第7讲--命题及充分与必要条件

合集下载

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件1.命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件p ⇒q 且q ppq 且q ⇒p p ⇔qpq 且qp1.下列命题是真命题的为( ) A .若1x =1y ,则x =y B .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2解析:选A 由1x =1y 易得x =y ;由x 2=1,得x =±1;若x =y <0,则x 与y 均无意义; 若x =-2,y =1,虽然x <y ,但x 2>y 2. 所以真命题为A.2.已知集合A ={1,m 2+1},B ={2,4},则“m =3”是“A ∩B ={4}”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A A ∩B ={4}⇒m 2+1=4⇒m =±3,故“m =3”是“A ∩B ={4}”的充分不必要条件.3.已知命题:若m >0,则方程x 2+x -m =0有实数根.则其逆否命题为________________________________________________________________________.答案:若方程x 2+x -m =0无实根,则m ≤01.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.[小题纠偏]1.设x ∈R ,则“x >1”是“x 3>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C ∵x >1,∴x 3>1,又x 3-1>0,即(x -1)(x 2+x +1)>0,解得x >1,∴“x >1”是“x 3>1”的充要条件.2.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________.解析:原命题的条件:在△ABC 中,∠C =90°, 结论:∠A ,∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”. 答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角考点一 命题及其相互关系(基础送分型考点——自主练透)[题组练透]1.命题“若a2>b2,则a>b”的否命题是()A.若a2>b2,则a≤b B.若a2≤b2,则a≤bC.若a≤b,则a2>b2D.若a≤b,则a2≤b2解析:选B根据命题的四种形式可知,命题“若p,则q”的否命题是“若綈p,则綈q”.该题中,p为a2>b2,q为a>b,故綈p为a2≤b2,綈q为a≤b.所以原命题的否命题为:若a2≤b2,则a≤b.2.命题“若x2+3x-4=0,则x=-4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.3.(易错题)给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)解析:①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.答案:①③[谨记通法]1.写一个命题的其他三种命题时的2个注意点(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.如“题组练透”第3题②易忽视.2.命题真假的2种判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[典例引领]1.设a,b是非零向量,“a·b=|a||b|”是“a∥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A a·b=|a||b|cos〈a,b〉.而当a∥b时,〈a,b〉还可能是π,此时a·b=-|a||b|,故“a·b=|a||b|”是“a∥b”的充分而不必要条件.2.设x∈R,则“|x-2|<1”是“x2+x-2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A|x-2|<1⇔1<x<3,x2+x-2>0⇔x>1或x<-2.由于{x|1<x<3}是{x|x>1或x<-2}的真子集,所以“|x-2|<1”是“x2+x-2>0”的充分而不必要条件.3.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为p:x+y≠-2,q:x≠-1,或y≠-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.[由题悟法]充要条件的3种判断方法(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.[即时应用]1.若p:|x|=x,q:x2+x≥0.则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A设p:{x||x|=x}={x|x≥0}=A,q:{x|x2+x≥0}={x|x≥0或x≤-1}=B,∵A B,∴p是q的充分不必要条件.2.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD;当四边形ABCD中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.考点三充分必要条件的应用………………………(题点多变型考点——纵引横联) [典型母题]已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S 的必要条件,求m的取值范围.[解]由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10},由x∈P是x∈S的必要条件,知S⊆P.则{1-m≤1+m,1-m≥-2,1+m≤10,∴0≤m≤3.所以当0≤m≤3时,x∈P是x∈S的必要条件,即所求m的取值范围是[0,3].[类题通法]根据充要条件求参数的值或取值范围的关键:先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.[越变越明][变式1] 母题条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[变式2] 母题条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. 解:由母题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).本题运用等价法求解,也可先求綈P ,綈S ,再利用集合法列出不等式,求出m 的范围.的必要不充分条件,求m 的取值范围.解:记P ={x |(x -m )2>3(x -m )}={x |(x -m )(x -m -3)>0}={x |x <m 或x >m +3},S ={x |x 2+3x -4<0}={x |(x +4)(x -1)<0}={x |-4<x <1},p 是s 成立的必要不充分条件,即等价于SP .所以m +3≤-4或m ≥1,解得m ≤-7或m ≥1. 即m 的取值范围为(-∞,-7]∪[1,+∞).一抓基础,多练小题做到眼疾手快 1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件[破译玄机]解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.2.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析:选C 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.3.原命题p :“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 当c =0时,ac 2=bc 2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a ,b ,c ∈R ,若ac 2>bc 2,则a >b ”,它是正确的;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.4.已知p :|x |<2;q :x 2-x -2<0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由x 2-x -2<0,得(x -2)(x +1)<0,解得-1<x <2;由|x |<2得-2<x <2.注意到由-2<x <2不能得知-1<x <2,即由p 不能得知q ;反过来,由-1<x <2可知-2<x <2,即由q 可得知p .因此,p 是q 的必要不充分条件.5.已知集合A ,B ,全集U ,给出下列四个命题: ①若A ⊆B ,则A ∪B =B ; ②若A ∪B =B ,则A ∩B =B ; ③若a ∈(A ∩∁U B ),则a ∈A ; ④若a ∈∁U (A ∩B ),则a ∈(A ∪B ) 其中真命题的个数为( ) A .1B .2C.3D.4解析:选B①正确;②不正确,由A∪B=B可得A⊆B,所以A∩B=A;③正确;④不正确.二保高考,全练题型做到高考达标1.已知复数z=a+3ii(a∈R,i为虚数单位),则“a>0”是“z在复平面内对应的点位于第四象限”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C z=a+3ii=-(a+3i)i=3-a i,若z位于第四象限,则a>0,反之也成立,所以“a>0”是“z在复平面内对应的点位于第四象限”的充要条件.2.命题“a,b∈R,若a2+b2=0,则a=b=0”的逆否命题是()A.a,b∈R,若a≠b≠0,则a2+b2=0B.a,b∈R,若a=b≠0,则a2+b2≠0C.a,b∈R,若a≠0且b≠0,则a2+b2≠0D.a,b∈R,若a≠0或b≠0,则a2+b2≠0解析:选D a=b=0的否定为a≠0或b≠0;a2+b2=0的否定为a2+b2≠0.3.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A.于是“x≠y”是“cos x≠cos y”的必要不充分条件.4.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题是“若x2=1,则x≠1”B.“x=-1”是“x2-x-2=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题是真命题D.“tan x=1”是“x=π4”的充分不必要条件解析:选C由原命题与否命题的关系知,原命题的否命题是“若x2≠1,则x≠1”,即A不正确;因为x2-x-2=0,所以x=-1或x=2,所以由“x=-1”能推出“x2-x-2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即B 不正确;因为由x =y 能推得sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故C 正确;由x =π4能推得tan x =1,但由tan x =1推不出x=π4,所以“tan x =1”是“x =π4”的必要不充分条件,即D 不正确. 5.若条件p :|x |≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( )A .a ≥2B .a ≤2C .a ≥-2D .a ≤-2解析:选A 因为|x |≤2,则p :-2≤x ≤2,q :x ≤a ,由于p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,所以a ≥2.6.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:37.设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 4=2S 2”的________条件.解析:∵等比数列{a n }的前n 项和为S n ,又S 4=2S 2, ∴a 1+a 2+a 3+a 4=2(a 1+a 2),∴a 3+a 4=a 1+a 2,∴q 2=1⇔|q |=1,∴“|q |=1”是“S 4=2S 2”的充要条件. 答案:充要8.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是[3,8).答案:[3,8)9.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________. 解析:α:x ≥a ,可看作集合A ={x |x ≥a }, ∵β:|x -1|<1,∴0<x <2, ∴β可看作集合B ={x |0<x <2}. 又∵α是β的必要不充分条件, ∴B A ,∴a ≤0. 答案:(-∞,0]10.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 三上台阶,自主选做志在冲刺名校 1.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析:选C C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”. 若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0,所以不是真命题.2.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x+a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0 B .0<a <12C.12<a <1 D .a ≤0或a >1解析:选A 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x+a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无交点.数形结合可得,a ≤0或a >1,即函数f (x )有且只有一个零点的充要条件是a ≤0或a >1,应排除D ;当0<a <12时,函数y =-2x +a (x ≤0)有一个零点,即函数f (x )有两个零点,应排除B ;同理,排除C.3.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m | m ≤-1或m ≥32. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0即⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0解得m ≥32.又集合⎩⎨⎧⎭⎬⎫m | m ≥32关于全集U 的补集是{m |m ≤-1},所以实数m 的取值范围是(-∞,-1].。

充分条件和必要条件

充分条件和必要条件

充分条件和必要条件班级 姓名 学习时刻:一、学习目标1. 正确明白得充分条件、必要条件、充要条件、充分没必要要条件、必要不充分条件、既不充分也没必要要条件的概念2.会判定命题的充分条件、必要条件、充要条件、充分没必要要条件、必要不充分条件、既不充分也没必要要条件的方式,并进行简单的应用。

二、主线问题1. 命题的概念: 命题的组成:2. 四种命题之间的关系:3. 写出以下命题的条件和结论,并判定是真命题仍是假命题? (1)假设x =y ,那么x 2=y 2 (2)假设ab = 0,那么a = 0(3)假设x 2>1,那么x >1 (4)假设x =1或x =2,那么x 2-3x +2=04. 关于命题“假设p ,那么q”,有时是真命题,有时是假命题.如何判定其真假的?(1)推断符号“⇒”的含义若是命题“若p 则q”为真命题,是指由p 通过推理能推出q ,也确实是说,若是p 成立,那么q 必然成立.那么记作p ⇒q ; 若是命题“若p 则q”为假命题,是指由p 通过推理推不出q ,那么记作p q .巩固概念一:用 ⇒或填空(1)x =y x 2=y 2 (2)ab = 0 a = 0(3)x 2>1 x >1 (4)x =1或x =2 x 2-3x +2=0 (2)充分条件和必要条件的概念概念:若是命题“假设p ,那么q ”为真命题,即p ⇒ q ,那么咱们就说p 是q 的 ;q 是p . 试探:① 若是p 是q 的必要条件?那么应该是 p ⇒ q 仍是 q ⇒ p ? ② 如何去判定p 是q 的什么条件? (3)充要条件的有关概念已知p :整数a 是2的倍数;q :整数a 是偶数.请判定: p 是q 的充分条件吗?p 是q 的必要条件吗?类比归纳:一样地,若是既有 就记作p ⇔ q.现在,咱们说,那么p 是q 的充分必要条件,简称 .显然,若是p 是q 的充要条件,那么q 也是p 的充要条件.归纳地说,若是p ⇔ q,那么p 与 q 互为充要条件.探讨结论:命题按条件和结论的充分性、必要性可分为四类: (1) p ⇒q ,而q p ,那么p 是q 的 条件;(2) pq ,而q ⇒p ,那么p 是q 的 条件;(3)p ⇒q ,又有q ⇒p .或)(q p ⇔,那么p 是q 的 条件; (4) p q ,又有q p ,那么p 是q 的 条件.p q p 是q 的什么条件 q 是p 的什么条件y 是有理数y 是实数 x >5x >3三、例题预热知识点一 充分、必要条件的判定例1:以下“假设p ,那么q ”形式的命题中,哪些命题中的p 是q 的充分条件? 221133213203()()34x x x x x xf x f x x x >-<-=-+==-()若,则;()若,则;()若,则为减函数;()若为无理数,则为无例2:以下“若p ,那么q ”形式的命题中,哪些命题中的q 是p 的必要条件? (1)假设a =0,那么ab =0 ;(2)假设两个三角形的面积相等,那么这两个三角形全等; (3)假设a >b ,那么ac >bc ; (4)假设x =y ,那么x 2=y 2.例3:以下各题中,哪些p 是q 的充要条件?(1)p :b =0,q :函数f (x )=ax 2+bx +c 是偶函数; (2)p :x >0,y >0,q :xy >0; (3)p :a >b ,q :a +c >b +c . (4)p:x >5, ,q: x >10; (5)p: a >b ,q: a 2>b 2.练习已知实系数一元二次方程ax 2+bx +c =0 (a ≠0),以下结论中正确的选项是( )①Δ=b 2-4ac ≥0是那个方程有实根的充分条件;②Δ=b 2-4ac ≥0是那个方程有实根的必要条件; ③Δ=b 2-4ac ≥0是那个方程有实根的充要条件;④Δ=b 2-4ac =0是那个方程有实根的充分条件. A .③ B .①② C .①②③ D .①②③④归纳:一样地,假设p ⇒q ,但q ≠>p ,那么称p 是q 的充分而没必要要条件;若p ≠>q ,但q ⇒p ,那么称p 是q 的必要而不充分条件; 若p ≠>q ,且q ≠>p ,那么称p 是q 的既不充分也没必要要条件.理数在讨论p 是q 的什么条件时,确实是指以下四种之一:①假设p ⇒q ,但q ≠>p ,那么p 是q 的充分而没必要要条件;②假设q ⇒p ,但p ≠>q ,那么p 是q 的必要而不充分条件;③假设p ⇒q ,且q ⇒p ,那么p 是q 的充要条件;④假设p ≠>q ,且q ≠>p ,那么p 是q 的既不充分也没必要要条件.例4:指出以下各题中,p 是q 的什么条件(在“充分没必要要”、“必要不充分”、“充要”、“既不充分又没必要要条件”当选出一种作答.)(1)△ABC 中,p :A >B ,q :BC >AC ;(2)关于实数x ,y ,p :x +y ≠8,q :x ≠2或y ≠6; (3)在△ABC 中,p :sin A >sin B ,q :tan A >tan B ;(4)已知x ,y ∈R ,p :(x -1)2+(y -2)2=0,q :(x -1)(y -2)=0.知识点二 依照充分、必要条件求参数的取值范围或计算充要条件例5:已知命题p :|1-x -13|≤2;q :x 2-2x +1-m 2≤0(m >0).假设⌝p 是⌝q 的必要非充分条件,试求实数m 的取值范围.练习一、已知p :x 2-8x -20≤:x 2-2x +1-m 2≤0(m >0).假设⌝p 是⌝q 的充分而没必要要条件,求实数m 的取值范围.练习二、 求对任意实数学x 使ax 2+2x +1>0恒成立的充要条件.知识点三 充要条件的证明例6: 试证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.练习一、 求证:方程x 2+(2k -1)x +k 2=0的两个根大于1的充要条件为k <-2.练习二、 求证:关于x 的方程ax 2+bx +c =0有一个根为-1的充要条件是a -b +c =0.四、目标检测1.a 2+(b -1)2=0是a (b -1)=0的( )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件2.设α、β∈(-π2,π2),那么“α<β”是“tan α<tan β”的( )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件 3.a <0,b <0的一个必要条件为( )A .a +b <0B .a -b >0 >1 <-14.命题“函数f (x )=x 2-32ax +b 在区间[1,+∞)上是增函数”的充分没必要要条件是( )A .a >53B .a ≥43C .a ≤23D .a ≤435.“b 2=ac ”是“a ,b ,c 成等比数列”的________条件.6.“cos α=-32”是“α=2kπ+56π,k ∈Z ”的________条件.五、分层达标A 组 1 .指出以下各组命题中,p 是q 的什么条件.0)2)(1(:;01:)1(=+-=-x x q x p ; (2)p : 四边形的四条边相等 ; q : 四边形是正方形;22:;:)3(b a q b a p >> ; (4)p : 两直线平行; q : 内错角相等. 2 .如下图,在以下电路图中闭合开关A 是灯泡B 亮的什么条件? (1)开关A 闭合是灯泡B 亮的 条件;(2)开关A 闭合是灯泡B 亮的 条件; (3)开关A 闭合是灯泡B 亮的 条件;(4)开关A 闭合是灯泡B 亮的 条件。

第二节 命题及其关系、充分条件与必要条件

第二节 命题及其关系、充分条件与必要条件

栏目索引
考点三
充分、必要条件的应用
典例3 已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是 x∈S的必要条件,则m的取值范围为 答案 [0,3] .
解析 由x2-8x-20≤0得-2≤x≤10, ∴P={x|-2≤x≤10}, 由x∈P是x∈S的必要条件,知S⊆P.
栏目索引
2-3 已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的 ( A.充分不必要条件 C.充要条件 B.必要不充分条件
)
D.既不充分也不必要条件
答案 A 因为p:x+y≠-2,q:x≠-1,或y≠-1, 所以¬ p:x+y=-2,¬ q:x=-1,且y=-1, 易知¬ q⇒¬ p但¬ p⇒/ ¬ q,所以¬ q是¬ p的充分不必要条件,即p是q的充分 不必要条件.
栏目索引
2-2 (2016湖南岳阳平江一中期中)设p:x2-x-20>0,q:log2(x-5)<2,则p是q 的 ( ) B.必要不充分条件
A.充分不必要条件 C.充要条件
D.既不充分也不必要条件
答案 B ∵x2-x-20>0,∴x>5或x<-4,∴p:x>5或x<-4.∵log2(x-5)<2,∴0<x -5<4,即5<x<9,∴q:5<x<9,∵{x|5<x<9}⫋{x|x>5或x<-4},∴p是q的必要不 充分条件.故选B.
栏目索引
2.“(x-1)(x+2)=0”是“x=1”的 ( A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
)
答案 B 若x=1,则(x-1)(x+2)=0显然成立,但反之不一定成立,即若(x-1) (x+2)=0,则x=1或-2.

高中数学讲义:充分条件与必要条件

高中数学讲义:充分条件与必要条件

充分条件与必要条件一、基础知识1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q Þ,(2)充分条件与必要条件:如果条件,p q 满足p q Þ,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面。

所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件(2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q Û,则称p 是q 的充要条件,也称,p q 等价(4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件4、如何判断两个条件的充分必要关系(1)通过命题手段,将两个条件用“若……,则……”组成命题,通过判断命题的真假来判断出条件能否相互推出,进而确定充分必要关系。

例如2:1;:10p x q x =-=,构造命题:“若1x =,则210x -=”为真命题,所以p q Þ,但“若210x -=,则1x =”为假命题(x 还有可能为1-),所以q 不能推出p ;综上,p 是q 的充分不必要条件(2)理解“充分”,“必要”词语的含义并定性的判断关系① 充分:可从日常用语中的“充分”来理解,比如“小明对明天的考试做了充分的准备”,何谓“充分”?这意味着小明不需要再做任何额外的工作,就可以直接考试了。

在逻辑中充分也是类似的含义,是指仅由p 就可以得到结论q ,而不需要再添加任何说明与补充。

以上题为例,对于条件:1p x =,不需再做任何说明或添加任何条件,就可以得到2:10q x -=所以可以说p 对q 是“充分的”,而反观q 对p ,由2:10q x -=,要想得到:1p x =,还要补充一个前提:x 不能取1-,那既然还要补充,则说明是“不充分的”② 必要:也可从日常用语中的“必要”来理解,比如“心脏是人的一个必要器官”,何谓“必要”?没有心脏,人不可活,但是仅有心脏,没有其他器官,人也一定可活么?所以“必要”体现的就是“没它不行,但是仅有它也未必行”的含义。

最经典总结-命题及其关系、充分条件与必要条件

最经典总结-命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件◆高考导航·顺风启程◆[知识梳理]1.命题2(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件[知识感悟]1.四种命题间关系的两条规律(1)逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用.2.命题的充要关系的判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:利用A⇒B与綈B⇒綈A,B⇒A与綈A⇒綈B,A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B 的充要条件.[知识自测]1.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x >1,则x 2>1”的否命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>0,则x >1”的逆否命题[解析] 对于A ,其逆命题是若x >|y |,则x >y ,则真命题,这是因为x >|y |≥y ,必有x >y .[答案] A2.(2017·天津)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件[解析] ⎪⎪⎪⎪θ-π12<π12⇔0<θ<π6⇒sin θ<12,但θ=0,sin θ<12,不满足⎪⎪⎪⎪θ-π12<π12,所以是充分不必要条件,选A.[答案] A3.在下列三个结论中,正确的是 ________ .(写出所有正确结论的序号) ①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;②“⎩⎪⎨⎪⎧a >0,△=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件; ③“x ≠1”是“x 2≠1”的充分不必要条件.[解析] 易知①②正确.对于③,若x =-1,则x 2=1,充分性不成立,故③错误. [答案] ①②题型一四种命题及相互关系(基础拿分题——自主练透)(1)(2018·广东肇庆一模)原命题:“设a、b、c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有()A.0个B.1个C.2个D.4个[解析]原命题:若c=0则不成立,由等价命题同真同假知其逆否命题也为假;逆命题:∵ac2>bc2知c2>0,由不等式的基本性质得a>b,∴逆命题为真,由等价命题同真同假知否命题也为真,∴有2个真命题.[答案]C(2)(2018·宿州模拟)下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;④“若3x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是()A.③④B.①③C.①②D.②④[解析]对于①,否命题为“若a2≥b2,则a≥b”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,是假命题;对于③,当a>1时,Δ=-12a<0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确,故选A.[答案]A思维升华1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假方法感悟1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.【针对补偿】1.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.“若x+y是偶数,则x与y不都是偶数”B.“若x+y是偶数,则x与y都不是偶数”C.“若x+y不是偶数,则x与y不都是偶数”D.“若x+y不是偶数,则x与y都不是偶数”[解析]由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x与y不都是偶数”.[答案]C2.已知:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数,是真命题”[解析]由f(x)=e x-mx在(0,+∞)上是增函数,则f′(x)=e x-m≥0恒成立,∴m≤1.∴命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.[答案]D题型二充分条件,必要条件的判断(高频考点题、共同探讨)充分条件、必要条件的判断是高考命题的热点,常以选择题的形式出现,作为一个重要载体,考查的知识面很广,几乎涉及数学知识的各个方面.高考对充要条件的考查主要有以下三个命题角度: (1)判断指定条件与结论之间的关系;(2)探求某结论成立的充要条件、充分不必要条件或必要不充分条件; (3)与命题的真假性相交汇命题. 考向一 与不等式有关的题型1.(2018·山西省大同市豪洋中学四模试卷)“m ≤-12”是“∀x >0,使得x 2+12x -32>m是真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 若∀x >0,使得x 2+12x -32>m 是真命题,则m <⎝⎛⎭⎫x 2+12x -32min , 令f (x )=x 2+12x -32,则f (x )≥2x 2·12x -32=1-32=-12,故m <-12,故m ≤-12”是“m <-12”的必要不充分条件,故选B.[答案] B考向二 与三角有关的题型2.(2018·石家庄一模)若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解析] 当φ=π2+k π,k ∈Z 时,f (x )=±cos ωx 是偶函数,所以p 是q 的充分条件;若函数f (x )=sin(ωx +φ)(ω≠0)是偶函数,则sin φ=±1,即φ=π2+k π,k ∈Z ,所以p 是q 的必要条件,故p 是q 的充要条件,故选A.[答案] A考向三 与向量有关的题型3.(2018·甘肃省兰州市二模)设向量a =(x -1,x ),b =(x +2,x -4),则“a ⊥b ”是“x =2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] ∵a ⊥b ,∴(x -1)(x +2)+x (x -4)=0,化为:2x 2-3x -2=0,解得x =-12或2.∴“a ⊥b ”是“x =2”的必要不充分条件.故选:B. [答案] B考向四 与数列有关的题型4.(2018·北京市西城区一模)数列{a n }的通项公式为a n =|n -c |(n ∈N *).则“c ≤1”是“{a n }为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] 数列{a n }的通项公式为a n =|n -c |(n ∈N *),若“{a n }为递增数列”,则a n +1-a n =|n +1-c |-|n -c |>0,即(n +1-c )2>(n -c )2,解得c <n +12,∵n +12≥32,∴c ≤1是{a n }为递增数列充分不必要条件,故选A.[答案] A考向五 与几何问题有关的题型5.(2016·山东卷)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 若a ,b 相交则α,β一定相交.若α,β相交则不能得出a ,b 相交.故选A. [答案] A考向六 与函数有关的题型6.(2018·合肥一模)函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x -a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a ≤0或a >1B .0<a <12C.12<a <1 D .a <0[解析] 因为f (x )=⎩⎪⎨⎪⎧log 2x ,x >02x -a ,x ≤0有且只有一个零点的充要条件为a ≤0或a >1.由选项可知,使“a ≤0或a >1”成立的充分条件为选项D.[答案] D方法感悟充分、必要条件判定的常见题型与求解策略:常见题型求解策略与不等式相关的充分必要条件的判断可把不等式之间的关系转化为集合与集合之间的关系,根据集合与充要条件之间的关系进行判断与平面向量相关的充分必要条件的判断该类题型常涉及向量的概念、运算及向量共线、共面的条件,可把问题转化为有关向量之间的推理与三角相关的充分必要条件的判断熟练掌握三角的相关概念、运算公式、三角函数的图象和性质以及正、余弦定理是解决该类问题的关键与数列相关的充分必要条件的判断熟练掌握等差数列与等比数列的定义、性质及数列的单调性、周期性、a n与S n的关系与立体几何相关的充分必要条件的判断可把问题转化为线线、线面、面面之间位置关系的判断及性质问题,由此进行恰当判断与解析几何相关的充分必要条件的判断首先理解点与曲线的位置关系,两直线的位置关系,直线与曲线的位置关系,然后弄清题意进行判断【针对补偿】3.(2018·东北三省四市联考)“x<2”是“x2-3x+2<0”成立的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件[解析]由x2-3x+2<0,解得1<x<2,因为{x|1<x<2}{x|x<2},所以“x<2”是“x2-3x +2<0”成立的必要不充分条件,故选A.[答案]A4.(2018·广西名校联考)在△ABC中,命题p:“B≠60°”,命题q:“△ABC的三个内角A,B,C不成等差数列”,那么p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[解析]命题p:“B≠60°”则(A+C)-2B=π-B-2B≠0,⇔命题q:“△ABC的三个内角A,B,C不成等差数列”,故选C.[答案]C5.(2016·浙江卷)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[解析] 由题意知f (x )=x 2+bx =⎝⎛⎭⎫x +b 22-b 24,最小值为-b 24.令t =x 2+bx ,则f (f (x ))=f (t )=t 2+bt =⎝⎛⎭⎫t +b 22-b 24,t ≥-b 24,当b <0时,f (f (x ))的最小值为-b24,所以“b <0”能推出“f (f (x ))的最小值与f (x )的最小值相等”;当b =0时,f (f (x ))=x 4的最小值为0,f (x )的最小值也为0,所以“f (f (x ))的最小值与f (x )的最小值相等”不能推出“b <0”.故选A.[答案] A题型三 充分必要条件的应用(重点保分题,共同探讨)(1)(2018·皖北第一次联考)已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1)[解析] ∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1,∵p是q 的充分不必要条件,∴k >2.[答案] B(2)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是 ________ .[解析] 命题p 为⎩⎨⎧⎭⎬⎫x |12≤x ≤1,命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x |x >1或x <12,綈q 对应的集合B ={x |x >a +1或x <a }. ∵綈p 是綈q 的必要不充分条件.∴⎩⎪⎨⎪⎧ a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.故答案为⎣⎡⎦⎤0,12. [答案] ⎣⎡⎦⎤0,12 方法感悟根据充要条件求解参数范围的注意点1.解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.2.求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【针对补偿】6.已知条件p :x 2-3x -4≤0;条件q :x 2-6x +9-m 2≤0,若p 是q 的充分不必要条件,则m 的取值范围是( )A .[-1,1]B .[-4,4]C .(-∞,-4]∪[4,+∞)D .(-∞,-1]∪[1,+∞)[解析] p :-1≤x ≤4,q :3-m ≤x ≤3+m (m >0)或3+m ≤x ≤3-m (m <0), 依题意,⎩⎪⎨⎪⎧m >0,3-m ≤-1,3+m >4或⎩⎪⎨⎪⎧m >0,3-m <-1,3+m ≥4或⎩⎪⎨⎪⎧m <0,3+m ≤-1,3-m >4或⎩⎪⎨⎪⎧m <0,3+m <-1,3-m >4,解得m ≤-4或m ≥4,选C.[答案] C7.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是______.[解析] 由|x -m |<1得m -1<x <m +1, 若13<x <12是|x -m |<1成立的充分不必要条件, 则⎩⎨⎧m -1≤13m +1>12或⎩⎨⎧m -1<13m +1≥12得-12≤m ≤43.[答案] ⎣⎡⎦⎤-12,43 ◆牛刀小试·成功靠岸◆课堂达标(二)[A 基础巩固练]1.(2018·山东重点中学模拟)已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定[解析] 命题p :“正数a 的平方不等于0”写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.[答案] B2.(2016·天津卷)设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分也不必要条件[解析] 若x >|y |,则x >y 或x >-y ,若x >y ,当y >0时,x >|y |,当y <0时,不能确定x >|y |.故选C.[答案] C3.(2018·河北保定二模)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1[解析] 由题意知,对应方程的Δ=(-1)2-4m <0,即m >14.结合选项可知,不等式恒成立的一个必要不充分条件是m >0,故选C.[答案] C4.(2018·北京市朝阳区二模)“x >0,y >0”是“y x +xy ≥2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] “x >0,y >0”⇔“y x +xy ≥2”,反之不成立,例如取x =y =-1.∴x >0,y >0”是“y x +xy≥2”的充分而不必要条件.故选:A.[答案] A5.命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是( ) A .“若a ,b ,c 成等比数列,则b 2≠ac ”B.“若a,b,c不成等比数列,则b2≠ac”C.“若b2=ac,则a,b,c成等比数列”D.“若b2≠ac”,则a,b,c不成等比数列[解析]根据原命题与其逆否命题的关系,易得命题“若a,b,c成等比数列,则b2=ac”的逆否命题是“若b2≠ac,则a,b,c不成等比数列”.[答案]D6.(2018·安徽合肥一模) 祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件[解析]如果A,B在等高处的截面积恒相等,则A,B的体积相等,因此有p⇒q,但q⇒p不一定成立,把两个相同的锥体放在一个平面上,再把其中一个锥体翻转底向上,顶点在原底面所在平面,虽然在等高处的截面积不恒相等,但体积相等,故p是q的充分不必要条件.故选A.[答案]A7.“在△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为:______.[解析]原命题的条件:在△ABC中,∠C=90°,结论:∠A、∠B都是锐角.否命题是否定条件和结论.即“在△ABC中,若∠C≠90°,则∠A、∠B不都是锐角”.[答案]“在△ABC中,若∠C≠90°,则∠A、∠B不都是锐角”8.(2018·湖南常德一中月考)若“x2-2x-3>0”是“x>a”的必要不充分条件,则a 的最小值为________.[解析]由x2-2x-3>0,解得x<-1或x>3.因为“x2-2x-3>0”是“x>a”的必要不充分条件,所以{x|x>a}是{x|x<-1或x>3}的真子集,即a≥3,故a的最小值为3.[答案]39.有三个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“若a>b,则a2>b2”的逆否命题;③“若x≤-3,则x2+x-6>0”的否命题.其中真命题的序号为________.[解析]命题①为“若x,y互为相反数,则x+y=0”是真命题;因为命题“若a>b,则a 2>b 2”是假命题,故命题②是假命题;命题③为“若x >-3,则x 2+x -6≤0”,因为x 2+x -6≤0⇔-3≤x ≤2,故命题③是假命题.综上知只有命题①是真命题.[答案] ①10.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.[解] y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2,∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}. ∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. [B 能力提升练]1.(2018·湖南衡阳第三次联考)已知函数g (x )的定义域为{x |x ≠0},且g (x )≠0,设p :函数f (x )=g (x )⎝⎛⎭⎫11-2x -12是偶函数;q :函数g (x )是奇函数,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件[解析] 由函数f (x )=g (x )⎝⎛⎭⎫11-2x -12是偶函数可得:f (-x )=f (x )⇒g (-x )=-g (x ),所以函数g (x )是奇函数,充分条件成立,当函数g (x )是奇函数时,有g (-x )=-g (x ),又g (x )=11-2x -12f (x ),可得函数f (-x )=f (x ),所以函数f (x )是偶函数,即必要条件也成立,所以p 是q 的充要条件.[答案] C2.(2018·长春市质监二)已知p :函数f (x )=|x +a |在(-∞,-1)上是单调函数,q :函数g (x )=log a (x +1)(a >0且a ≠1)在(-1,+∞)上是增函数,则綈p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 由p 成立,则a ≤1,由q 成立,则a >1,所以綈p 成立时a >1是q 的充要条件.故选C.[答案] C3.下列四个结论中:①“λ=0”是“λa=0”的充分不必要条件;②在△ABC中,|AB|2+|AC|2=|BC|2是“△ABC为直角三角形”的充要条件;③若a,b∈R,则“a2+b2≠0”是“a,b全不为零”的充要条件;④若a,b∈R,则“a2+b2≠0”是“a,b不全为零”的充要条件.其中正确的是________.[解析]由λ=0可以推出λa=0,但是由λa=0不一定推出λ=0成立,所以①正确;由|AB|2+|AC|2=|BC|2可以推出△ABC是直角三角形,但是由△ABC是直角三角形不能确定哪个角是直角,所以②不正确;由a2+b2≠0可以推出a,b不全为零,反之,由a,b不全为零可以推出a2+b2≠0,所以“a2+b2≠0”是“a,b不全为零”的充要条件,而不是“a,b全不为零”的充要条件,③不正确,④正确.[答案]①④4.已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)[解析]若当x∈[0,1]时,f(x)是增函数,又∵y=f(x)是偶函数,∴当x∈[-1,0]时,f(x)是减函数.当x∈[3,4]时,x-4∈[-1,0],∵T=2,∴f(x)=f(x-4).故x∈[3,4]时,f(x)是减函数,充分性成立.反之,若x∈[3,4]时,f(x)是减函数,此时x-4∈[-1,0],∵T=2,∴f(x)=f(x-4),则当x∈[-1,0]时,f(x)是减函数.∵y=f(x)是偶函数,∴当x∈[0,1]时,f(x)是增函数,必要性也成立.故“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.[答案]充要5.已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.(1)若x∈A是x∈B的充分条件,求a的取值范围.(2)若A∩B=∅,求a的取值范围.[解]A={x|x2-6x+8<0}={x|2<x<4},B={x|(x-a)(x-3a)<0}.(1)当a=0时,B=∅,不合题意.当a>0时,B={x|a<x<3a},要满足题意,则⎩⎪⎨⎪⎧ a ≤2,3a ≥4,解得43≤a ≤2.当a <0时,B ={x |3a <x <a },要满足题意,则⎩⎪⎨⎪⎧3a ≤2,a ≥4,无解.综上,a 的取值范围为⎣⎡⎦⎤43,2. (2)要满足A ∩B =∅, 当a >0时,B ={x |a <x <3a } 则a ≥4或3a ≤2,即0<a ≤23或a ≥4.当a <0时,B ={x |3a <x <a }, 则a ≤2或a ≥43,即a <0.当a =0时,B =∅,A ∩B =∅.综上,a 的取值范围为⎝⎛⎦⎤-∞,23∪[4,+∞). [C 尖子生专练](2015·湖北)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A .p 是q 的必要条件,但不是q 的充分条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件[解析] 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q 2n -4)·a 22(1+q 2+…+q 2n -4)=a 21a 22(1+q 2+…+q 2n -4)2,(a 1a 2+a 2a 3+…a n -1a n )2=(a 1a 2)2(1+q 2+…+q 2n -4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q 成立,而p 不成立,故p 不是q 的必要条件,故选B.[答案] B。

高一数学充分条件与必要条件

高一数学充分条件与必要条件
既不充分也不必要条件
ab≠0

(x+1)(y-2)=0
/
/
a≠0 x=-1,y=2
m是4的倍数/ m是6的倍数
三、例题讲解
例2 探讨下列生活中名言名句的充要关系。 q,q p (1) 水滴石穿。 p 充要条件这个数学概念
与人们日常生活中的推理判 断密切相关,从数学的角度 重新审视生活中的名言名句, 体现了数学知识源自生产生 活实际,是人类文化的结晶 这一特点。当然,生活语言 不可能象数学命题一样准确, 因此不同观点的碰撞在所难 免,只要推断能在某种前提 或某个角度下合乎情理,就 应该肯定,在这里答案应该 是开放的,不同的观点应允 许共存,关键是只要学生能 "学会数学地思维" 。
一、复习引入
如果命题“若p则q”为真,
则记作p

q(或q

p)
如果命题“若p则q”为假, 则记作p
/
q (或q
/
p)
/
称为推断符号.
一、复习引入 判断下列命题是真命题还是假命题,并研
究其逆命题的真假。
p (1)若x=y,则x2=y2。 q q ( 2 )有两角相等的三角形是等腰三角形。 p p (3)ax2+ax+1>0的解集为R,则0<a<4。 q q 2>b2,则a>b。 ( 4 )若 a p 答: (1) p (3) p
三、例题讲解
例2 探讨下列生活中名言名句的充要关系。 q,q p (1) 水滴石穿。p q,q p (2) 骄兵必败。 p q,q p (3) 有志者事竟成。 p q,q p (4) 头发长,见识短。 p
许多影视中,还有日常生活中有男的 批驳女人就一句“头发长见识短” , 头发和见识有什么直接关系吗? “头 发与智慧有什么关系呢?”

《充分条件与必要条件》课件(共38张PPT)

《充分条件与必要条件》课件(共38张PPT)

1.对充分条件的理解 充分条件是某一个结论成立应具备的条件,当命题具备此条件 时,就可以得出此结论;或要使此结论成立,只要具备此条件就 足够了,当命题不具备此条件时,结论也有可能成立.例如,x=6 ⇒x2=36,但是,当x≠6时,x2=36也可以成立,所以“x=6”是“x2 =36成立”的充分条件.
(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q 的充分条件,同时q是p的必要条件. ②如果命题:“若p,则q”为假命题,那么p不是q的充分条件,同 时q也不是p的必要条件.
【变式训练】已知p:|x|=|y|,q:x=y,则p是q的什么条件?
【解题指南】解答本题的关键是判断命题“若|x|=|y|,则
1.判一判(正确的打“√”,错误的打“×”) (1)若p是q的必要条件,则q是p的充分条件.( (2)若p是q的充分条件,则﹁p是﹁q的充分条件.( ) ) )
(3)“两角不相等”是“两角不是对顶角”的必要条件.(
【解析】(1)正确.若p是q的必要条件,即p⇐q,所以q是p的充分 条件. (2)错误.若p是q的充分条件,即p⇒q,其逆否命题为﹁p⇐﹁q,所 以﹁p是﹁q的必要条件. (3)错误.“对顶角相等”的逆否命题为“不相等的两个角不是
3 2 2 3
所以p是q的充分条件,但p不是q的必要条件. ②因为(x+1)(x-2)=0 x+1=0,但x+1=0⇒(x+1)(x-2)=0,所 以p是q的必要条件,但p不是q的充分条件.
【方法技巧】充分条件、必要条件的两种判断方法 (1)定义法:①确定谁是条件,谁是结论. ②尝试从条件推结论,若条件能推出结论,则条件为充分条件, 否则就不是充分条件. ③尝试从结论推条件,若结论能推出条件,则条件为必要条件, 否则就不是必要条件.

充分条件、必要条件ppt课件

充分条件、必要条件ppt课件

解析:由题意知,成功实现太空握手 空间站组合体与梦天实验舱处于同一轨
道高度,空间站组合体与梦天实验舱处于同一轨道高度
太空握手,所以“梦
天实验舱与天和核心舱成功实现‘太空握手’
”是“空间站组合体与梦天实验舱
处于同一轨道高度”的充分不必要条件.故选 A.
5.若“ x 2 ”是“ m 2 x 2 (m 3) x 4 0 ”的充分不必要条件,则实数 m 的值为
2014年3月4日);
(3)“积极乐观的人,相信办法总比问题多,内心充满希望,当然,他们更懂得
去寻求必要的帮助,给自己创造更多的机会”(《中国青年报》2015年6月22日);
(4)“文学不只是知识,同时也是一种能力,写作对于一个文学系的学生而言是
一种必要的素质”(《人民日报》2015年7月28日).
等边三角形”是等边三角形的定义,这就意味着,只要三角形的三条边都相等,
那么这个三角形一定是等边三角形;反之,如果一个三角形是等边三角形,那
么这个三角形的三条边都相等. 不难看出,一个数学对象的定义实际上给出了这
个对象的一个充要条件,上例中,“三角形的三条边都相等”是“三角形是等
边三角形”的充要条件.
出其中涉及的充分条件或必要条件:
(1)形如 y = ax2(a是非零常数)的函数是二次函数;
(2)菱形的对角线互相垂直.
解:(1)这可以看成一个判定定理,因此“ y = ax2(a 是非零常数)的函数”
是“这个函数是二次函数”的_______条件.
充分
(2) 这可以看成菱形的一个性质定理,因此“四边形对角线互相垂直”
1
.当 m 1 时, x 2 是
2
1
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 常用逻辑用语知识点网络第1讲 命题、充分条件与必要条件考点1:命题1. 定义: 一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成. 命题通常用小写英文字母表示,如p,q,r,m,n 等.(2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题. 数学中的定义、公理、定理等都是真命题(3)命题“”的真假判定方式: ① 若要判断命题“”是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。

如:一定推出.② 若要判断命题“”是一个假命题,只需要找到一个反例即可.注意:“不一定等于3”不能判定真假,它不是命题.例1已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝例2.下列命题中的假命题...是 A. ,lg 0x R x ∃∈= B. ,tan 1x R x ∃∈=C. 3,0x R x ∀∈>D. ,20x x R ∀∈>【解析】对于C 选项x =1时,()10x -2=,故选C变式1.下列命题是真命题的为A .若11x y=,则x y =B .若21x =,则1x = C .若x y =,x y = D .若x y <,则 22x y <解析 由11x y=得x y =,而由21x =得1x =±,由x y =,x y ,而 x y <得不到22x y < 故选A.例3.下列4个命题111:(0,),()()23x xp x ∃∈+∞<2:(0,1),p x ∃∈㏒1/2x>㏒1/3x31p :(0,),()2x x ∀∈+∞>㏒1/2x 411:(0,),()32x p x ∀∈<㏒1/3x 其中的真命题是 ( ) A. 13,p p B .14,p p C. 23,p p D. 24,p p解析 取x =12,则㏒1/2x =1,㏒1/3x =log 32<1,p 2正确当x ∈(0,31)时,(12)x<1,而㏒1/3x >1.p 4正确 答案 D 考点2:四种命题1. 四种命题的形式:用p 和q 分别表示原命题的条件和结论,用p 和q 分别表示p 和q 的否定,则四种命题的形式为: 原命题:若p 则q ; 逆命题:若q 则p ; 否命题:若p 则q ; 逆否命题:若q 则p.2. 四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径. 除①、②之外,四种命题中其它两个命题的真伪无必然联系.例4.分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1) 若q <1,则方程x 2+2x +q =0有实根;(2) 若ab =0,则a =0或b =0;(3) 若x 2+y 2=0,则x 、y 全为零.解:(1)逆命题:若方程x 2+2x +q =0有实根,则q <1,为假命题.否命题:若q ≥1,则方程x 2+2x +q =0无实根,为假命题.逆否命题:若方程x 2+2x +q =0无实根,则q ≥1,为真命题.(2)逆命题:若a =0或b =0,则ab =0,为真命题.否命题:若ab ≠0,则a ≠0且b ≠0,为真命题.逆否命题:若a ≠0且b ≠0,则ab ≠0,为真命题.(3)逆命题:若x 、y 全为零,则x 2+y 2=0,为真命题.否命题:若x 2+y 2≠0,则x 、y 不全为零,为真命题.逆否命题:若x 、y 不全为零,则x 2+y 2≠0,为真命题.例5.“△ABC 中,若∠C=90°,则∠A.∠B 都是锐角”的否命题为:_______________,否定形式是_____________-解:否定形式:△ABC 中,若∠C=90°,则∠A.∠B 不都是锐角”否命题:△ABC 中,若∠C ≠90°,则∠A.∠B 不都是锐角”例3.下列四个命题中属于真命题的是________,①“若x +y =0,则x 、y 互为相反数”的逆命题;②“两个全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+x +q =0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆否命题。

解:①显然正确;②不正确;③不正确,因△=1-4q 未必大于0;④不对。

变式2.命题“垂直于同一条直线的两条直线互相平行”的逆命题是_________.解:如果两条直线平行,那么它们同时与另一条直线垂直。

例6.已知p :012=++mx x 有两个不等的负根,q :01)2(442=+-+x m x 无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.分析:由p 或q 为真,知p 、q 必有其一为真,由p 且q 为假,知p 、q 必有一个为假,所以,“p 假且q 真”或“p 真且q 假”.可先求出命题p 及命题q 为真的条件,再分类讨论.解:p :012=++mx x 有两个不等的负根.⎪⎩⎪⎨⎧>⇔<->-=∆⇔200421m m m q :01)2(442=+-+x m x 无实根.⇔31016)2(1622<<⇔<--=∆m m 因为p 或q 为真,p 且q 为假,所以p 与q 的真值相反.(ⅰ) 当p 真且q 假时,有⎩⎨⎧≥⇒≥≤>3312m m m m 或; (ⅱ) 当p 假且q 真时,有⎩⎨⎧≤<⇒<<≤21312m m m .综合,得m 的取值范围是{21≤<m m 或3≥m }例7.命题“存在x R ∈,使得2250x x ++=”的否定是变式3命题“存在0x ∈R ,02x ≤0”的否定是 A. 不存在0x ∈R, 02x >0 B. 存在0x ∈R, 02x ≥0C. 对任意的x ∈R,2x ≤0D. 对任意的x ∈R, 2x >0解析:由题否定即“不存在R x ∈0,使020≤x ”,故选择D 。

变式4 .命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C .“若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”答案 B解析 因为一个命题的逆命题是将原命题的条件与结论进行交换,因此逆命题为“若一个数的平方是正数,则它是负数”。

考点3:充分条件与必要条件1. 定义: 对于“若p 则q ”形式的命题:①若pq ,则p 是q 的充分条件,q 是p 的必要条件;②若p q ,但q p ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件;③若既有p q ,又有q p ,记作p q ,则p 是q 的充分必要条件(充要条件).2. 理解认知:(1)在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论 推条件,最后进行判断.(2)充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.3. 判断命题充要条件的三种方法(1)定义法:(2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,如果原命题与逆命题真假不好判断时,还可以转化为逆否命题与否命题来判断.即利用与;与;与的等价关系,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法.(3) 利用集合间的包含关系判断,比如AB 可判断为A B ;A=B 可判断为A B ,且 B A ,即A B. 如图:“”“,且”是的充分不必要条件.“”“”是的充分必要条件.例8.在下列各题中,判断A 是B 的什么条件,并说明理由.(1). A :R p p ∈≥,2,B :方程+++p px x 203=有实根;(2).A :132>-x ;B :0612>-+x x ;解:(1) 当2≥p ,取4=p ,则方程0742=++x x 无实根;若方程+2x 03=++p px 有实根,则由0>∆推出20)3(42-≤⇒≥+-p p p 或≥p 6,由此可推出2≥p .所以A 是B 的必要非充分条件.(2) 由21132><⇒>-x x x 或,由0612>-+x x 解得23>-<x x 或,所以A 推不出B ,但B 可以推出A ,故A 是B 的必要非充分条件.变式5:指出下列命题中,p 是q 的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答).(1)对于实数x 、y ,p :x+y ≠8,q:x ≠2或y ≠6;(2)非空集合A 、B 中,p :x ∈A ∪B ,q :x ∈B ;解: (1)易知: ⌝p:x+y=8, ⌝q:x=2且y=6,显然⌝q ⇒⌝p.但⌝p ⌝q,即⌝q 是⌝p 的充分不必要条件,根据原命题和逆否命题的等价性知,p 是q 的充分不必要条件.(2)显然x ∈A ∪B 不一定有x ∈B,但x ∈B 一定有x ∈A ∪B,所以p 是q 的必要不充分条件.例9. 已知p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有两个小于1的正根,试分析p 是q 的什么条件.解:若方程x 2+mx +n =0有两个小于1的正根,设为x 1、x 2.则0<x 1<1、0<x 2<1,∵x 1+x 2=-m ,x 1x 2=n∴0<-m <2,0<n <1 ∴-2<m <0,0<n <1∴p 是q 的必要条件.又若-2<m <0,0<n <1,不妨设m =-1,n =21.则方程为x 2-x +21=0,∵△=(-1)2-4×21=-1<0. ∴方程无实根 ∴p 是q 的非充分条件. 综上所述,p 是q 的必要非充分条件.例10.“()24x k k Z ππ=+∈”是“tan 1x =”成立的 ( )(A )充分不必要条件. (B )必要不充分条件.(C )充分条件. (D )既不充分也不必要条件. 解析:14tan )42tan(==+πππk ,所以充分;但反之不成立,如145tan =π 例11. “a >0”是“a >0”的[A](A)充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件解析:本题考查充要条件的判断00,00>⇒>>⇒>a a a a ,∴ a >0”是“a >0”的充分不必要条件变式6.已知a>0,则x 0满足关于x 的方程ax=6的充要条件是(A)220011,22x R ax bx ax bx ∃∈-≥-(B) 220011,22x R ax bx ax bx ∃∈-≤- (C) 220011,22x R ax bx ax bx ∀∈-≥-(D) 220011,22x R ax bx ax bx ∀∈-≤- 【解析】由于a >0,令函数22211()222b b y ax bx a x a a =-=--,此时函数对应的开口向上,当x=b a时,取得最小值22b a-,而x 0满足关于x 的方程ax=b,那么 x 0==b a ,y min =2200122b ax bx a -=-,那么对于任意的x ∈R,都有212y ax bx =-≥22b a -=20012ax bx - 变式7设0<x <2π,则“x sin 2x <1”是“x sinx <1”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件解析:因为0<x <2π,所以sinx <1,故xsin 2x <xsinx ,结合xsin 2x 与xsinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题 例11.“14m <”是“一元二次方程20x x m ++=”有实数解的 A .充分非必要条件 B.充分必要条件C .必要非充分条件 D.非充分必要条件【解析】由20x x m ++=知,2114()024m x -+=≥⇔14m ≤. 例12.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( )A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 对于“0a >且0b >”可以推出“0a b +>且0ab >”,反之也是成立的变式8.“”是“且”的A. 必要不充分条件B.充分不必要条件C. 充分必要条件D. 既不充分也不必要条件解析 易得a b c d >>且时必有a c b d +>+.若a c b d +>+时,则可能有a d c b >>且,选A 。

相关文档
最新文档