单摆运动规律的研究
单摆的运动规律解析

单摆的运动规律解析单摆是由一个质点与一个铅直线相连接,并以线与垂直方向成角度θ悬挂的物体。
它是物理学中常见的模型之一,具有简洁而规律的运动特性。
本文将对单摆的运动规律进行分析和解析。
一、单摆的基本概念单摆的基本组成包括质点和线,质点的运动受到重力和线的约束。
单摆的运动可以用一个简单的数学模型来描述——简谐振动。
简谐振动是指质点在恢复力的作用下,沿着一个平衡位置来回运动,且运动轨迹呈周期性重复的特征。
二、单摆的运动方程对于单摆来说,质点的运动可以用如下的运动方程表示:θ''(t) + (g/l)sinθ(t) = 0其中,θ(t)表示摆角,即质点与垂直线之间的夹角;g表示重力加速度;l为单摆的摆长。
这是一个二阶非线性微分方程,它描述了单摆的运动规律。
根据不同的初始条件,可以得到不同的解,从而得到单摆的运动轨迹。
三、单摆的运动周期解析求解单摆运动方程比较困难,因此我们可以通过近似分析来得到单摆的运动周期。
当摆角较小(θ≈0)时,可以将sinθ近似为θ,此时运动方程变为:θ''(t) + (g/l)θ(t) = 0这是一个简单的谐振动方程,它的解可以表示为:θ(t) = A·sin(ωt + φ)其中,A 表示摆角的最大幅度,ω 表示角频率,φ 为初相位。
根据初值条件,可以得到初始时刻θ=θ0,θ'(t)=0时的解析解:θ(t) = θ0·cos(ωt)可以看出,单摆的运动角度随时间变化呈现出一定的周期性,即振动。
振动的周期T定义为从一个极值点到下一个极值点所需要的时间,即:T = 2π/ω四、单摆的摆长对运动周期的影响从上面的公式可以看出,单摆的摆长 l 对运动周期 T 的影响是非常显著的。
根据公式T = 2π√(l/g),可以得知,摆长越大,周期越长;摆长越小,周期越短。
这是因为摆长代表了质点与支撑点之间的距离,与摆动的幅度和受力大小有关。
单摆研究实验报告

单摆研究实验报告单摆研究实验报告引言:单摆是一种简单而有趣的物理实验装置,它由一个线轴上悬挂的质点组成,可以通过调节线轴的长度和质点的质量来研究单摆的运动规律。
本实验旨在探究单摆的周期与摆长、质量等因素之间的关系,以及单摆的能量转化过程。
实验设备:本实验所用的设备包括一个线轴、一个质量块、一个摆线以及一个计时器。
实验步骤:1. 将线轴固定在实验台上,并调整其长度为一定值。
2. 将质量块悬挂在线轴上,并使其摆动。
3. 启动计时器,记录质点从一个极点摆动到另一个极点所经过的时间。
4. 改变线轴的长度,重复步骤2和步骤3。
5. 改变质量块的质量,重复步骤2和步骤3。
实验结果与分析:通过实验记录的数据,我们可以得到单摆的周期与摆长之间的关系以及周期与质量之间的关系。
周期与摆长的关系:我们将记录的数据进行整理,发现当摆长增加时,单摆的周期也随之增加。
这符合单摆的简谐运动规律,即周期与摆长的平方根成正比。
这一规律可以通过公式T = 2π√(l/g)来描述,其中T表示周期,l表示摆长,g表示重力加速度。
周期与质量的关系:我们进一步观察发现,当质量增加时,单摆的周期也随之增加。
这是因为质量的增加会增加单摆的惯性,使其运动缓慢下来,从而导致周期的增加。
这一规律可以用公式T = 2π√(l/g)来描述,其中T表示周期,l表示摆长,g表示重力加速度。
能量转化过程:在单摆的运动过程中,能量会不断地在势能和动能之间进行转化。
当质点达到最高点时,其具有最大的势能,而动能为零;当质点达到最低点时,其具有最大的动能,而势能为零。
这一转化过程可以通过实验数据和计算来验证。
结论:通过本实验,我们得出了以下结论:1. 单摆的周期与摆长的平方根成正比。
2. 单摆的周期与质量成正比。
3. 单摆的能量在势能和动能之间不断转化。
实验的局限性:在本实验中,我们假设单摆的摩擦力可以忽略不计。
然而,在实际情况中,摩擦力会对单摆的运动产生一定的影响。
单摆实验实验原理与方法

单摆实验实验原理与方法单摆实验原理与方法单摆实验是物理学中常见的实验之一,它可以用来研究单摆的运动规律和物理特性。
单摆实验的原理是利用重力作用下的简谐振动来研究单摆的运动规律,通过测量单摆的周期和摆长等参数,可以计算出单摆的重力加速度和摆长的关系。
本文将介绍单摆实验的原理和方法。
一、实验原理单摆实验的原理是基于单摆的简谐振动。
单摆是由一根细线和一个质点组成的,质点在重力作用下沿着细线做简谐振动。
单摆的运动规律可以用下面的公式来描述:T=2π√(l/g)其中,T是单摆的周期,l是单摆的摆长,g是重力加速度。
这个公式表明,单摆的周期和摆长成反比例关系,与重力加速度成正比例关系。
因此,通过测量单摆的周期和摆长,可以计算出单摆的重力加速度。
二、实验方法1. 实验器材单摆实验需要的器材有:单摆、计时器、测量尺、支架、细线、质量块等。
2. 实验步骤(1)悬挂单摆将单摆悬挂在支架上,调整单摆的摆长,使其在摆动时不会碰到任何物体。
(2)测量摆长使用测量尺测量单摆的摆长,记录下来。
(3)测量周期启动计时器,记录单摆的摆动周期,重复多次测量,取平均值。
(4)计算重力加速度根据公式T=2π√(l/g),计算出单摆的重力加速度g。
(5)改变摆长改变单摆的摆长,重复上述步骤,测量不同摆长下的周期和重力加速度。
三、实验注意事项1. 单摆的摆长应该尽量长,以减小摆动的误差。
2. 单摆的摆长应该尽量垂直于地面,以减小摆动的阻力。
3. 计时器的误差应该尽量小,以提高测量的精度。
4. 实验过程中应该注意安全,避免单摆碰到任何物体。
四、实验结果分析通过单摆实验,可以得到单摆的周期和摆长的关系,进而计算出单摆的重力加速度。
实验结果应该与理论值相符合,如果存在偏差,需要分析偏差的原因,并进行修正。
单摆实验是一种简单而有趣的实验,它可以帮助我们更好地理解单摆的运动规律和物理特性。
在实验过程中,我们需要注意安全,保证实验的精度和准确性。
单摆运动的研究报告

单摆运动的研究报告引言单摆运动是一种非常基础而重要的物理现象,在力学的研究中占有重要地位。
本文旨在通过理论分析和实验研究,深入探讨单摆运动的特性、影响因素以及应用领域。
一、单摆运动的定义和基本原理1.1 定义单摆运动是指一个绳/线连接的质点由一个固定的铅垂线束缚而形成的一种周期性运动。
1.2 基本原理单摆运动的基本原理可以归结为以下几点:•单摆系统由一个质点和一个可摆动的轻线组成。
•单摆的运动主要受到重力和摆长的影响。
•在小摆角范围内,单摆的运动近似为简谐振动。
二、单摆运动的特性和影响因素2.1 摆长对单摆运动的影响•摆长是指摆线/摆杆的长度,影响着单摆的周期和频率。
•通过理论推导和经验公式,我们发现摆长与周期成正比,与频率成反比。
2.2 重力对单摆运动的影响•重力是单摆运动的驱动力,影响着单摆的振幅和周期。
•增大重力将使摆动幅度变小,减小重力将使摆动幅度变大。
2.3 起始条件对单摆运动的影响•起始条件是指单摆最初的初始角度和初始速度。
•不同的起始条件将导致不同的振动行为,如摆动的幅度、周期和相位等。
2.4 阻力对单摆运动的影响•阻力会减弱单摆的振幅,并逐渐使其停止摆动。
•此外,阻力还会影响单摆的周期,并使其变得不规则。
三、实验研究与结果分析3.1 实验目的本实验旨在验证单摆运动的特性和影响因素,并通过实验结果分析其规律和特点。
3.2 实验装置和步骤•实验装置:摆线、支架、质点。
•实验步骤:1.在支架上悬挂摆线,将质点固定在摆线下方。
2.给质点一个初始角度,并释放质点进行摆动。
3.使用定时器记录摆动的时间,重复多次实验。
4.根据实验数据计算周期、频率和摆长。
3.3 实验结果与分析经过多次实验,我们得到了如下数据:实验次数摆长(m)周期(s)频率(Hz)1 0.5 1.33 0.752 1.0 1.88 0.533 1.5 2.21 0.454 2.0 2.65 0.38根据数据分析,我们可以发现摆长与周期成正比、与频率成反比的关系得到验证。
伽利略单摆研究报告

伽利略单摆研究报告1. 引言单摆作为一个重要的物理实验对象,早在伽利略时代就受到了广泛的研究。
伽利略通过自己的实验观察和分析,提出了单摆的运动规律,为后来的物理学理论发展奠定了基础。
本报告将对伽利略单摆进行深入研究,分析其运动特性,以及对物理实验的意义和应用。
2. 实验方法2.1 实验装置本次实验使用的伽利略单摆装置包括一根细而轻的线,上面挂着一个质量为m 的小球。
实验时需要保证线的长度L远大于小球的大小。
2.2 实验步骤1.将单摆装置吊挂在固定的支架上,调节线的长度L,使得单摆可以自由摆动。
2.将单摆拉至一定角度,然后释放,记录下单摆的振动过程。
3.重复多次实验,取得足够的数据。
3. 数据分析3.1 角度与时间的关系图通过实验测量,绘制出单摆摆动的角度随时间变化的关系图,如下所示。
从图中可以看出,单摆的摆动呈周期性变化,角度随时间变化呈现出一定的规律性。
3.2 摆动的周期根据实验数据,可以计算出单摆摆动的周期T。
实验中,通过测量单摆从最高点回到最高点所经过的时间,即为一个周期的时间。
重复多次实验,取得多组数据后,求平均值可以得到更准确的结果。
3.3 摆动的频率根据周期的计算结果,可以得到单摆的频率f。
频率指的是单位时间内摆动的次数,它是周期的倒数。
3.4 与理论结果的比较通过与理论计算结果的比较,可以验证伽利略提出的单摆运动规律的准确性。
对于一个给定长度的单摆,伽利略发现其周期与摆长、重力加速度相关。
理论计算结果与实际测量结果的接近程度,能够说明伽利略的研究成果的有效性。
4. 物理实验的意义和应用单摆作为一种简单的物理实验装置,具有多种实际应用。
首先,单摆可以用于测量重力加速度。
根据伽利略单摆的运动规律,通过测量单摆的周期和摆长,可以计算出重力加速度的数值。
其次,单摆可以用来研究摆动的规律和特性。
通过对单摆的分析,可以深入了解振动运动的基本原理,为其他振动现象的研究提供参考。
单摆实验研究实验报告

一、实验目的1. 了解单摆的基本原理和运动规律;2. 掌握单摆实验的基本操作步骤和测量方法;3. 通过实验验证单摆的周期与摆长、摆角的关系;4. 测定当地的重力加速度。
二、实验原理单摆是一种理想化的物理模型,它由一根不可伸长的细线和一个小球组成。
当小球从某一角度被释放后,在重力作用下,小球将进行周期性的往返运动。
单摆的运动可以近似看作简谐振动,其周期T与摆长L、重力加速度g之间的关系为:T = 2π√(L/g)当摆角θ较小时(一般不超过5°),单摆的运动可以近似看作简谐振动,此时单摆的周期T与摆角θ无关。
但当摆角较大时,单摆的运动将偏离简谐振动,周期T将随摆角θ的增加而增加。
三、实验仪器1. 单摆装置:由一根细线和一个小球组成;2. 秒表:用于测量单摆的周期;3. 水平仪:用于调节摆线水平;4. 刻度尺:用于测量摆长;5. 游标卡尺:用于测量小球直径。
四、实验步骤1. 装置单摆:将细线固定在支架上,将小球悬挂在细线末端,调节摆线水平;2. 测量摆长:使用刻度尺测量摆线长度,即为摆长L;3. 测量小球直径:使用游标卡尺测量小球直径,即为小球直径D;4. 测量周期:将小球拉至一定角度,释放后,使用秒表测量单摆完成N次往返运动所需时间t;5. 计算周期:周期T = t/N;6. 重复上述步骤,进行多次测量,以减小误差。
五、实验数据及处理1. 测量摆长L:L1 = 100.0 cm,L2 = 100.1 cm,L3 = 100.2 cm,平均摆长L = (L1 + L2 + L3)/3 = 100.1 cm;2. 测量小球直径D:D1 = 1.00 cm,D2 = 1.01 cm,D3 = 1.02 cm,平均直径D = (D1 + D2 + D3)/3 = 1.01 cm;3. 测量周期T:T1 = 2.01 s,T2 = 2.02 s,T3 = 2.03 s,平均周期T = (T1 + T2 + T3)/3 = 2.02 s;4. 计算重力加速度g:g = 4π²L/T² = 4π²×100.1 cm/(2.02 s)² ≈ 9.81m/s²。
单摆的实验报告范文

单摆的实验报告范文实验报告:单摆的实验摘要:本实验通过构建一个简单的单摆装置,研究了单摆的运动规律。
通过测量单摆的摆动周期,观察摆锤的摆动过程,并用数学模型分析了单摆的运动特性。
实验结果表明,单摆的运动周期与摆长有关,与摆锤质量和初摆角度无关。
实验结果与理论模型相吻合,验证了单摆的运动规律。
引言:单摆是物理学中经典力学的重要实验之一,它可以用来研究重力的作用和简谐运动的规律。
单摆由一个轻绳和一个重锤组成,通常锤子被称为摆锤,而绳子的一端被固定在一个支点上。
单摆可以在实验室中简单构建,是一个理想的实验现象。
实验过程:1.准备材料:一根细线、一个牛头螺丝和一个坠球。
2.将细线固定在实验台上的支点上,使其自由下垂。
3.在细线的下端连接一个牛头螺丝,将摆锤(坠球)悬挂在牛头螺丝上。
4.将摆锤拉至较大的摆动角度(约30度),释放摆锤,记录摆动的时间。
5.重复上述步骤多次,测量不同摆动角度下的摆动时间。
实验结果:根据实验数据,我们测量了不同摆动角度下的摆动时间,然后我们计算了摆动周期。
结果如下:摆动角度(度)摆动时间(秒)摆动周期(秒)101.341.34201.471.47301.591.59401.711.71501.831.83数据分析:从实验结果可以看出,摆动角度越大,摆动周期越长。
这与我们的预期相符,因为从理论上来说,摆角越大,重力的影响就越大,所以摆动的周期会变长。
结论:通过本次实验,我们验证了单摆的运动规律:摆动周期与摆长有关,与摆锤质量和初摆角度无关。
因此,单摆可以用来研究重力的作用和简谐振动的规律。
实验结果与理论模型相吻合,验证了单摆的运动特性。
讨论和改进:在实验中,我们假设了摆锤质量和初摆角度对摆动周期没有影响。
但实际上,摆锤质量和初摆角度都会对摆动周期产生一定影响。
进一步研究可以考虑加入这些因素,并通过更多的实验数据进行分析和比较。
结尾:本实验通过研究单摆的运动规律,加深了我们对重力和简谐振动的理解。
单摆运动规律的研究

单摆运动规律的研究单摆是一种简单的物理实验装置,它由一个固定在支架上的轻细的线或细杆和一个挂在线或杆末端的质点构成。
单摆运动规律的研究是经典力学中的一个重要课题,具有广泛的应用领域,例如钟摆、摆锤、摆盘等。
本文将介绍单摆运动规律的基本理论以及相关实验和应用。
首先,单摆运动的基本理论可以通过自由体图和牛顿第二定律推导得到。
根据自由体图,线或杆的张力提供一个恢复力,使质点向平衡位置靠拢;同时,重力提供一个恒定的拉力。
根据牛顿第二定律,可以得到单摆的运动方程:m * a = - mg * sin(θ) * t (1)其中m是质点的质量,a是加速度,g是重力加速度,θ是质点和竖直线之间的夹角,t是线或杆的张力。
由于质点沿圆弧运动,可以使用小角度近似将运动方程简化为:m * a = - mg * θ (2)根据这个运动方程,可以解析得到单摆的周期公式:T=2π*√(l/g)(3)其中T是单摆的周期,l是线或杆的长度。
该周期公式表明单摆的周期只与线或杆的长度有关,与质点的质量和振幅无关。
接下来,通过实验验证单摆运动规律是非常重要的。
一种常见的实验方法是同时测量单摆的周期和线或杆的长度,然后根据公式(3)进行对比。
在实验中,可以使用计时器测量单摆的周期,使用卷尺或直尺测量线或杆的长度。
通过多次实验并取平均值,可以得到准确的周期和长度数据。
除了测量周期和长度,还可以通过改变质点的质量、振幅和起始角度等参数,来研究对单摆运动规律的影响。
例如增加质点的质量,会使周期略微增加;增大振幅,会使周期略微减小;改变起始角度,会使周期不变但振幅有所改变。
通过这些实验,可以更深入地了解单摆运动的特性和规律。
单摆运动规律的研究在实际应用中具有广泛的重要性。
首先,如上所述,单摆的周期只与线或杆的长度有关,因此可以用于测量重力加速度或验证地球的自转。
例如,通过测量不同地点的单摆周期,可以计算出当地的重力加速度,并进一步了解地球的物理性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单摆运动规律的研究
摘要单摆问题是高中物理及大学普通物理实验教学中的一个基础问题。
受各种因素的影响,其运动规律较为复杂。
本文建立了理想模式下单摆的数学模型,现实情况下单摆的数学模型.等对单摆的运动进行了探究。
首先,本文从理想情况出发,由牛顿第二定律进行推理,建立了无阻尼小角度单摆运动模型,对单摆的运动进行了初步探究。
然后,本文又建立了无阻尼大角度单摆运动模型,进一步完善了理想模式下单摆的数学模型。
最后,本文从实际出发,考虑单摆运动中受到的阻力因素,以理想模式下单摆的数学模型为基础,建立了现实情况下单摆的运动模型,深度的对单摆运动进行了探索。
关键词简谐运动角度阻尼运动单摆运动
目录
一、问题的描述
二、模型假设
三、模型建立及求解
1 理想模式下单摆的数学模型
1.1 小角度单摆运动模型
1.1.1 模型建立
1.1.2 模型求解
1.1.3 结果分析
1.2 大角度单摆运动模型
1.2.1 模型建立
1.2.2 模型求解
1.2.3 结果分析
2 现实模式下单摆的数学模型
2.1 小、大阻尼单摆运动模型
2.1.1 模型建立
2.1.2 模型求解
2.1.3 结果分析
四模型分析
一问题的描述
根据平常接触到的摆钟、秋千等实物中,我们可以抽象出单摆的模型。
细线一端固定在悬点,另一端系一个小球,如果细线的质量与小球相比可以忽略,球的直接与线的长度相比也可以忽略,这样的装置就叫做单摆.我们从理想情况出发进行分析,并逐渐完善从而推导出单摆实际运动规律。
二模型假设
1悬挂小球的细线伸缩和质量均忽略不记,线长比小球的直径大得多;
2.装置严格水平;
3.无驱动力。
三模型建立及求解
1 理想模式下单摆的数学模型
图1简单单摆模型
在t时刻,摆锤所受切向力ft(t)是重力mg在其运动圆弧切线方向上的分力,即f(t) =mg sin(t)
完全理想条件下,根据牛顿第二运动定律,切向加速度为:
a(t)=g sin(t)
因此得到单摆的运动微分方程组:
1.1 小角度单摆运动模型
1.1.1模型建立
当摆角θ很小时,sinθ≈θ,故方程1可简化为:
1.1.2 模型求解
利用matlab软件在[0, 5o]分别作出方程(1)和方程(2)的解得图像
小角度单摆摆动规律
(—方程(1)的解,**方程(2)的解)
1.1.3 结果分析
由图像可以看出两方程的解的图像几乎吻合,可以说明当较小时(θ<5),两方程的解几乎相等,单摆运动可看为简谐运动。
1.2 大角度单摆运动模型
1.2.1 模型建立
当摆角很大时,方程sin ≈θ不
再成立,方程(1)和方程(2)的解不再相近,
1.2.2 模型求解
此时利用MATLAB计算软件, 得到2000个不同摆角的的精确解.然后以摆角为横轴,利用绘图函数polt ( x , y ) 绘制出任意摆角下单摆周期的精确解的曲线
%单摆周期与摆角的关系
a= 0;
b= pi/ 2;
n= 1000;
s1= 1: n;
h= ( b-a) / n;
h1= pi/ ( 2* n)
c= 0: h1: pi/ 2
x= a;
s= 0;
for i1= 1: ( n+ 1)
f0= 2/ sqrt ( 1-( sin( c( i1) / 2) ) ^2* ( sin( x ) ) ^2) / pi; for i2= 1: n
x= x+ h;
f1= 2/ sqrt ( 1-( sin( c( i1) / 2) ) ^2* ( sin( x ) ) ^2) / pi; s= s+ ( f0+ f1) * h/ 2;
f0= f1;
end
disp( 1/ s)
s1( i1) = s;
s= 0;
end
plot( c, s1)
xlabel( ‘theta0/rad’)
ylabel( ‘T/T0’)
大摆角单摆的运动规律
程序如下:
%建立方程( 1)
Function xdot= per( t,x)
xdot= [ -9. 8* sin( x ( 2) ) x( 1) ] % 建立方程( 2)
Function xdot= per1( t,x)
xdot= [ -9. 8* x( 2) x( 1) ]
%利用ode45 求解微分方程
t0= 0; tf= 10;
[ t, x] = ode45( ‘per’, [ t0, t f] , [ pi/ 2, 0] )
[ t1, x1 ] = ode45 ( ‘per1’, [ t0, tf ] ,[ pi/ 2, 0] )
plot( t, x( : , 2) , ‘-‘)
holdon
plot( t1, x1( : , 2) , ‘‘)
1.2.3 结果分析
如图所示,随着单摆摆角的增大,单摆的周期也会增加图中两根曲线表明:大摆角振动时,单摆的运动轨迹并不是简单的正、余弦曲线(虽然很相似),而且,最大摆角越小,两根曲线越相似;摆角越大,分离越明显
2 现实模式下单摆的数学模型
2.1.1 模型建立
现实情况下,绳子的质量,摆球的半径,空气的阻力等等都对单摆的摆动有影响,这些影响的主要作用就是阻止单摆的摆动,为简单起见,可设单摆在摆动中受到阻力fz,显然阻力与摆锤的运动速度有关,即阻力是单摆线速度的函数:fz=f(v),fz(t)=kv(t)
上式中,k>0为阻力比例系数,式中的负号表示阻力方向与摆锤运动方向相反。
切向加速度由切向合力ft fz产生,根据牛顿第二运动定律,有
因此得到修正后的单摆运动微分方程组
2.1.2 模型求解
据此编写仿真程序:
subplot(2,1,1)
dt=0.0001; %仿真步进
T=16; %仿真时间长度
t=0:dt:T;%仿真计算时间序列
g=9.8;
L=1.5;
m=8;
k=3;
th0=1.5; %初始摆角设置,不能超过π/2
v0=0; %初始摆速设置
v=zeros(size(t)); %程序存储变量预先初始化,可提高执行速度th=zeros(size(t));
v(1)=v0;
th(1)=th0;
for i=1:length(t) %仿真求解开始
v(i+1)=v(i)+(g*sin(th(i))-k./m.*v(i)).*dt;
th(i+1)=th(i)-1./L.*v(i).*dt;
end %使用双坐标系统来作图
[AX,B1,B2]=plotyy(t,v(1:length(t)),t,th(1:length(t)),'plot');
set(B1,'LineStyle','-'); %设置图线型
set(B2,'LineStyle',':');
set(get(AX(1),'Ylabel'),'String','线速度v(t)m/s');%作标注
set(get(AX(2),'Ylabel'),'String','角位移\th(t)/rad');
xlabel('时间t/s');
legend(B1,'线速度v(t)',2);
legend(B2,'角位移\th(t)',1);
增大阻力系数k=50可以得大阻尼时单摆的运动情况
2.1.3 结果分析
小阻尼情况下,单摆运动不再是谐振动,其振幅不断缩小直到趋于平衡位置而停止,但还是周期运动。
大阻尼情况下是非周期运动,很快回到平衡位置。
四.模型分析
本文从理想情况出发,建立了小角度、大角度两种模型,得到简谐运动和类似简谐运动。
再以此为基础讨论了实际情况下受到阻力因素的影响,近似的得到了单摆运动的运动规律的大小阻尼运动。