第二章 试验数据的表图表示法分解
实验设计与数据处理 第二章 数据的表图表示方法

方法1:先用Frequency函数生成频数表,再用图表向导工 具画直方图 方法2:运用直方图数据分析工具画直方图
绘制图形时应注意 :
(1)在绘制线图时,要求曲线光滑,并使曲线尽可能通过较 多的实验点,或者使曲线以外的点尽可能位于曲线附近, 并使曲线两侧的点数大致相等; (2)定量的坐标轴,其分度不一定自零起;
(1):创建数据工作表 (2):选择行、列,单击“图表向导”按钮或“ 插入” -“图表”。 (3):按提示步骤进行操作,“线形图或散点图”…, 对图表进行修饰。 (4):输出图形
例2-4:(复式线图)
自1976年首次报道氯化消毒饮用水会产生有致突变作用的 三氯甲烷后,研究表明加氯量和作用时间会影响三氯甲烷的 生成量(mg/L),数据如下: 加氯量(mg/L) 反应时间(h) 1 2 3 4 2 9.5 10.0 12.0 13.5 12 11.5 20.0 28.0 35.5 24 14.5 28.0 41.0 44.0 48 18.0 36.0 49.0 55.0 72 19.0 36.0 49.0 52.0 要求画出不同加氯量下三氯甲烷生成量对反应时间的多重x-y线 形图。
溶解氧测定值的频数直方图 30 25 20 15 10 5 0 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 溶解氧测定值(mg/L)
频数
直方图的绘制方法:
方法1:先用Frequency函数生成频数表,再用图表向 导工具画直方图
(1) 计算极差R(全距):样本中最大值与最小值之差 (2) 确定分组数m:m=1.52(n-1) 2/5 (3) 确定组距:=极差/分组数 (4) 确定组上限,列出组段 (5) 确定组频数:采用Frequency函数, “=frequency(原始数据 区域,数据接收区间)” (6) 采用图表向导画直方图
试验设计与数据处理第2章试验数据的表图表示

(1)分别做出加药量和剩余浊度、总氮 TN、总磷 TP、CODCr 的变化关系图 (共四张图,要求它们的格式大小一致,并以两张图并列的形式排版到 Word
用Excel做出中下,表注数意据调整带图数形据的点大小的)折;线散点图(1)分别做出加药量和剩余浊度、总 氮总氮TNT、N去总除磷( 率率T2、P、)、C在总OCD一磷OC张r D去T图CP除r中去的率做除变的出率变化加化、关药关C量系系O和图折D浊线C;度r去散(去点除2除图)率率。在的、总一变氮张化T图关N中系去做除折率出线、加散总药点磷量图TP。和去浊除度去除率、
记录表突出原始数据,结果表突出试验结果。
❖ 试验数据不多时,两类表合二为一,不加区别。
将试验数据列成表格,将各变量的数值依照一定的形式和 顺序一一对应起来
(1)试验数据表 ①记录表 试验记录和试验数据初步整理的表格 表中数据可分为三类: ➢ 原始数据 ➢ 中间数据 ➢ 最终计算结果数据
表2-1 离心泵特性曲线测定实验的数据记录表
图14 坐标比例尺对图形形状的影响
解:设2ΔpH=2ΔA=2mm
∵ ΔpH=0.1,ΔA=0.01
∴
横轴的比例尺为 M pH
2mm 2pH
2mm 1(0 mm / 单位pH值) 0.2
纵轴的比例尺为
MA
2mm 2A
2mm 0.01
10(0 mm / 单位吸光度)
2.3 计算机绘图软件在图表绘制中应用
x 0.50 A
E
0.75
xA
1.00
B
0.00
xC
0.25
M
●
0.50
F
0.25
xB
0.75
xA
0.00
南通大学《试验设计与数据处理》复习要点

南通⼤学《试验设计与数据处理》复习要点《试验设计与数据处理》复习要点第⼀章误差分析⼀、真值与平均值1、真值:指在某⼀时刻和某⼀状态下,某量的客观值或实际值。
2、平均值(1)算术平均值:x =x1+x2+?+x nn =x in同样试验条件下,多次试验值服从正态分布,算术平均值是这组等精度试验值中的最佳值或最可信赖值。
(2)加权平均值:x w=w1x1+w2x2+?+w n x nw1+w2+?+w n =w i x iw i(3)对数平均值:x L=x1?x2ln x12=x2?x1ln x21,试验数据的分布曲线具有对称性(4)⼏何平均值:lg x G=lg x in(5)调和平均值:H=n1i⼆、误差的基本概念1、绝对误差=测得值-真值,结果可正可负。
2、相对误差=绝对误差/真值≈绝对误差/测得值,结果可正可负。
3、算术平均误差?=x i?xn4、标准误差(1)样本标准差s=(x i?x )2n?1=x i2?x i2/nn?1(2)总体标准差σ=(x i?x )2n =x i2?x i2/nn三、误差来源及分类根据误差的性质或产⽣原因,可分为随机误差、系统误差、粗⼤(过失)误差。
1、随机误差:在⼀定试验条件下,以不可预知的规律变化着的误差;2、系统误差:在⼀定试验条件下,由某个或某些因素按照某⼀确定的规律起作⽤⽽形成的误差;3、粗⼤(过失)误差:⼀种显然与事实不符的误差。
四、试验数据的精准度1、精密度:反映随机误差⼤⼩的程度,是指在⼀定的试验条件下,多次试验值的彼此符合程度或⼀致程度;2、正确度:指⼤量测试结果的(算术)平均值与真值或接受参照值之间的⼀致程度,反映了系统误差的⼤⼩,是指在⼀定的试验条件下,所有系统误差的综合;3、准确度:反映系统误差和随机误差的综合,表⽰了试验结果与真值或标准值的⼀致程度。
五、试验数据误差的统计检验1、随机误差的检验随机误差的⼤⼩可⽤试验数据的精密程度来反映,⽽精密度的好坏⼜可⽤⽅差来度量,所以对测试结果进⾏⽅差检验,即可判断随机误差之间的关系。
第二章 试验数据处理

由于课时有限,这些不祥细介绍,有 兴趣的同学可以参考《实验数据处理与曲 线拟合》石振东、刘国庆编 哈尔滨船舶工 程学院出版社
2.4 系统误差的测定方法与技巧
系统误差的数值往往远大于随机误 差,数据里必须对系统误差及时发现 并做适当处理,否则一定会歪曲测定 结果。
二. 试验指标
在试验设计中,根据试验目的而选定的用来判 断试验结果的特性值称为试验指标。
试验指标分为二种:
数量指标(定量):可用数量来表示,如重量、
强度、合格率等。
非数量指标(定性):难以用数量来表示,如
光泽、味道、手感等。 试验指标可以是一个或多个,应尽量选取计数计
量特性值作为试验指标。
三. 试验因素
,任意两组之间不存在系统误
差的标志是:
xi x j
2
ˆi2
ˆ
2 j
2.5 间接测定误差---误差的传递
间接测量就是将直接测得的量代入已知 的函数,从而求得被测量。如:测量密度、 面积、体积等。
直接测得的量中难免存在误差,这些误 差对间接测量的结果的影响是通过误差的 传递来表现的。
不同的函数关系,误差的传递有相当大 的差别。
坏值的存在势必对 x和 产生较大的影 响。
2.3.1 出现“坏值”时先做以下处理
(1)检查测量过程中是否读错、记错、写 错,如肯定无误,则应从某瞬变原因方面 查找(如电压突变等),原因找到后即可 去掉坏值。
(2)如条件允许,可在误差大处加大测量 次数,借以发现大误差的原因。
(3)用已知的统计学判据,确认“坏值” 的存在。
第二章 试验数据处理
试验就是要以最小的代价从一系列 的方案(工艺、配方)中选出最佳方案, 方案效果要通过试验结果来表现,试验 结果只能从实际测得的数据得到反映。
实验数据的图示法和图解法

5 Pa P , , Pa ×10 提出×105、×10-2
放在坐标轴物理量的右边
V ,, m ×3 10-2 m3
标度时注意点 (1) 坐标读数与实测数据的有效数字 位数大体相同 (2) 以不用计算就能直接读出图线上 每一点的坐标标度 (3) 图线不偏于一边或一角
两轴的标度可不同 两轴交点坐标可不为(0,0)
d i i ( Ae Be i )
d i i Ae i Be
2 2 2 2 2
i 1 i 1 i 1 i 1
n
n
n
n
(2 i Ae Be ) 2i Ae 2 ii Be
i 1 i 1 i 1
n
n
n
n 2 2 2 2 d i i ( Ae B i )d i 2 (e ) i ( 0Ae Be i ) 2 2Ae 2 1 2 i i ( Ae Be i 2 Ae Be i ) n 2 B 2 ) ( 2 A i e i d e i) 0 ( i B e i 1 将上式各方程两边平方后再求和 2 可得到回归方程的斜率和截距分别为 为求 d i 的最小值 , 求解方程组
. .. 的光滑图线 P2 我们常常 V o 同时认为 V1 V2 假定这条图线 不在光滑图线上的点 如果它跟波意耳定律的图线相符合 连接了整个测量范围内 因受实验条件或时间的限制 应当剔除 是因为测量不准确造成的 则可以说波意耳定律已得到实验证实 所有可能的 P、V值 这种观测点只是少数的点子 偏离图线较远的点是因为粗差造成的 PV=常数
空气压强 ~ 温度图线 体积保持不变 写图名 直线斜率=0.260 cmHg/℃
写实验条件 写图注
表图表示法—列表法(试验设计与数据处理课件)

列表法
将试验数据列成表格,将各变量的数值依照一定的形式和顺序一一对应起来。 (1)试验数据表 ① 记录表
试验记录和试验数据初步整理的表格。 表中数据可分为三类:
➢ 原始数据 ➢ 中间数据 ➢ 最终计算结果数据
列表法
② 结果表示表
➢ 表达试验结论 。 ➢ 尽量简明扼要。
(2)特点
➢ 组成:表名、表头、数据资料 ; ➢ 必要时,在表格的下方加上表外附加 ; ➢ 表名应放在表的上方,主要用于说明表的主要内容,为了引用的方便,
表头中的与表中的数据应服从下式:数据的实际值×10±n = 表中数据; ➢ 数据表格记录规范,原始数据书写含表号 ; ➢ 表头常放在第一行或第一列,也称为行标题或列标题,它主要是表示
所研究问题的类别名称和指标名称 ; ➢ 数据资料:表格的主要部分,应根据表头按一定的规律排列 ; ➢ 表外附加通常放在表格的下方,主要是一些不便列在表内的内容,如
指标注释、资料来源、不变的试验数据等。
(3)注意事项
➢ 表格设计应简明合理、层次清晰,一目了然; ➢ 表头要列出变量的名称、符号和单位; ➢ 应特别注意有效数字位数; ➢ 试验数据较大或较小时,要用科学记数法来表示,并记入表头,注意
第2章 试验数据的表图表示

表格法的不足
从表格中不能给出所有的函数关系; 从表格中不易看出变量变化时函数的变化 规律,而只能大致估计出函数是递增的、 递减的或是周期性变化的等等。
2.2 图示法
2.2 图示法
试验数据图示法就是将试验数据用图形表 示出来,它能用更加直观和形象的形式, 将复杂的试验数据表现出来。通过数据图, 可以直观地看出试验数据变化的特征和规 律。它的优点在于形象直观,便于比较, 容易看出数据中的极值点、转折点、周期 性、变化率以及其它特性。试验结果的图 示法还可为后一步数学模型的建立提供依 据。
4.圆形图
它可以表示总体中各组成部分所占的比例。 圆形图只适合于包含一个数据系列的情况, 它在需要重点突出某个重要项时十分有用。 将饼图的总面积看成100%,按各项的的构 成比将圆面积分成若干份,每3.6°圆心角 所对应的面积为1%,以扇形面积的大小来 分别表示各项的比例。 图例
5.XY(散点图)
2mm 1 My (mm / y) 2y y
(2)坐标轴的分度应与试验数据的有效数字位数相匹配,即坐标读数的 有效数字位数与实验数据的位数相同; (3)推荐坐标轴的比例常数M=(1、2、5)³10± n (n为正整数), 而3、6、7、8等的比例常数绝不可用;
(4)纵横坐标之间的比例不一定取得一致,应根据具体情况选择,使曲 线的坡度介于30°~60°之间
2.2 图示法
图表是数字值的可视化表示。用于试验数 据处理的图形种类很多,EXCEL根据图形 的形状可以分为线图、柱形图、条形图、 饼图、环形图、散点图、直方图、面积图、 圆环图、雷达图、气泡图、曲面图等等。 图形的选择取决于试验数据的性质。 图表向导 举例
2.2.1 EXCEL常用图表类型介绍
第2章--试验数据的表图表示

表外附加通常放在表格的下方,主要是一些不便列在表内 的内容,如指标注释、资料来源、不变的试验数据等
注意事项 :
(1) 表格设计应该简明合理、层次清晰,以便于 阅读和使用;
(2) 数据表的表头要列出变量的名称、符号和单 位;
(3) 要注意有效数字位数; (4) 试验数据较大或较小时,要用科学记数法来
2.2 图示法
图表是数字值的可视化表示。用于试验数 据处理的图形种类很多,EXCEL根据图形 的形状可以分为线图、柱形图、条形图、 饼图、环形图、散点图、直方图、面积图、 圆环图、雷达图、气泡图、曲面图等等。 图形的选择取决于试验数据的性质。
图表向导 举例
2.2.1 EXCEL常用图表类型介绍
1.柱形图
公式(函数式):借助于数学方法将实验数据按一 定函数形式整理成方程,即数学模型。
2.1 列表法
将试验数据列成表格,便于随时检查结果是否正 确合理,及时发现问题,利于计算和分析误差, 并在必要时对数据随时查对。通过列表法可有助 于找出有关实验因素之间的规律性,得出定量的 结论或经验公式等。列表法是图示法和公式法的 基础,是工程技术人员经常使用的一种方法。列 表法常分为: ➢ 记录表 ➢ 结果表示表
中反映出关于研究结果的完整概念。 例如:
说明:
三部分组成:表名、表头、数据资料 必要时,在表格的下方加上表外附加
表名应放在表的上方,主要用于说明表的主要内容,为了 引用的方便,还应包含表号
表头通常放在第一行,也可以放在第一列,也可称为行标 题或列标题,它主要是表示所研究问题的类别名称和指标 名称
每个数据标志相关的可能误差量。 所谓趋势线,是用图形的方式显示数据的预测趋
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 试验数据的表图表示法 实验和生产数据的表示要求准确、简明、形象。目前数据法
列表法简明紧凑、便于比较,一直广泛应用。特别是近年来计 算机办公软件,如word、excel等的普及使用,方便了表格排序、
删除添加以及表格运算,使列表法使用更方便更普及。
2.1.1试验数据表的分类
3、有效数字的位数要与测量仪表的精度相适应,即记录的数
字应与试验的精度相匹配。 4、数值太大或太小时,应按科学计数法书写。
如:Re=3.76×104 、K=2.46×10-3
名称栏标为: Re×10-4 K×103
表内数字为:
3.76
2.46
3
2.1 列表法
5、必要的时候,可在表下加附注说明数据来源和表中无法反映的需
1、线图
单式线图——表示某一种事物或现象的动态,复式线图——在同
一图中表示两种或两种以上事物或现象的动态,可用于不同事物或现
象的比较。
7
2.2 实验数据图形表示法(图解法)
件 500 数
发明专利申 请数 实用新型专 利申请数 授权专利数
400 300 200 100 47 0 2005
90 192 119 256
800 600 400 200 0 2005 2006 2007
272281 391 301 274 294 455
577 593
2008
2009
年份
近年来重庆大学高级别论文发表情况
9
2.2 实验数据图形表示法(图解法) 3、圆形图和环形图 圆形图也称为饼图,它可以表示总体中各组成部分所占的比例,
5
2.2 实验数据图形表示法(图解法)
7、在可能的情况下,最好在图中给出数据的误差范围。例 如,由矩形的长和宽分别代表自变量和因变量的误差,其中心 则为测量数据的平均值。如果自变量和因变量的误差相同则用 圆表示,圆的半径代表误差范围,圆心代表测量数据的平均值。 如果自变量没有误差,或误差可以忽略不计,因变量的误差则 由垂直线段表示。 8、如果数据过少,不足以确定自变量和因变量的关系时, 最好将各点用直线连接,当数据足够多时,可描出光滑连续曲
2.2.3坐标纸的选择:
常用的坐标纸有直角坐标纸、对数坐标纸(单对数坐标纸和双对 数坐标纸),可根据不同情况及需要选择使用。
①直线关系 ②幂函数关系
y ax b
选用直角坐标纸
y axm 选用双对数坐标纸
lg y lg a m lg x ,
方程两侧取对数得 改写为:
Y mX A
12
2.2 实验数据图形表示法(图解法)
X Y 在直角坐标系下为一线性方程;
x y 在双对数坐标下为一线性方程。
③指数函数关系
y a kx 选用单对数坐标纸 方程两侧取对数得 , lg y kx lg a
改写为:
Y AkX
x y 在单对数坐标下为一线性方程。
对数坐标就是一个或两个坐标轴以对数形式进行标度。对数坐标
线,不必通过所有的数据点,但是应尽量使曲线与所有数据点
相接近。 9、必要的时候,可在图下加附注说明数据来源和表中无 法反映的需要说明的其它问题。
6
2.2 实验数据图形表示法(图解法)
2.2.1图解法的优点:
曲线直观,便于比较;变化规律易寻、应用方便。
2.2.2图解法的种类:
根据图形形状可以分为线图、柱形图、条形图、饼图、环形图、 散点图、直方图、面积图、圆环图、雷达图、气泡图、曲面图等。
实验数据表可分为三类: 原始数据记录表:必须在实验前设计、绘制完成; 中间运算结果数据表:有助于运算,清晰可辨; 最终结果数据表:只表达主要变量间的关系和实验结论。
2
2.1 列表法
2.1.2使用试验数据表的方法
使用列表法表示数据的方法如下: 1、表格设计要简明扼要,有符合内容的标题名称; 2、表头应标明变量的名称、符号和单位;
2.2 实验数据图形表示法(图解法) 4、XY散点图 XY散点图用于表示两个变量间的相互关系,从散点图可以看出变 量关系的统计规律。
um
25 20 15 10 5 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 min 8.0
腐蚀时间与腐蚀刻线深度
11
2.2 实验数据图形表示法(图解法)
要说明的其它问题。
2.2 实验数据图形表示法(图解法)
用图形表示相关物理量实验数据的关系的方法称为图解法。 图形表示法是数据整理过程中很重要的、在工程上经常使用的一 种方法。
作图法形象直观,也是人们经常采用的一种数据表示方法。作图
法有直角坐标法、单对数坐标法、双对数坐标法、三角坐标法、极坐 标法及立体坐标法。
只适合于包含一个数据系列的情况。
环形图中间有一“空洞”,总体中的每一部分的数据用环中的一 段表示,与圆形图不同的是环形图可以显示多个总体各部分所占的相
应比例。
其他 19% 21% 材料学院 34%
项目数 百分比
32% 机械学院 47%
合同经 费百分 比
47%
近10年攀钢与重庆大学学院的项目合作情况
10
4
2.2 实验数据图形表示法(图解法) 近年来计算机办公软件,如word、excel等为作图提供了极大 的方便,也丰富了作图法的形式。使用作图法表示数据的方法如下:
1、为图取一个简明准确的名字,并将这个图名置于图的下面。
2、一般情况下横坐标代表自变量,纵坐标代表因变量。 3、坐标轴的起点不一定是零,一般要考虑使图形占据坐标的主要 位置,然后据此选择坐标轴的起点。 4、每个坐标轴都要注明名称和单位,并尽量采用符号表示。 5、一般应使坐标的最小分格对应于试验数据的精确度。 6、在可能的情况下,将甲乙变量进行变量变换,使图形变为直线 或近似直线。
2006
2007
2008
2009
年份
重庆大学专利情况
8
2.2 实验数据图形表示法(图解法) 2、条形图 条形图可以横置或纵置,纵置时也称为柱形图。这类图形的两个 坐标轴的性质不同,其中一条轴为数值轴,另一条轴为分类轴。条形 图也有单式和复式两种形式。
篇 1200 数 1000
1171 SCI EI
轴上的点到原点的距离等于坐标示值的对数值。
X Y 在直角坐标系下为一线性方程;
13
2.2 实验数据图形表示法(图解法)
2 3 4 5 1 对数值 0 0.3010 0.4771 0.6021 0.6990 数 值 6 7 8 9 10 对数值 0.7782 0.8451 0.9031 0.9542 1