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3,∠ACB=90°,P为BC的
中点,点Q, R分别在棱AA1,BB1上,A1Q=2AQ,BR=2RB1.求平面PQR与平面
A1B1C1夹角的余弦值.
解:先做出平面PQR与平面A1 1 1 的
典型例题
例5如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3,
∠ACB=90°,P为BC的中点,点Q, R分别在棱AA1,BB1上,
A1Q=2AQ,BR=2RB1.求平面PQR与平面A1B1C1夹角的余弦值.
分析:因为平面PQR与平面A1B1C1的夹角
可以转化为平面PQR与平面A1B1C1的法向
若异面直线l1,l2所成的角为 (0 ≤ ) ,其方向向量分别为 , Ԧ
则 =< , Ԧ >, 或 = −<, >
Ԧ
2
∙ Ԧ
= < , Ԧ > =
Ԧ
不要将两异面直线所成的角与其方向向量的夹角等
同起来,因为两异面直线所成角的范围是0 ≤ ,而
交线。
做PE⊥ 1 1 于E,则PE//Q1 ,PQ∩
1 = .
PR∩ 1 1 = ,则GH即为平面PQR与
平面A1 1 1 的交线。
做PF⊥ 于F,连C1 , ∠1 就是平面
PQR与平面A1 1 1 的二面角的平面角。
我们在⊿PF1 中求∠1 ,接下去就是
= < 1 , 2 > =
.
1 2
反思:1、三式中到底是sin还是cos,我们要通过记图来记住公
课题空间向量的坐标运算(3)--夹角和距离公式解读

1课题:空间向量的坐标运算(3)--夹角和距离公式江西省宜丰中学 熊星飞一.教学目标:1.掌握空间向量的夹角公式、两点间的距离公式;2.掌握夹角公式、两点间的距离公式的简单运用;3.会运用向量的夹角公式求异面直线所成的角。
二.教学重点、难点:夹角公式、两点间的距离公式及其运用。
三.教学过程:(一) 复习导入1.复习空间向量的数量积以及空间向量的坐标运算2.创设情境,新课导入在机场A 的正东,距地平面6千米的空中有飞机M ,同时在机场正南方向距地平面2 千米的空中有飞机N ,已知从机场A 观察M 、N 的仰角分别为045、030。
(1)此时两架飞机的直线距离MN 是多少?(2)在点A 处观察两飞机的视角是多少?(二) 对比学习,讲解概念1.由平面向量的夹角公式cos θ=||||a b a b , 到空间两向量的夹角公式:cos ,||||a b a b a b <>=, 用坐标表示空间两向量的夹角公式:cos ,||||⋅<>=⋅a b a b a b 22212a b a b a b b b ++=+(注:这里向量和a b 都是非零向量)2.空间两点间的距离公式两点间的距离:这两点表示的有向线段的长度(模)若111(,,)A x y z ,222(,,)B x y z ,则AB =212121(,,)x x y y z z ---2||(AB AB==, 或,A B d =(三)知识运用,师生互动例1.(2,1(5,(2,4,0)ABC A B C ∆-中, ABC ∆求:的面积2 分析:三角形的面积1sin 2S bc A = ||b AC =、||c AB =、sin sin ,A AB AC =<>解答略例2.解决课前引例例3.如图正方体1111ABCD A B C D -中,点E 、F 分别是棱11A B 与 11C D 上的点,111114B E D F A B ==, 求:EB 与DF 所成角的余弦值;分析及解答(略)有关夹角公式,要求学生设计问题并解答 (四) 巩固提高 形成技能机动练习:已知A(3,3,1)、B(1,0,5),求:(1)线段AB 的中点M 的坐标和长度;(2)到A,B 两点距离相等的点P (x ,y ,z)的坐标x ,y , z 满足的条件。
向量法求空间距离和角

—的平而角“a®牆用向量方法求空间角和距离在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解 法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向 量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,木专题将运用 向量方法简捷地解决这些问题.1求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角.(1)求异而直线所成的角.=arcsinli I/II H I法一、在Q 内N 丄/,在0内b 丄/,其方向如图,则二面角设方、乙分别为异而直线a 、b 的方向向量, a 则两异而直线所成的角 a — arccos 1 而Q 所成的角方向向量,;;是平而&的法 (3)求二而法二、设入云是二而角a-/-0的两个半平而的法向量,其方向一个指向内侧,另一个指向外侧,则二面角a-1-p的平而角a =arccos彳"22求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异而直线间的距离、线而距离;而而距离都可化为点而距离来求.(1)求点而距离法一、设;;是平面Q的法向量,在a内取一点B,则A■ ■■I“・•到&的距离d =1 AB II cos 0\=空叫\n\法二、设AO丄a于O,利用AO丄a和点0在&内的向量表示,可确定点O的位置,从而求出I走1・(2)求异而直线的距离二 ___ ?—法一、找平而0使比0且砂0,则异而直线a、b的距离就转化为直线a到平面0的距离,又转化为点A到平面0的距离.法二、在a上取一点A,在b上取一点B,设方、b分别为异面直线a、b的方向向量,求;;(万丄方,齐丄乙),则・・D于点而距异而直线a、b的距离心而llcos弘空叫(此方法移植丨川(I )求异而直线DE 与FG 所成的角;rh 向量法求空间距离和角例1.如图,在棱长为2的正方体ABCD-gCQ 中,分别是棱4久心的中点•(II )求g 和ffiEFBD 所成的角;(III)求Q 到面EFBD 的距离解:(I )记异而直线DE 与g 所成的角为—则&等于向量码运的夹角或其补角,■ D E.FC 、|cos a =1—:_ I \DE\.\FC {\(II)缈初万冷万石)•(两霸頁艸坐标系D-小, —I 一 ・• II DE bl FC [丨呢= (1,0,2),面= (220)设面E 単翌進|=二・・・a 回風X^s£=("l ) A /5V5 5— _v 、 DE ・H = 0<DB • /z = 0得 7 = (-221)又 BC ; = (-2,0,2)记g 和而EFBD 所成的角为&则 sin 0 =1 cos 〈BC], n) 1=1 ."9 ? 1=I BC { II7? I 2 ・•・Bq 和面EFBD 所成的角为冬.4(III)点目到ffiEFBD 的距离d 等于向量丽;在而EFBD 的法向量上的投影的绝对值,BiTl 33.完成这3道小题后, 总结:例2・己知A BCD 是边长为1的正方形,四边形DA ・ q=0DC ・ q = 0向量法求空间距离和角设计说明:1・作为本专题的例1,首先选择以一个容易建立空间直角坐标系 的多而体 正方体为载体,来说明空间角和距离的向量求法易于学生理解.2.解决(1)后,可让学生进一步求这两条异而直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求).角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决, 向量方法可以人人学会,它程序化,不需技巧.AA'B'B 是矩形,平丄平面A3CD 。
空间向量的夹角与距离求解公式-高中数学知识点讲解

空间向量的夹角与距离求解公式1.空间向量的夹角与距离求解公式【知识点的认识】1.空间向量的夹角公式→→设空间向量푎=(a1,a2,a3),푏=(b1,b2,b3),→→cos<푎,푏>=→→푎⋅푏→→|푎|⋅|푏|=푎1푏1+푎2푏2+푎3푏3푎12+푎22+푎32⋅푏12+푏22+푏32注意:→→→→(1)当 cos<푎,푏>= 1时,푎与푏同向;→→→→(2)当 cos<푎,푏>=― 1时,푎与푏反向;→→→→(3)当 cos<푎,푏>= 0时,푎⊥푏.2.空间两点的距离公式设A(x1,y1,z1),B(x2,y2,z2),则→퐴퐵=(푥2―푥1,푦2―푦1,푧2―푧1)→d A,B=|퐴퐵| =→퐴퐵⋅→퐴퐵=(푥2―푥1)2+(푦2―푦1)2+(푧2―푧1)2.【解题思路点拨】1.求空间两条直线的夹角建系→写出向量坐标→利用公式求夹角2.求空间两点的距离建系→写出点的坐标→利用公式求距离.【命题方向】(1)利用公式求空间向量的夹角→→例:已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量퐴퐵与퐴퐶的夹角为()1/ 3A.30°B.45°C.60°D.90°→→→分析:由题意可得:퐴퐵=(0,3,3),퐴퐶=(―1,1,0),进而得到퐴퐵⋅→→→→→퐴퐶与|퐴퐵|,|퐴퐶|,再由cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→可得答案.|퐴퐵||퐴퐶|解答:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以→→퐴퐵=(0,3,3),퐴퐶=(―1,1,0),→所以퐴퐵⋅→→→퐴퐶═0×(﹣1)+3×1+3×0=3,并且|퐴퐵|=3 2,|퐴퐶| = 2,→→所以 cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→|퐴퐵||퐴퐶|=332×2=12,→→∴퐴퐶的夹角为 60°퐴퐵与故选C.点评:解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题.(2)利用公式求空间两点的距离例:已知空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),则A,B 两点间的距离是()A.3B. 29C.25D.5分析:求出AB 对应的向量,然后求出AB 的距离即可.解答:因为空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),→→所以퐴퐵=(﹣3,0,﹣4),所以|퐴퐵|=(―3)2+02+(―4)2= 5.故选D.点评:本题考查空间两点的距离求法,考查计算能力.2/ 33/ 3。
平面向量的夹角公式cosθ

平面向量的夹角公式cosθ
空间向量的夹角公式:cosθ=a*b/(|a|*|b|)。
1、a=(x1,y1,z1),b=(x2,y2,z2)。
a*b=x1x2+y1y2+z1z2。
2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。
3、cosθ=a*b/(|a|*|b|),角θ=arccosθ。
长度为0的向量叫做零向量,记为0。
模为1的向量称为单位向量。
与向量a长度相等而方向相反的向量,称为a的相反向量。
记为-a方向相等且模相等的向量称为相等向量。
共面向量定理:
若两个向量a和B不共线,那么向量C和向量a和B共面当且仅当存在唯一的实数对x 和y,使得C=ax如果三个向量a、B和C不共面,那么对于空间中的任何向量p,存在唯一的有序实数组x、y和Z,使得P=Xa、Yb和ZC。
任意三个非共面向量都可以作为空间的基,零向量的表示是唯一的。
用空间向量研究距离、夹角问题

O
xB
y
C
n
AB
2x 3z
0
n BC 2x 3y 0
n (3,2,2)
z y
2
3 2
x x
3
cos OB, n 6 3 17 2 17 17
z
A
O
xB
y
C
直线OB与平面ABC所成角的正弦值为 3 17 17
n1 n2
cos cos n1, n2
n1 n2
n1
n2
例9 图为某种礼物降落伞的示意图,其中有8根绳子和伞面连 接,每根绳子和水平面的法向量的夹角均为30.已知礼物的质量 为1kg,每根绳子的拉力大小相同,求降落伞在匀速下落的过程 中每根绳子拉力的大小(重力加速度g取9.8m / s2精确到0.01N )
8
B
N
C
A
M
D
3.如图,在三棱锥 0 ABC中,OA,OB,OC两两垂直, OA
OC 3,OB 2,求直线 OB与平面ABC所成角的正弦值
解:如图建立空间直角坐标系
z
A
则A(0,0,3) , B(2,0,0) , C(0,3,0) OB (2,0,0) ,AB (2,0, 3)
BC (2,3,0) 设平面ABC的法向量为n (x, y, z)
2
2
1
(
1
a
b
1
b
c
2
a
a
c)
22
2
B
N
C
1 (1 3 2 1 1 23 1 32 33 7) 7
22
32
3
9
又| AN || CM | 2 2
A
《9.6空间向量的夹角和距离公式》教案

9.6空间向量的夹角和距离公式南昌大学附属中学 高莹三维目标:知识与技能: ⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、夹角公式、两点间距离公式、中点坐标公式,并会用这些公式 解决有关问题;⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高分析问题、解决问题的能力.过程与方法: 通过采用启发探究、讲练结合、分组讨论等教学方法使学生在积极活跃的思维过程中,从“懂”到“会”到“悟”.情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习热情和求知欲,充分体现学生的主体地位;⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的魅力,培养学生“做数学”的习惯和热情.教学重点:夹角公式、距离公式. 教学难点:数学模型的建立.关键: 将生活中的问题转化为数学问题,建立恰当的空间直角坐标系,正确写出空间向量的坐标.教具准备:多媒体投影,实物投影仪. 教学过程:(一) 创设情境,新课导入2008年5月16日,南昌可以说是万人空巷,大家都把自己的爱国热情聚集在圣火的传递上,让我们值得骄傲的是火炬传递中的一站就是我们的南昌大学,其中途经我市雄伟而壮观的生米大桥,为记录传递过程,我校派了小记者在船上进行全景拍摄,出现了这么一个问题.引例:在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面)求(1)6s 后火炬手与小船的距离?(2)此时的视线与开始时的视线所成角的余弦值?(不考虑火炬手与小船本身的大小). 今天我们从另一个角度来分析这个问题. 分析:建立数学模型问题(1)转化为:如何求空间中两点间的距离?问题(2)转化为:如何求空间中两条直线所成角的余弦值?1、空间两点间的距离公式111222(,,)(,,),A x y z B x y z 已知:,则()212121,,AB x x y y z z =---(AB AB AB x =⋅=,A B d =2、夹角公式设()()111222,,,,,a x y z b x y z ==, 则,a OA b OB ==cos ,a b a b a b⋅<>==(二)例题示范,形成技能例1: 在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面) 求(1)6s 后火炬手与小船的距离?(2)此时的视线与开始时的视线所成角的余弦值?(不考虑火炬手与小船本身的大小). 解:建立如图空间直角坐标系,xyzO111(,,)A x y z222(,,)B x y z aabC 1A则 ()()130,0,0,0,30,30A C()()0,18,30,24,0,0M N ; (1)24MN ==(2)()()124,18,30,30,30,30MN AC =--=-.111cos ,MN AC MN AC MN AC ⋅〈〉=⋅2430183030305⨯-+-⨯+-⨯==-此题所求的是空间两条直线所成角的余弦值,而不是两个空间向量夹角的余弦值,两者有什么区别?我们又如何转化为本题的结论? (三)学生互动 巩固提高变式训练:实际上,我们刚刚就是在一个正方体中讨论两点间的距离, 两条直线所成的角,而在正方体中还有许多的点与线,例2:(1)若G 为MN 的中点,求GB 两点间的距离.(2)若1111114A B B E D F ==,求1BE 与1DF 所成的角的余弦值. (1)解:设G 点的坐标为(,,)G x y z ,则 ()12D G D M D N =+ ()()10,18,3024,0,02=+⎡⎤⎣⎦()12,9,15=. ∴()()12,9,15,30,30,0G B , GB ∴==(2)解:如图,()14530,30,0,30,,302B E ⎛⎫⎪⎝⎭()1150,0,0,0,,302D F ⎛⎫⎪⎝⎭.1115150,,30,0,,3022BE DF ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭.111111cos ,BE DF BE DF BE DF ⋅〈〉=⋅1515303015.17⎛⎫-⨯+⨯ ⎪== 请在上面例题的基础上,各编一个关于求夹角和距离的题目.拓展提高:我们知道平面上到两点距离相等的点的轨迹是一条直线,那么猜想空间上到两点距离相等的点的轨迹是一个平面,我们能不能把它表示出来呢?例3:求到M ,N 两点距离相等的点),,(z y x P 的坐标x 、y 、z 满足的条件. 解: 点),,(z y x P 到M ,N 两点距离相等,则P M P N ==化简,得435540x y z --+= 即到到M ,N 两点距离相等的点的坐标点(,,)x y z 满足的条件是 435540x y z --+= (四)概括提炼,总结升华求空间两点间的距离 求空间两条直线的夹角(五)布置作业,探究延续 1.课本P 42习题9.6 ⒎⒏ ⒐2.请同学们各编写一道关于求夹角和距离的题目,并解答.MNP3.思考题:引例:何时小船与火炬手之间的距离最短?(六)板书设计:。