1-3古典概率模型
合集下载
人教A版高中数学必修第二册-第十章 -10-1-3古典概型

D解析 A,B两项中的样本点的出现不是等可能的; C项中样本点的个数是无限多个; D项中样本点的出现是等可能的,且是有限个.故选D.
高中数学 必修第二册 RJ·A
二 古典概型概率的计算 例2 一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑 球,从中摸出2个球.求: (1)样本空间的样本点的总数n;
知识点一 事件的概率
对随机事件发生 可能性大小 的度量(数值)称为事件的概率,事件A的概率用 P(A) 表示.
高中数学 必修第二册 RJ·A
知识点二 古典概型
一般地,若试验E具有以下特征: (1)有限性:样本空间的样本点只有 有限个 ; (2)等可能性:每个样本点发生的可能性 相等 . 称试验E为古典概型试验,其数学模型称为 古典概率 模型,简称
(3)摸出2个黑球的概率. 解 样本点总数 n=6,事件“摸出两个黑球”包含的样本点个数 m=3,故 P=36=12, 即摸出 2 个黑球的概率为12.
高中数学 必修第二册 RJ·A
反思感悟
利用古典概型公式计算概率的步骤 (1)确定样本空间的样本点的总数n. (2)确定所求事件A包含的样本点的个数m.
故 P(A)=366=16.
高中数学 必修第二册 RJ·A
(2)求掷出两个4点的概率; 解 记“掷出两个4点”为事件B,从图中可以看出,事件B包含的样本点只有1个,即(4,4). 故 P(B)=316.
(3)求点数之和能被3整除的概率. 解 记“点数之和能被3整除”为事件C,则事件C包含的样本点共12个:(1,2),(2,1), (1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6). 故 P(C)=1326=13.
高中数学 必修第二册 RJ·A
二 古典概型概率的计算 例2 一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑 球,从中摸出2个球.求: (1)样本空间的样本点的总数n;
知识点一 事件的概率
对随机事件发生 可能性大小 的度量(数值)称为事件的概率,事件A的概率用 P(A) 表示.
高中数学 必修第二册 RJ·A
知识点二 古典概型
一般地,若试验E具有以下特征: (1)有限性:样本空间的样本点只有 有限个 ; (2)等可能性:每个样本点发生的可能性 相等 . 称试验E为古典概型试验,其数学模型称为 古典概率 模型,简称
(3)摸出2个黑球的概率. 解 样本点总数 n=6,事件“摸出两个黑球”包含的样本点个数 m=3,故 P=36=12, 即摸出 2 个黑球的概率为12.
高中数学 必修第二册 RJ·A
反思感悟
利用古典概型公式计算概率的步骤 (1)确定样本空间的样本点的总数n. (2)确定所求事件A包含的样本点的个数m.
故 P(A)=366=16.
高中数学 必修第二册 RJ·A
(2)求掷出两个4点的概率; 解 记“掷出两个4点”为事件B,从图中可以看出,事件B包含的样本点只有1个,即(4,4). 故 P(B)=316.
(3)求点数之和能被3整除的概率. 解 记“点数之和能被3整除”为事件C,则事件C包含的样本点共12个:(1,2),(2,1), (1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6). 故 P(C)=1326=13.
1.3 古典概率模型

于是所求概率为
P ( AB ) 1 { P ( A) P ( B ) P ( AB )}
3 83 333 250 1 。 4 2000 2000 2000
二、几何概型
定义 当随机试验的样本空间是某个区域,并且 任意一点落在度量 (长度、 面积、体积) 相同的 子区域是等可能的,则事件 A 的概率可定义为
t
T
x
解 设 x, y 分别为甲、乙两人到达的
时刻 , 那么 0 x T , 0 y T。
两人会面的充要条件为 x y t ,
若以 x, y 表示平面 上点的坐标 , 则有 故所求的概率为
T
o
y
y xt
x yt
阴影部分面积 p 正方形面积
T 2 (T t )2 2 T t 2 1 (1 ) 。 T
序称为组合,其组合总数为:
r n
A n! C r ! r !( n r )!
r n
A n(n 1)(n r 1) C r !
r n r n
3. 古典概型的基本模型: 摸球模型
(1) 无放回地摸球
问题1 设袋中有4 只白球和 2只黑球, 现从袋中 摸出2只球,求这2只球都是白球的概率。
是样本点,样本空间中包含样本点的总数以及
A所包含的样本点数,当样本点较多时,很难
将它们一一列出,需用排列、组合的知识进行
分析。
① 从n个不同元素中取出r 个元素且考虑其顺 序 称为排列,其排列总数为:
r An n( n 1) ( n r 1)
② 从n个不同元素中取出r 个元素且不考虑其顺
(其中 S 是样本空间的度量, S A 是构成事件 A 的子区域的度量。这样借助于几何上的度量 ) 来合理规定的概率称为几何概型。 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概型。
古典概率-PPT课件

3 5
C C C C C 共有: m
2 1 5 45
1 2 5 45
m P (B ) 0 .276 n
10
例4 货架上有外观相同的商品15件,其中
12件来自产地甲,3件来自地乙.现从15件商品 中随机地抽取两件,求这两件商品来自一同产 地的概率
解:
从15件商品中取出2商品,共有C215 =105 种取法,且每种取法都是等可能的.∴n=105 令A={两件商品都来自产地甲} kA= C212 =66 令B={两件商品都来自产地乙} kB= C23 =3 而事件{ 两件商品来自同一产地}=A∪B , 且 A 与 B 互斥 . ∴它包含基本事件数 =66+3=69 ∴所求概率=69/105=23/35 11
例5 有外观相同的三极管6只,按其电流放大
系数分类,4只属甲类,2只属乙类.按下列两种 方案抽取三极管两只, (1) 每次抽取一个只,测试后放回,然后再抽 取下一只(放回抽样). (2) 每次抽取一只,测试后不放回,然后在剩 下的三极管中再抽取下一只(不放回抽样) 求下列事件的概率。 设A={抽到两只甲类三极管}, B={抽到两只同类三极管}, C={至少抽到一只甲类三极管}, 12 D={抽到两只不同类三极管}.
∴ P({i})= 1/n
i=1,2,…n
3
因此若事件A包含k个基本事件,于是
1 k A 所含的样本点的个 P (A ) k n n 样本点总数
4
(III) 古典概率模型的例 例1 将一颗均匀的骰子掷两次,观察其 先后出现的点数,设A表示事件“两次掷 出的点数之和为5”,B表示事件“两次 掷出的点数中一个恰好是另一个的两 倍”,试求P(A)和P(B) 解: 样本空间为: ={(i, j)|i, j=1,2,3,4,5,6} (i, j)表示“第一次掷出的点数为i, 第二次掷出的点数为j ”这一样本点
C C C C C 共有: m
2 1 5 45
1 2 5 45
m P (B ) 0 .276 n
10
例4 货架上有外观相同的商品15件,其中
12件来自产地甲,3件来自地乙.现从15件商品 中随机地抽取两件,求这两件商品来自一同产 地的概率
解:
从15件商品中取出2商品,共有C215 =105 种取法,且每种取法都是等可能的.∴n=105 令A={两件商品都来自产地甲} kA= C212 =66 令B={两件商品都来自产地乙} kB= C23 =3 而事件{ 两件商品来自同一产地}=A∪B , 且 A 与 B 互斥 . ∴它包含基本事件数 =66+3=69 ∴所求概率=69/105=23/35 11
例5 有外观相同的三极管6只,按其电流放大
系数分类,4只属甲类,2只属乙类.按下列两种 方案抽取三极管两只, (1) 每次抽取一个只,测试后放回,然后再抽 取下一只(放回抽样). (2) 每次抽取一只,测试后不放回,然后在剩 下的三极管中再抽取下一只(不放回抽样) 求下列事件的概率。 设A={抽到两只甲类三极管}, B={抽到两只同类三极管}, C={至少抽到一只甲类三极管}, 12 D={抽到两只不同类三极管}.
∴ P({i})= 1/n
i=1,2,…n
3
因此若事件A包含k个基本事件,于是
1 k A 所含的样本点的个 P (A ) k n n 样本点总数
4
(III) 古典概率模型的例 例1 将一颗均匀的骰子掷两次,观察其 先后出现的点数,设A表示事件“两次掷 出的点数之和为5”,B表示事件“两次 掷出的点数中一个恰好是另一个的两 倍”,试求P(A)和P(B) 解: 样本空间为: ={(i, j)|i, j=1,2,3,4,5,6} (i, j)表示“第一次掷出的点数为i, 第二次掷出的点数为j ”这一样本点
第一章34节概率论

P( A B) P(AB)
P(B) 为事件A在事件B发生的条件下的条件概率.
同理,若P( A)>0,也可定义事件B在A已经发生条件下的 条件概率:P(B A) P(AB)
P( A)
条件概率具有非负性、规范性及可列可加性,亦是概率,
具有概率的一切性质.
2019/10/9
10
例. 一个家庭有两个孩子。 (1) 已知至少有一个男孩,求两个都是男孩的概率? (2) 已知年纪小的是男孩,求两个都是男孩的概率?
{n
C C m nm M NM CNn
2,
m
1}
2019/10/9
5
[例5] 设一批产品共N件,其中有M 件次品,每次从
这批产品中任取1件产品,取出后不再放回, 求第i次取出的产品是次品的概率.
解:不放回抽样,样本点总数为:
PNi N (N 1)(N 2) (N i 1);
2019/10/9
21
进一步考虑下列问题,如果抽检的确实件次品,那 么该件产品究竟是由哪个厂家生产的呢?当然,这 同样是个不确定性问题。另外,显然,甲的可能性 要大得多,因为甲产量多,次品率也高。 实际上
P(B | A)= 8 9
以上这类问题在医药领域相当重要,因为人们常常 需要从诊断的结果来寻找真正的原因。
7 6 10 9
5 8
0.292;
________________
(2)P( A1 A2 A3) 1 P( A1 A2 A3) 1 P( A1A2 A3)
1 P( A1)P( A2 A1)P( A3 A1 A2 )
1 3 10
2 9
1 8
0.992
P(B) 为事件A在事件B发生的条件下的条件概率.
同理,若P( A)>0,也可定义事件B在A已经发生条件下的 条件概率:P(B A) P(AB)
P( A)
条件概率具有非负性、规范性及可列可加性,亦是概率,
具有概率的一切性质.
2019/10/9
10
例. 一个家庭有两个孩子。 (1) 已知至少有一个男孩,求两个都是男孩的概率? (2) 已知年纪小的是男孩,求两个都是男孩的概率?
{n
C C m nm M NM CNn
2,
m
1}
2019/10/9
5
[例5] 设一批产品共N件,其中有M 件次品,每次从
这批产品中任取1件产品,取出后不再放回, 求第i次取出的产品是次品的概率.
解:不放回抽样,样本点总数为:
PNi N (N 1)(N 2) (N i 1);
2019/10/9
21
进一步考虑下列问题,如果抽检的确实件次品,那 么该件产品究竟是由哪个厂家生产的呢?当然,这 同样是个不确定性问题。另外,显然,甲的可能性 要大得多,因为甲产量多,次品率也高。 实际上
P(B | A)= 8 9
以上这类问题在医药领域相当重要,因为人们常常 需要从诊断的结果来寻找真正的原因。
7 6 10 9
5 8
0.292;
________________
(2)P( A1 A2 A3) 1 P( A1 A2 A3) 1 P( A1A2 A3)
1 P( A1)P( A2 A1)P( A3 A1 A2 )
1 3 10
2 9
1 8
0.992
10-1-3古典概型课件-高二上学期数学人教A版(1)

因为C={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1), (5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5)}, 所以n(C)=15,
从而P(C)
n(C) n()
15 36
=
5. 12
●在例2中,为什么要把两枚骰子标上记号? 你能解释其中原因吗? ●同一个事件的概率,为什么会出现两个不同的结果呢?
因为B={(1,0,0),(0,1,0),(0,0,1)},所以事件B发生的可能性 大小为 3.
8
古典概型的概率计算公式:
一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含 其中的k个样本点,则定义事件A的概率
P( A)
事件A包含的样本点的个数k 样本空间样本点的总数n
n( A) n()
抽到男生的可能性大小,取决于男生数在班级学生数中所占的比例大 小.因此,可以用男生数与班级学生数的比值来度量.
显然,这个随机试验的样本空间中有40个样本点,而事件A=“抽到男生” 包含18个样本点.因此,事件A发生的可能性大小为 18 9 .
40 20
(2)抛掷一枚硬币3次,事件B=“恰好一次正面朝上”;
概率为396=14.
其中勾股数只有(3,4,5),所以所 求概率为110. 求概率为110.
3.(2019·高考全国卷Ⅱ)生物实验室有 5 只兔子,其中只有 3 只测量过某项
3指.标(2.01若9·从高这考5全只国兔卷子Ⅱ中)生随物机实取验出室3有只5,只则兔恰子有,2 其只中测只量有过该3 只指测标量的过概某率为项
例1.单项选择题是标准化考试中常用的题型,一般是从A,B,C,D四个选 项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正 确的答案.假设考生有一题不会做,他随机地选择一个答案,答对的概率 是多少?
1-3概率的公理化体系及性质

于是所求概率为
P ( AB ) 1 { P ( A) P ( B ) P ( AB )}
83 3 333 250 1 . 2000 2000 2000 4
三、小结
1. 频率 (波动) n 概率(稳定). 2. 两个基本概率模型 古典概型:各样本点等可能出现,样本空间只有 有限个样本点。 m P ( A) n 几何概型:各样本点等可能出现,样本空间具有几 何度量。 L A P( A) L
A1 4只鞋子中恰有两只配成一双
于是 A A1 A2,且A1 A2 , 则 P( A) P( A1 A2 ) P( A1 ) P( A2 )
1 2 2 2 C5 [C4 2 ] C5 13 4 4 21 C10 C10
另解 设A 4只鞋子都不能配成双
( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不牵 连.求甲、乙两人能会面的概率. 解 设 x , y 分别为甲,乙两人到达的时
刻, 那末 0 x T , 0 y T .
两人会面的充 T 上点的坐标 , 则有如图区域。
a
针的中点M到最近的一条平行 直线的距离, 表示针与该平行直线的 夹角.
M x
那么针落在平面上的位 置可由( x , )完全确定.
投 针 试 验 的 所 有 可 能果 结 与矩形区域 a {( x , ) | 0 x ,0 } 2 中的所有点一一对应 .
概率的可列可加性
2. 性质 (1) P ( ) 0.
(2) 若A1 , A2 ,, An是两两互不相容的事件, 则有
P ( A1 A2 An ) P ( A1 ) P ( A2 ) P ( An ).
1-3 概率的运算

P( AB) P( AB) P( B), 于是 P( AB) P( B) P( AB) 0.4 0.2 0.2
(2) P( A) 1 P( A) 1 0.5 0.5 P( A B) P( A) P( AB) 0.5 0.2 0.3
例 5 某地区居民血型为O, A, B, AB的概率分别为0.45,
0.41, 0.11, 0.03。当血型为A型病人需要输血时,从当 地获取血源的概率是多少? 解 设事件O,A分别表示血型为 O,A 的居民,这是两个互不 相容事件。另根据输血要求,该病人可获得的血源概率为 P(O+A)=P(O)+P(A)=0.45+0.41=0.86
P(A)=P(H1H2…H10)=P(H1)P(H2)…P(H10)=(0.01)10
⑵ 事件B=H1+H2 +…+H10 ,且Hi 之间是相容的,直接用事 件和的加法公式计算很复杂,故用 B 计算,有
P( B ) P( H1 H 2 H10 ) P( H1H 2 H10 )
P(A-B)=P(A)-P(B)
且 P(A)≥P(B)
例8 已知P( A) 0.5,P( AB) 0.2,P( B) 0.4,求:
( 1 )P( AB); (2) P( A B); (3) P( A B); (4) P( AB)
解 (1) 因为AB AB B, 且AB与AB是不相容的,故有
例 10 n个人抽签,其中n-1个签为空,证“抽签模
型”的公平性:中签的概率与抽签的顺序无关。 解 以Ai表示第i个抽签者中签,则 Ai 为第i个抽 签者未中签,求第i个抽签者中签的概率。 ⑴ 第一个抽,有 P(A1)=1/n,而 P( A1 ) (n 1) n ⑵ 第二个中签必须是第一个未抽中的前提下,故 n 1 1 1 P( A1 A2 ) P( A1 ) P( A2 | A1 ) n n 1 n (i) 第i抽签者中签的概率为
1-4古典概率模型

6 6 4 0.144 . 故 P ( A) 3 10
N ( S ) 10 10 10 103
N ( A) 6 6 4
例6(类似P12--例4 抽样问题)设有N件产品,其中有M件不合 格品。现从中任取n件,求其中恰有m件不合格品的概率.
解: 记事件Am {n件产品中恰有m件不合格品}
解: N ( S ) 10, N ( A) 1
N ( A) 1 P ( A) N ( S ) 10
N ( B) 6
N ( B) 6 P( B) N ( S ) 10
N (C ) 3
N (C ) 3 P (C ) N ( S ) 10
例2 将一枚硬币抛三次. (1)设事件A1表示"恰好出现一次正面", 求P ( A1 ). (2)设事件A2表示"至少出现一次正面",求P ( A2 ).
a P( B) ab
(1)放回抽样时:
袋中始终有a+b个球,每个人取出白球的机会相等.
(2)不放回抽样时:
k个人从a b只球依次取一球的取法:
k (a b) (a b 1) ... (a b k 1) Aa b
事件B {第i个人取到白球}总取法有: a Pakb11
n n n 故事件B的放法总数有: C N n ! AN . (或N ( N 1)...( N n 1) AN )
n AN N! P ( B) n n N N ( N n)!
n=6时, P(B)=0.01543
例9(盒子模型应用- 生日问题)设每人生日在365天的可能性相 同。求:(1) n(n<=365)个人生日各不相同的概率; (2)n个人中至少有两个人生日相同的概率。
N ( S ) 10 10 10 103
N ( A) 6 6 4
例6(类似P12--例4 抽样问题)设有N件产品,其中有M件不合 格品。现从中任取n件,求其中恰有m件不合格品的概率.
解: 记事件Am {n件产品中恰有m件不合格品}
解: N ( S ) 10, N ( A) 1
N ( A) 1 P ( A) N ( S ) 10
N ( B) 6
N ( B) 6 P( B) N ( S ) 10
N (C ) 3
N (C ) 3 P (C ) N ( S ) 10
例2 将一枚硬币抛三次. (1)设事件A1表示"恰好出现一次正面", 求P ( A1 ). (2)设事件A2表示"至少出现一次正面",求P ( A2 ).
a P( B) ab
(1)放回抽样时:
袋中始终有a+b个球,每个人取出白球的机会相等.
(2)不放回抽样时:
k个人从a b只球依次取一球的取法:
k (a b) (a b 1) ... (a b k 1) Aa b
事件B {第i个人取到白球}总取法有: a Pakb11
n n n 故事件B的放法总数有: C N n ! AN . (或N ( N 1)...( N n 1) AN )
n AN N! P ( B) n n N N ( N n)!
n=6时, P(B)=0.01543
例9(盒子模型应用- 生日问题)设每人生日在365天的可能性相 同。求:(1) n(n<=365)个人生日各不相同的概率; (2)n个人中至少有两个人生日相同的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cnm
nm
n! m!(n
m)!
mn
4. 加法原理:完成一件工作有m种不同的方法, 其中任何一种方法都可一次完成这件工作,假
设第 i个方法有ni个方案,则完成该项工作的方
案有
n1 n2 nm 个
5. 乘法原理:完成一件工作需先后经m个不同的
i n 步骤才能最后完成,其中第
种等可能的装法。故基本事件总数为:
把三件次品分别装入三个箱中,共有3!种 装法。这样的每一种装法取定以后,把其余12 件正品再平均装入3个箱中,每箱装4件,有
种装法,因此A有
种装法,所以
A={每箱中恰有一件次品},
把三件次品装入同一个箱中,共有3种装 法。同上讨论,有
B={三件次品都在同一箱中}
P(B)=P(A)+P(E)=5/9;
D是B的对立事件, 得 P(D)=1-P(B)=4/9。
(2).由于第一次抽测后不放回,所以第一次
从6只中取一只, 共有6种可能的取法;第二次
是从剩余的5只中取一只,有5种可能的取法。 由乘法原理,知取两只三极管共有n= 65=30 种可能的取法。
由乘法原理,得 kA=43=12。从而 P(A)=12/30=2/5;
解: 因每个球都可以放入N个盒子中的任何一 个,故每个球有N种放法。由乘法原理,将n个 球放入N个盒子中共有 Nn 种不同的放法。
每个盒子中至多有一个球的放法(由乘法 原理得): N(N-1)…(N-n+1)=ANn 种。故,
P(A)= ANn / Nn .
许多问题和上例有相同的数学模型。 (生日问题)某人群有n个人,他们中至少有 两人生日相同的概率有多大?
例2:货架上有外观相同的商品15件,其中12件 来自产地甲, 3件来自地乙。现从15件商品中随 机地抽取两件,求这两件商品来自一同产地的概 率。 解:从15件商品中取出2商品,共有C215= 105 种取法,且每种取法都是等可能的,故n=105。 令
A={两件商品都来自产地甲},kA= C212=66, B={两件商品都来自产地乙},kB= C23 =3,
类似地,得kE=21=2,P(E)=2/30=1/15; 由C是E的对立事件,得 P(C)=1-P(E)=14/15; 由B=A∪E, 且A与E互斥,得
P(B)=P(A)+P(E)=7/15; 由D是B的对立事件, 得 P(D)=1-P(B)=8/15.
例4:n个球随机地放入N(N≥n)个盒子中,若 盒子的容量无限制。求“每个盒子中至多有一 球”的概率。
而事件: {两件商品来自同一产地}=A∪B, 且 A与B互斥, A∪B包含基本事件数66+3=69。 故,所求概率=69/105=23/35。
例3:有外观相同的三极管6只,按电流放大系数 分类,4只属甲类,2只属乙类。按下列两种方案 抽取三极管两只:
(1).每次抽取一只,测试后放回,然后再抽取下一只; (2).每次抽取一只,测试后不放回,然后在剩下的三
n=36。
注意:这种分析方法使用的是“乘法原理”
因每个基本事件发生的可能性相同。故第
一次取一只甲类三极管共有4种可能取法,第二
次再取一只甲类三极管还是有4种可能取法。
故,取两只甲类三极管共有44=16 种可能的取
法,即kA=16。所以三极管},则 kE=22=4。 故,P(E)=4/36=1/9; 因C是E的对立事件,所以 P(C)=1-P(E)=8/9; 因B=A∪E, 且A与E互斥,得
第一章 概率论的基本概念
1.3 古典概率模型
1、古典概率模型 定义(古典概型): 设随机试验E满足如下条件: (1) 试验的样本空间只有有限个样本点,即
(2) 每个样本点的发生是等可能的,即
则称试验为古典概型,也称为等可能概型。
古典概型 中事件A的概率计算公式为
上一页 下一页 返 回
计算古典概型常常需要排列组合公式
极管中再抽取下一只(不放回抽样)。
设 A={抽到两只甲类三极管}, B={抽到两只同类三极管}, C={至少抽到一只甲类三极管}, D={抽到两只不同类三极管}。
求 P(A),P(B),P(C),P(D)。
解: (1).由于每次抽测后放回, 因此,每次都 是在6只三极管中抽取。
第一次从6只中抽取一只,有6种取法;第 二次还是从6只中取一只,还是有6种取法。取 法。从而
则完成该项工作的方案有
个步骤有
i个方案,
n1n2 nm 个
例1:掷一颗均匀骰子,设A表示所掷结果为 “四点或五点”,B表示所掷结果为“偶数 点”,求P(A)和P(B)。
解:样本点总数 n=6,事件A中样本点数kA=2,
得 P(A)=2/6=1/3;
事件B中样本点数kB=3,得 P(B)=3/6=1/2。
例6:设N件产品中有K件次品,N-K件正品, K<N。现从N件中每次任意抽取1件产品,检 查其是正品还是次品后放回;这样共抽检产 品n次。求事件A={所取的n件产品中恰有k件 次品}的概率,k = 0, 1, 2, …, n。
公式
把 n 个物品分成k组,使第一组有n1个, 第二组有n2个,…,第k 组有nk个,且
n1+ n2+…+nk=n, 则不同的分组方法数为
例5:某公司生产的15件产品中,有12件正品, 3件次品。现将它们随机地分装在3个箱中, 每 箱装5件,设A={每箱中恰有一件次品}, B={三 件次品都在同一箱中}。求P(A)和P(B)。 解:15件产品装入3个箱中,每箱装5件,有
1. 不重复排列公式:从n个不同元素中任取m个不 同元素按一定顺序排成一列,其排列数为:
Pnm
nm
(n
n! m)!
mn
2. 可重复排列公式:从n个不同元素中有放回地 抽取m个不同元素按一定顺序排成一列,其排 列数为:
N nm
3. 组合公式:从n个不同元素中每次抽取m个不同 元素,不考虑顺序组成一组,其组合总数为:
设每个人在一年(按365天计)内每天出 生的可能性都相同,现随机地选取n(n≤365) 个人,则他们生日各不相同的概率为
A365n / 365n。
于是, n个人中至少有两人生日相同的概率为
1-A365n / 365n。 打开书 P12,可看到表1.3。
从上表可以看出: 在40人左右的人群里, 十有八九会发生{两人或两人以上生日相同} 这一事件。