空间向量的夹角和距离公式

合集下载

空间向量的夹角和距离公式

空间向量的夹角和距离公式

§9.6空间向量的坐标运算 (2)【教学目的】 (1)掌握空间向量的模长公式、夹角公式、两点间的距离公式,会用这些公式解决有关问题;(2)会根据向量的坐标判断两个向量共线或垂直【教学重点】夹角公式、距离公式【教学难点】模长公式、夹角公式、两点间的距离公式及其运用【课型】新授课【教学过程】(一)复习引入:空间向量的数量积有哪些重要性质?(二) 新课: 1 模长公式:若123(,,)a a a a =,123(,,)b b b b =,则2||a a a a =⋅=+2||b b b b =⋅=+.2.夹角公式:2cos ||||a b a b a b a⋅⋅==⋅+ 3.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB x ==或,A B d =例1 已知(3,3,1)A ,(1,0,5)B , 求:(1)线段AB 的中点坐标和长度;(2)到,A B 两点的距离相等的点(,,)P x y z 的坐标,,x y z 满足的条件解:点评:到,A B 两点的距离相等的点(,,)P x y z 构成的集合就是线段AB 的中垂面,若将点P 的坐标,,x y z 满足的条件46870x y z +-+=的系数构成一个向量(4,68)a =-,发现与(2,3,4)AB =--共线例2.如图正方体1111ABCD A B C D -中,11111114B E D F A B ==,求1BE 与1DF 所成角的余弦例3.已知三角形的顶点是(1,1,1)A -,(2,1,1)B -,(1,1,2)C ---,试求这个三角形的面积 分析:可用公式1||||sin 2S AB AC A =⋅⋅来求面积 解:,点评:三角形的内角可看成由该角的顶点出发的两边所在向量的夹角课堂练习: 1若(3cos ,3sin ,1)A θθ,(2cos ,2sin ,1)B θθ,求||AB 的取值范围;2.已知(,2,0)a x =,2(3,2,)b x x =-,且a 与b 的夹角为钝角,求x 的取值范围;3.若(cos ,sin ,2sin )P ααα,(2cos ,2sin ,1)Q ββ,求||PQ 的最大值和最小值4.求证:如果两条直线同垂直于一个平面,则这两条直线平行.已知:直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足.求证:OA //BD .证明:以点O 为原点,以射线OA 为非负z 轴,建立空间直角坐标系O -xyz ,i ,j ,k 为沿x 轴,y 轴,z 轴的坐标向量,且设BD =),,(z y x .∵BD ⊥α,∴⊥i ,⊥j , ∴BD ·i =),,(z y x ·(1,0,0)=x =0,BD ·j =),,(z y x ·(0,1,0)=y =0,∴=(0,0,z ).∴=z k .即//k .由已知O 、B 为两个不同的点,∴OA //BD .说明:⑴请注意此例建立空间直角坐标系的方法,这是今后解题时常用的方法;⑵如果表示一个向量的有向线段所在直线垂直于平面α,则表示该向量所有的有向线段所在直线都垂直于α.如果表示向量a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a ⊥α. 如果a ⊥α,那么向量a 叫做平面α的法向量.1.空间向量的模长公式、两点间的距离公式的形式与平面向量中相关内容一致,因此可类比记忆;2.在计算异面直线所成角时,仍然用向量数量积的知识,建立空间直角坐标系后能方便的求出向量的坐标,则通常考虑用坐标运算来求角3.对于一些较特殊的几何体或平面图形中有关夹角,距离,垂直,平行的问题,都可以通过建立坐标系将其转化为向量间的夹角,模,垂直,平行的问题,从而利用向量的坐标运算求解,并可以使解法简单化.值得注意的是——坐标系的选取要合理、适当.作业:《数学之友》第167页。

高二空间向量公式总结

高二空间向量公式总结

高二空间向量公式总结
高二空间向量的主要公式包括以下几点:
1.空间向量的数量积(点积)公式:a·b = |a|·|b|·cosθ,其中a和b
是空间向量,θ是它们之间的夹角,|a|和|b|分别是向量a和b的模
(长度)。

2.空间向量的模长公式:|a| = √(a1² + a2² + a3²),其中a = (a1, a2,
a3)是一个空间向量。

3.空间向量的加法公式:如果a = (a1, a2, a3)且b = (b1, b2, b3),
则a + b = (a1 + b1, a2 + b2, a3 + b3)。

4.空间向量的减法公式:如果a = (a1, a2, a3)且b = (b1, b2, b3),
则a - b = (a1 - b1, a2 - b2, a3 - b3)。

5.空间向量的数乘公式:如果a = (a1, a2, a3)且k是一个实数,则k·a
= (k·a1, k·a2, k·a3)。

6.空间向量的正交(垂直)条件:如果a和b是两个空间向量,且它
们正交,则a·b = 0。

这些公式在空间向量代数中非常有用,可以用来计算向量的模长、夹角、方向、投影等,也可以用于解决空间几何问题。

空间向量的夹角和距离公式doc

空间向量的夹角和距离公式doc

空间向量的夹角和距离公式三维目标:知识与技能: ⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、夹角公式、两点间距离公式、中点坐标公式,并会用这些公式解决有关问题;⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高分析问题、解决问题的能力.过程与方法: 通过采用启发探究、讲练结合、分组讨论等教学方法使学生在积极活跃的思维过程中,从“懂”到“会”到“悟”.情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习热情和求知欲,充分体现学生的主体地位;⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的魅力,培养学生“做数学”的习惯和热情.教学重点:夹角公式、距离公式. 教学难点:数学模型的建立.关键: 将生活中的问题转化为数学问题,建立恰当的空间直角坐标系,正确写出空间向量的坐标.教具准备:多媒体投影,实物投影仪. 教学过程:(一) 创设情境,新课导入2008年5月16日,南昌可以说是万人空巷,大家都把自己的爱国热情聚集在圣火的传递上,让我们值得骄傲的是火炬传递中的一站就是我们的南昌大学,其中途经我市雄伟而壮观的生米大桥,为记录传递过程,我校派了小记者在船上进行全景拍摄,出现了这么一个问题.引例:在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面)求(1)6s 后火炬手与小船的距离?(2)此时的视线与开始时的视线所成角的余弦值?(不考虑火炬手与小船本身的大小). 今天我们从另一个角度来分析这个问题. 分析:建立数学模型问题(1)转化为:如何求空间中两点间的距离?问题(2)转化为:如何求空间中两条直线所成角的余弦值?1、空间两点间的距离公式111222(,,)(,,),A x y z B x y z 已知:,则()212121,,AB x x y y z z =---(AB AB AB x =⋅=,A B d =2、夹角公式设()()111222,,,,,a x y z b x y z ==, 则,a OA b OB ==cos ,a b a b a b⋅<>==(二)例题示范,形成技能例1: 在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面) 求(1)6s 后火炬手与小船的距离?(2)此时的视线与开始时的视线所成角的余弦值?(不考虑火炬手与小船本身的大小). 解:建立如图空间直角坐标系,xyzO111(,,)A x y z222(,,)B x y z aabC 1A则 ()()130,0,0,0,30,30A C()()0,18,30,24,0,0M N ; (1)24MN ==(2)()()124,18,30,30,30,30MN AC =--=-.111cos ,MN AC MN AC MN AC ⋅〈〉=⋅243018303030⨯-+-⨯+-⨯== 此题所求的是空间两条直线所成角的余弦值,而不是两个空间向量夹角的余弦值,两者有什么区别?我们又如何转化为本题的结论? (三)学生互动 巩固提高变式训练:实际上,我们刚刚就是在一个正方体中讨论两点间的距离, 两条直线所成的角,而在正方体中还有许多的点与线, 例2:(1)若G 为MN 的中点,求GB 两点间的距离.(2)若1111114A B B E D F ==,求1BE 与1DF 所成的角的余弦值. (1)解:设G 点的坐标为(,,)G x y z ,则 ()12D G D M D N=+ ()()10,18,3024,0,02=+⎡⎤⎣⎦()12,9,15=. ∴()()12,9,15,30,30,0G B , GB ∴==(2)解:如图,()14530,30,0,30,,302B E ⎛⎫⎪⎝⎭()1150,0,0,0,,302D F ⎛⎫⎪⎝⎭.1115150,,30,0,,3022BE DF ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭.111111cos ,BE DF BE DF BE DF ⋅〈〉=⋅1515303015.17⎛⎫-⨯+⨯ ⎪== 请在上面例题的基础上,各编一个关于求夹角和距离的题目.拓展提高:我们知道平面上到两点距离相等的点的轨迹是一条直线,那么猜想空间上到两点距离相等的点的轨迹是一个平面,我们能不能把它表示出来呢? 例3:求到M ,N 两点距离相等的点),,(z y x P 的坐标x 、y 、z 满足的条件. 解: 点),,(z y x P 到M ,N 两点距离相等,则P M P N ==化简,得435540x y z --+= 即到到M ,N 两点距离相等的点的坐标点(,,)x y z 满足的条件是 435540x y z --+= (四)概括提炼,总结升华求空间两点间的距离 求空间两条直线的夹角(五)布置作业,探究延续 1.课本P 42习题9.6 ⒎ ⒏ ⒐MNP2.请同学们各编写一道关于求夹角和距离的题目,并解答.3.思考题:引例:何时小船与火炬手之间的距离最短?(六)板书设计:教案说明一、授课内容的数学本质与教学目标定位本节课是人教版第九章第六节空间向量的坐标运算之夹角和距离公式的第一课时,它是在学生学习了空间向量的坐标表示,空间向量的数量积的基础上进一步学习的知识内容,沟通了代数与几何的关系,体现了向量的工具性、应用性,渗透了转化、数形结合等数学思想.同时它也是数学建模中很典型的一堂课,是数学研究过程的一个缩影.这节课希望达到以下教学目标:三维目标:知识与技能:⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、夹角公式、两点间距离公式、中点坐标公式,并会用这些公式解决有关问题;⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高分析问题、解决问题的能力.过程与方法:通过采用启发探究、讲练结合、分组讨论等教学方法使学生在积极活跃的思维过程中,从“懂”到“会”到“悟”. 情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习热情和求知欲,充分体现学生的主体地位;⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的魅力,培养学生“做数学”的习惯和热情. 二、学习内容的基础以及今后有何用处在人们生活的空间中存在着大量的图形,夹角和距离在现实生活中随处可见,同时它们又是立体几何中的重要问题, 由于高二的学生已具备一定的空间想象,但对把空间的问题转化为数学的问题的能力有所欠缺,而本节课的学习使学生经历对从生活中如何抽象出数学模型的过程,从而有助于培养学生分析问题、解决问题的能力.本节课是在已完成了“平面向量的数量积公式、夹角公式,空间向量的坐标表示,空间向量的数量积”等内容的教学以后进行的,它研究的是空间中夹角和距离公式,是空间向量在立体几何中的简单应用,是后面学习夹角和距离的基础,同时也肩负着学生用向量法处理立体几何问题,把对空间图形的研究从“定性推理”转化为“定量计算”的任务, 因此本节课的教学内容起着承前启后的作用.这节课的教学,为向量在数学和物理上的综合运用奠定了基础.三、教学诊断分析(1)由于高二的学生已具备一定的空间想象,但对把空间的问题转化为数学的问题的能力有所欠缺,因此在创设情境中安排了实际背景材料——奥运火炬在南昌的传递,对学生进行爱国主义教育,通过动画演示来引出新知,使学生直观的体验空间中两点间的距离和空间两条直线所成的角,目的有以下几点:①通过学生身边的实例,激发学生的学习兴趣,变枯燥的数学为有趣的数学;②使学生感悟到数学就在身边,提高“用数学”的意识;③使学生经历从现实生活中抽象出数学“模型”过程,培养“建模”意识.(2)由于本节课的重点是夹角和距离公式,而关键在于如何找坐标,学生容易了解,因此在例题的讲解上,充分的发挥学生的主观能动性,尽可能的由他们说出点或向量的坐标,激发学生参与的热情.(3)由于高二的学生具备一定的学习能力,但在探究问题的内部联系和内在发展上还有所欠缺,为此在例1的基础上设置变式训练,首先将课本中的中点坐标以及求夹角的例题设计到变式训练中给学生以示范,再安排学生在以上的基础上自己编题,目的:①始终以例1为主线,贯穿下来②起到培养学生的合作精神以及对掌握知识的相互补充作用,同时激发学生的学习积极性,让学生真正参与进来,真正的自主的学习.并通过投影仪充分展示学生的成果,在师生双边活动的过程中养成反思意识和提高有条理的表达能力,促进学生全面和谐地发展.将课本中求空间上到两点距离相等的点的轨迹问题设计到拓展提高当中,引发学生的兴趣,将整堂课推向高潮.(4)利用程序框图帮助总结求空间两点间的距离与两条直线所成角的步骤. (5)为适应不同水平的学生, 作业层次有所不同,给例1设计了一问留给学生思考,使得整堂课一根红线贯穿始终.四、本节课的教法特点以及预期效果分析1.教学方法为了激发学生学习的主体意识,面向全体学生,使学生在获取知识的同时,各方面的能力得到进一步的培养.根据本节课的内容特点,本节课采用启发探究、讲练结合,分组讨论等教学方法,着重于培养学生分析、解决问题的能力以及良好的学习品质.2.教学中的预期效果分析本节课我采用现代化的教学手段进行教学,运用已有的知识体系,创造性的使用教材,一根红线贯穿始终,使学生在自主学习与教师引导相结合的教学实践中,从“懂”到“会”到“悟”,体会钻研的意识,品尝成功的喜悦,从而使学生在积极活跃的思维过程中,数学能力和数学素养得到提高.。

两个空间向量的夹角

两个空间向量的夹角

两个空间向量的夹角
空间向量的夹角公式:cosθ=a*b/(|a|*|b|)
1、a=(x1,y1,z1),b=(x2,y2,z2)。

a*b=x1x2+y1y2+z1z2
2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)
3、cosθ=a*b/(|a|*|b|),角θ=arccosθ。

长度为0的向量叫做零向量,记为0。

模为1的向量称为单位向量。

与向量a 长度相等而方向相反的向量,称为a的相反向量。

记为-a方向相等且模相等的向量称为相等向量。

扩展资料:
基本定理
1、共线向量定理:两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb
2、共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y使c=ax+by
3、空间向量分解定理:如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。

任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。

向量法求空间的距离和角

向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |

空间几何中的角度与距离计算

空间几何中的角度与距离计算

空间几何中的角度与距离计算在空间几何中,角度与距离的计算是非常重要的。

通过正确计算角度和距离,我们能够准确描述和分析物体的位置、运动以及相互关系。

本文将介绍空间几何中常用的角度计算方法和距离计算方法。

一、角度计算在空间几何中,角度是表示物体之间相对方向关系的重要指标。

常见的角度计算方法有以下几种:1. 余弦定理余弦定理是计算三角形内角的常用方法之一。

在空间几何中,如果已知三点的坐标,可以通过余弦定理计算出这三个点所形成的夹角。

余弦定理的公式如下:cos A = (b² + c² - a²) / (2bc)其中,A为夹角的大小,a、b、c为夹角对应的边长。

2. 矢量法矢量法是一种基于向量运算的角度计算方法。

通过将空间中的两个向量进行运算,可以得到它们之间的夹角。

常见的向量法角度计算包括点乘法和叉乘法。

(1)点乘法:两个向量的点乘结果等于它们的模长相乘再乘以它们之间的夹角的余弦值。

可以通过点乘法计算向量之间的夹角。

(2)叉乘法:两个向量的叉乘结果等于它们的模长相乘再乘以它们之间的夹角的正弦值。

可以通过叉乘法计算向量之间的夹角。

3. 三角函数在空间几何中,三角函数也是用于角度计算的常用方法之一。

通过正弦、余弦和正切等三角函数的运算,可以计算出角度的大小。

三角函数的计算方法需要先将坐标系进行转换,然后根据坐标的数值,利用相应的三角函数公式进行计算。

二、距离计算在空间几何中,距离是表示物体之间远近程度的重要指标。

常见的距离计算方法有以下几种:1. 欧几里得距离欧几里得距离是空间几何中最常用的距离计算方法。

对于二维或三维空间中的两个点,欧几里得距离可以通过计算它们在各坐标轴上的差值的平方和再开方的方式得到。

欧几里得距离的公式如下:d = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]其中,d为距离,(x₁, y₁, z₁)和(x₂, y₂, z₂)分别为两个点的坐标。

距离和夹角公式(空间向量) 精品

距离和夹角公式(空间向量) 精品
A1
D1
C1
思路二:利用空间向量的知识,
转化为求 EF和BG的 夹角,进一步转化为求 它们的数量积和长度.
B1 D
G
Cy F A E B
x
问题:正方体ABCD-A1B1C1D1中,E,F,G分别为AB,BC, CC1的中点,那么EF与BG所成角的余弦值为----z 解:不妨设已知正方体的棱长 为1个单位长度,且设DA=i D1 C1 DC=j,DD1=k,以i,j,k为坐标 向量建立空间直角坐标系 G A1 D-xyz B1
cos a, b a b | a ||b |

a1b1 a2b2 a3b3 a1 a2 a3 b1 b2 b3
2 2 2 2 2 2
;
a b a1b1 a2b2 a3b3 ;
| a | a a a1 a2 a3
2 2 2 2
| b | b b b b2 b3
2
2 1
2
2
练习:求下列向量的夹角的余弦: (1)a=(2,-3, 3), b=(1,0,0) (2)a=(-1,-1,1), b=(-1,01,)
思 已知A(0,2,3)、B( 2,1,6), C (1,1,5), 用向量 考
方法求ABC的面积S。
距离和夹角公式
(空间向量)
复习
空间向量的数量积: a b a b cos a, b 空间向量的坐标运算:
设a (a1, a2 , a3 ),b (b1 , b2 , b3 )则
a b a1b1 a2b2 a3b3 ;
请思考: 2+a 2+a 2 2 a· a= a 1 2 3 |a| = |a|= √ a12+a22+a32 b=b12+b22+b32 |b|2= b· |b|= √ b12+b22+b323页第7题,第9题

高二数学 空间向量运算的坐标表示——夹角和距离公式

高二数学 空间向量运算的坐标表示——夹角和距离公式

高二数学 空间向量运算的坐标表示——夹角和距离公式教学要求:掌握空间向量的长度公式、夹角公式、两点间距离公式、中点坐标公式,并会用这些公式解决有关问题.教学重点:夹角公式、距离公式.教学难点:夹角公式、距离公式的应用. 教学过程: 一、复习引入1. 向量的直角坐标运算法则:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a +b =112233(,,)a b a b a b +++; ⑵a -b =112233(,,)a b a b a b ---; ⑶λa =123(,,)a a a λλλ()R λ∈; ⑷a ·b =112233a b a b a b ++上述运算法则怎样证明呢?(将a =1a i +2a j +3a k 和b =1b i +2b j +3b k 代入即可)2. 怎样求一个空间向量的坐标呢?(表示这个向量的有向线段的终点的坐标减去起点的坐标.) 3.练习:(1)与向量(1,-3,2)平行的一个向量的坐标为( C ) A .(1,3,2) B .(-1,-3,2) C .(-2,6,-4) D .(1,-3,-2) (2)已知点A (1,2,-1),且向量OC 与向量OA 关于平面xoy 对称,向量OB 与向量OA 关于平面x 轴对称,求向量和向量AB答案:BC =(0,4,0) =(0,-4,2)(3)已知向量a =(2,-1,3)求一向量,使∥,且∣∣=3∣∣ 答案: =(6,-3,9)或=(-6,3,5)(4)已知空间三点A (-1,0,2),B (-1,1,2),C (-3,0,4),设=,=,若k +与k -2互相垂直,求k 的值。

(K =2或k = -25) 二、新课讲授⒈ 向量的模:设a =123(,,)a a a ,b =123(,,)b b b ,求这两个向量的模.|a,|b向量的长度公式.这个公式的几何意义是表示长方体的对角线的长度. 2. 夹角公式推导:∵ a ·b =|a ||b |cos <a ,b >∴ 1122a b a b a++cos <a ,b >由此可以得出:cos <a ,b这个公式成为两个向量的夹角公式.利用这个共识,我们可以求出两个向量的夹角,并可以进一步得出两个向量的某些特殊位置关系:当cos <a 、b >=1时,a 与b 同向; 当cos <a 、b >=-1时,a 与b 反向; 当cos <a 、b >=0时,a ⊥b .例1.已知A (1,0,0),B (0,-1,1),OB OA λ+与的夹角为120°,求λ的值(66-)例2:如图,在正方体1111ABCD A B C D -中,1111114A B B E D F ==, 求1BE 与1DF 所成的角的余弦值.分析:如何建系?→ 点的坐标?→ 如何用向量运算求夹角?→ 练习:(1)如图:空间坐标系中,原点O 是BC 的中点,点A ()0,21,23,D 是平面yox 上,BC=2,∠BDC=90°,∠DCB=30°,(1)求D 点的坐标,(2)求BC的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档