系统辨识.ppt
合集下载
《系统辨识》Ppt01-2016-09-24

2004.10– 2006.03–2006.05 2006.12–2007.02 2008.05–2008.12 2009.01–2009.10
江南大学“太湖学者”特聘教授、 硕士生导师、 博士生导师 香港科技大学研究员, 中国香港 加拿大渥太华 卡尔顿大学 (Carleton University)研究员 加拿大渥太华 卡尔顿大学(Carleton University)访问教授 加拿大多伦多 瑞尔森大学 (Ryerson University)研究员 数学建模; 系统辨识; 参数估计; 过程控制
令矩阵范数 X
t
2
:= tr[XX T]. 定义二次损失函数
J (θ ) :=
j =1
[y (j ) − ϕT(j )θ ]2 = (Yt − Htθ )T(Yt − Htθ ) = Yt − Htθ 2,
T = −2Ht (Yt − Htθ ) T ˆ (t) = H TYt. Ht)θ = 0. =⇒ (Ht t
Ht−1 T = Ht Ht−1 + ϕ(t)ϕT(t) T − 1 ϕ (t) (5)
= P −1(t − 1) + ϕ(t)ϕT(t), ˆ (t) = (H THt)−1H TYt = P (t)H TYt = P (t)[H T Yt−1 + ϕ(t)y (t)] θ t t t t−1
T = P (t)[P −1(t − 1)P (t − 1)Ht −1 Yt−1 + ϕ(t)y (t)]
系统:
y (t) + a1y (t − 1) + a2y (t − 2) + · · · + any (t − n) = b1u(t − 1) + b2u(t − 2) + · · · + bnu(t − n) + v (t). (2)
课件1_系统辨识的基本概念 共48页

第1章 辨识的一些基本概念
模型的表现式
“直觉”模型:依靠人的直觉控制系统的变化。 司机驾驶 地图 建筑模型
物理模型:实际系统的缩小。 风洞模型 水力学模型 传热学模型 电力系统动态模拟模型 图表模型:以图表形式表现系统的特性 --非参数模型
阶跃响应 脉冲响应 频率响应 数学模型:以数学结构的形式反映系统的行为特性--参数模型
m
A(q1)
误差准则函数
N
B(q1)
J(θ)[y(k) u(k)2]
k1
A(q1)
第1章 辨识的一些基本概念
辨识中常用的误差准则
输入误差准则
w(k )
u(k)
系统
y(k)
(k)
输入误差
u (k) m
S 逆模型 1
( k ) u ( k ) u ( k ) u ( k ) S 1 [ y ( k )] m
Ljung 对辨识的的定义(1978年)
系统辩识有三个要素——数据、模型类和准则。系统辩 识是按照一个准则,在模型类中选择一个与数据拟合得最 好的模型。
第1章 辨识的一些基本概念
辨识的定义和目的
辨识的三大要素 输入输出数据
模型类
等价准则
辨识的目的
为了估计具有特定物理意义的参数 为了预测 为了仿真 为了控制
12
na
1
2
nb
z(k) h (k) e(k)
第1章 辨识的一些基本概念
辨识问题的表达形式
u(k)
输入量
过程
w(k )
测量噪声
y(k)
输出量
z(k)
输出测量值
h(k)
《系统辨识》课件

模型结构确定后,其中未知部分就要通过观测数据进
行估计。通常未知部分是以未知参数出现,故辨识工
作就成了参数估计。
参数估计的要求就是要辨识出来的模型与实际过程在
某种意义下最“接近”。
所以必须有个准则衡量。
4、模型验证
一个模型辨出来后,是否可靠必须进行多次验证。
通常一个模型用一套数据进行辨识,然后用另一套数
建立数学模型来预报。
4
第一章 概 述
2. 用于分析实际系统 工程上在分析一个新系统时,通常先进行数学仿真, 仿真的前提必须有数学模型。
3. 为了设计控制系统 目前,对被控系统的控制器的设计方法的选取,以及如 何进行具体的控制结构和参数的设计都广泛依赖于对 被控系统的理解及所建立的被控系统数学模型。
t2 t1
28
t1
y(t1)1e T
y1
y(t2)1et2T y2
第二章 过渡响应法和频率响应法
y(t)
t2 t1 y ( )
t
两边同取对数得:
t1 T
t2 T
n[1 n[1
y (t1)] y (t 2 )]
T t2n[nn1[[11 yyy(t((1ttt)112]))]] tn1t[1n1[n1[1y yy(t(2t)(2t])2])]
17
常用的模型类: 参数的 或 非参数的 线性的 或 非线性的 连续的 或 离散的 确定的 或 随机的 I/O的 或 状态的 时变的 或 定常(时不变)的
集中参数的 或 分布参数的 频率域的 或 时间域的 等等。
第一章 概 述
18
第一章 概 述
根据系统的空间、时间的离散化情况,模型可分为 三类:
由
t
y(t) 1e T
系统辨识第一章 引言 PPT课件

5.
应用 进行控制。对于经典控制,已知数学模型改善系统动 态特性,进行调节器参数整定等。对现代控制系统, 有了数学模型,可进行最优控制、自适应控制等。 进行预报。预报的基础是模型,有了模型就可作一步、 二步、短期、中期甚至长期预报。进行准确的预报对 国民经济及至地方,企业等等的发展都有重要意义。 进行规划。正确的规划也是以正确的模型为基础。有 了模型,才有可能进行各种方案的最优规划。 进行仿真。有了模型,就可以在计算机上对系统进行 仿真研究,实验各种不同的策略,观测其结果,从而 分析和制定策略。 估计物理参数。如医务界对于体内参数的测定、矿藏 区域储藏的测定,可以通过系统辨识的方法来进行。 生产过程的故障诊断。过程参数监视或破损探测均可 通过动态模型来反映。
4.
渊源
根轨迹法和频率域法为代表的经典控制理论已不能胜 任将控制技术提到更高的水平的要求。 状态空间法、动态规划以及极大值原理为代表的现代 控制理论发展的需要。 数字计算机的广泛使用,为辨识系统所需进行的计算 提供了有效的工具,使辨识算法的实现成为可能。 系统工程主要是用定量方法来研究大系统的一门学科, 其基础工作也是建立数学模型。 生物计量学以及经济计量学等都要用到系统辨识技术。 它们有一套自己的辨识和估计的模式。 信息理论中很重要的一个内容是滤波,滤波的前提也 需要先构成模型。 在许多科学和工程领域内,能否定量分析和建立所研 究问题的数学模型,已成为衡量该领域认识水平的一 个尺度。
辨识目的是估计表征系统行为的重要参数,建立一个能 模仿真实系统行为的模型,用当前可测量的系统的输入 和输出预测系统输出的未来演变,它是控制的逆问题。 系统辨识包括两个方面:结构辨识和参数估计。结构辨 识和参数估计这两个方面不是截然分开的,而是可以交 织在一起进行的。 先验知识指关于系统运动规律、数据以及其它方面的已 有知识。这些知识对选择模型结构、设计实验和决定辨 识方法等都有重要作用。 用于不同目的的模型可能会有很大差别。
《系统辨识》课件

脉冲响应法
总结词
脉冲响应法是一种通过输入和输出数据 估计系统脉冲响应的非参数方法。
VS
详细描述
脉冲响应法利用系统对单位脉冲函数的响 应来估计系统的动态特性。通过观察系统 对脉冲输入的输出,可以提取出系统的传 递函数。这种方法同样适用于线性时不变 系统,且不需要知道系统的具体数学模型 。
随机输入响应法
。
线性系统模型具有叠加性和齐次性,即 多个输入产生的输出等于各自输入产生 的输出的叠加,且相同输入产生的输出
与输入的倍数关系保持不变。
线性系统模型可以通过频域法和时域法 进行辨识,频域法主要通过频率响应函 数进行辨识,时域法则通过输入和输出
数据直接计算系统参数。
非线性系统模型
非线性系统模型具有非叠加性和非齐次性,即多个输 入产生的输出不等于各自输入产生的输出的叠加,且 相同输入产生的输出与输入的倍数关系不保持不变。
递归最小二乘法
递归最小二乘法是一种在线参数估计方法,通过递归地更新参数估计值来处理动态系统。在系统辨识中,递归最小二乘法常 用于实时估计系统的参数。
递归最小二乘法的优点是能够实时处理动态数据,且对数据量较大的情况有较好的性能表现。但其对初始参数估计值敏感, 且容易陷入局部最优解。
广义最小二乘法
广义最小二乘法是一种改进的最小二乘法,通过考虑误差的 方差和协方差来估计参数。在系统辨识中,广义最小二乘法 常用于处理相关性和异方差性问题。
系统辨识
目录
• 系统辨识简介 • 系统模型 • 参数估计方法 • 非参数估计方法 • 系统辨识的局限性与挑战 • 系统辨识的应用案例
01
系统辨识简介
定义与概念
定义
系统辨识是根据系统的输入和输出数 据来估计系统动态特性的过程。
第四篇系统辨识教学课件

被辨识系统的数学模型,可以分成参数和非参数模型两类。
参数模型 是由传递函数、微分方程或差分方程表示的数学 模型。如果这些模型的阶和系数都是已知的,则数学模型是 确定的。采用理论推导的方法得到的数学模型一定是参数模 型。建立系统模型的工作,就是在一定的模型结构条件下, 确定它的各个参数。因此,系统辨识的任务就是选定一个与 实际系统相接近的数学模型,选定模型的阶,然后根据输入 和输出数据,用最好的估计方法确定模型中的参数。
积分方程是很难的。
如果输入 xt 是白噪声,则可很容易求脉冲响应函数 g 。 这时 x t的自相关函数为
Rxx K , Rxx K
根据维纳-霍夫方程可得
Rxy
0
g
K
d
K
或
g Rxy
为了减小计算量,在选择数学模型时,应使模型的阶尽量低 一些,参数尽量少一些。但是,必须保证这个模型能准确地 描述系统。
对于参数模型的参数估计问题,由于参数估计方法不同,可 分为离线辨识和在线辨识两种模式。关于离线辨识,是在系 统模型结构和阶数确定的情况下,将全部输入、输出数据记 录下来,然后用一定的辨识方法,对数据进行集中处理,得 到模型参数的估计。
Rxx
1 T
0
x
t
y
t
dt
(13-8)
Rxy
0
g
Rxx
d
0
g
1 Leabharlann TT0x
参数模型 是由传递函数、微分方程或差分方程表示的数学 模型。如果这些模型的阶和系数都是已知的,则数学模型是 确定的。采用理论推导的方法得到的数学模型一定是参数模 型。建立系统模型的工作,就是在一定的模型结构条件下, 确定它的各个参数。因此,系统辨识的任务就是选定一个与 实际系统相接近的数学模型,选定模型的阶,然后根据输入 和输出数据,用最好的估计方法确定模型中的参数。
积分方程是很难的。
如果输入 xt 是白噪声,则可很容易求脉冲响应函数 g 。 这时 x t的自相关函数为
Rxx K , Rxx K
根据维纳-霍夫方程可得
Rxy
0
g
K
d
K
或
g Rxy
为了减小计算量,在选择数学模型时,应使模型的阶尽量低 一些,参数尽量少一些。但是,必须保证这个模型能准确地 描述系统。
对于参数模型的参数估计问题,由于参数估计方法不同,可 分为离线辨识和在线辨识两种模式。关于离线辨识,是在系 统模型结构和阶数确定的情况下,将全部输入、输出数据记 录下来,然后用一定的辨识方法,对数据进行集中处理,得 到模型参数的估计。
Rxx
1 T
0
x
t
y
t
dt
(13-8)
Rxy
0
g
Rxx
d
0
g
1 Leabharlann TT0x
《系统辨识第三章》PPT课件

(N+1)时刻的估计输出值
之差。
第五十五页,共161页。
55
递推公式基本形成,但其中涉及矩阵求逆运算,即 为了避免求逆运算,由矩阵反演公式: 令
第五十六页,共161页。
56
最后,加权最小二乘递推算法归纳如下:
在上列式中,令
,得最小二乘递推算法。
第五十七页,共161页。
57
二、初值的确定
进行递推估计,必须设定初值
由于最小二乘法比较简单实用,而且又可与其他辨识
方法相组合,因此最小二乘辨识是一种基本的、重要的辨 识方法。
第四页,共161页。
4
§3-1 最小二乘法
一、最小二乘辨识方程
用最小二乘辨识技术辨识系统的数字模型的原理方 块图如下:
被辨识系统
测量装置
D/A
A/D
计算机
(最小二乘辨识 算法)
数学模型
第五页,共161页。
但由于简单实用,仍不失为一种好的参数估计方法,
为了克服最小二乘法的不足,在最小二乘法的基础
上,发展了辅助变量法和广义最小二乘法,但计算
量较大。
第三十一页,共161页。
31
例3-2 设有下列二阶系统
输入序列 为振幅等于1的伪随机二位式序列, 噪声 为零均值且方差为 可调正态 分布随机数序列。试说明最小二乘估计精度。
5
被辨识系统
测量装置
D/A
A/D
计算机
(最小二乘辨识算法)
数学模型
设被辨识系统的脉冲传递函数为
第六页,共161页。
6
则当存在观测误差 及建模误差时,相应的差分方程:
式中, 称为方程误差, 为模型参数向量;若令 代 表真实参数向量,显然有
系统辨识课件-经典的辨识方法

T1 S2 T3 U2 0 U4
S 2 T3 T3 S4 S 4 T5 0 U4 U4 0 0 U6
ˆ b0 S 0 ˆ T b1 1 ˆ S2 b2 ˆ 0 a ˆ 1 U 2 a 2 0 ˆ a3
2 T ˆ ( )u (t )d g ( )u (t )d lim ( ) z (t ) g dt 0 T 0 T 0
1 T ˆ lim ( ) z (t ) g ( )u (t )d u (t )dtd 0 0 g ( ) 0 T T 0 1 T ˆ ( )u (t )d u (t )dt 0 lim ( ) z (t ) g 0 0 T T
4.2 阶跃响应法 4.2.1 阶跃响应的辨识 通过手动操作,使过程工作在所需测试的负荷下,稳定运行一段时间 ,快速改变过程的输入量,并用记录仪或数据采集系统同时记录过程输入 和输出的变化曲线。
4.2.2 阶跃响应求过程的传递函数 ● 归一化: u (t ) u(t ) / U0 U 0 为输入信号幅度 输入:
0 1 An 2
0 0 A1
b1 0 A1 b2 0 A2 bm 1 An 0
● 传递函数阶次的确定: 判别各阶面积是否大于零
● Laplace极限定理求过程的传递函数 设:
K 1 lim h1 (t )
hr (t ) [ K r 1 hr 1 ( )]d
0