芳香亲电和亲核取代反应

合集下载

芳环的取代反应

芳环的取代反应

芳环上的取代反应:(1)亲电取代反应(2)亲核取代反应 一、芳环的亲电取代反应 A 、芳环上的亲电取代历程:芳香族与亲电试剂作用时,亲电试剂先与离域的π电子结合,生成π络合物,接着亲电试剂从苯环的π体系中得到两个π电子与苯环的一个碳原子形成σ键,生成σ络合物。

此时这个碳原子由sp2杂化变成sp3杂化,苯环中的六个碳原子形成的闭合共轭体系被破环,变成四个π电子离域在五个碳原子上。

根据共轭共振论的观点,σ络合物是三个碳正离子共振结构的共振杂化体,其能量比苯环高,不稳定。

它很容易从sp3杂化碳原子上失去一个质子,碳原子由sp3杂化变成sp2杂化,再形成六个π电子离域的闭合共轭体系——苯环,从而降低了苯环的能量,产物比较稳定,生成取代苯。

1、亲电试剂的产生HNO 3+2H 2SO4NO 2++H 3O ++2HSO 4-亲电试剂2、π-络合物的形成+NO 2π-络合物23、σ-络合物的形成NO 2+HNO2σ-络合物硝基所在碳为sp 3杂化 4、消去-H ++NO 2H NO 2快B 、苯环上亲电取代反应的定位规律:从反应速度和取代基进入的位置进行考虑1、 第一类定位基(邻,对位定位基):(除卤素外,卤素对芳环有致钝作用)具有+I 或是+C 效应,其作用是增大芳环的电子云密度。

致活基NH 2NHR2OHORNHCROPhR致钝基F Cl BrI2、 第二类定位基(间位定位基):具有-I 或-C 效应,使芳环上的电子云密度降低,均为致钝基NO 2NR 3COOHCOORSO 3HCNCHOCROCCl 3C 、影响亲电取代的因素:(1)芳环上取代基对于E +进入芳环位置的影响第一类定位基-邻对位定位基第二类定位基-间位定位基共振式越多, 正电荷分散程度越大,芳正离子越稳定。

(2) 动力学控制与热力学控制: α位取代-动力学控制产物; β位取代-热力学控制产物。

(3) 邻位和对位定向比:a 亲电试剂的活性越高,选择性越低。

有机化学中的芳香亲核取代与芳香亲电取代

有机化学中的芳香亲核取代与芳香亲电取代

有机化学中的芳香亲核取代与芳香亲电取代芳香亲核取代和芳香亲电取代是有机化学中的两个重要反应类型。

这两种反应是有机芳香化合物中的氢原子被置换为另一种原子或基团的过程。

本文将详细介绍芳香亲核取代和芳香亲电取代的原理、机理和应用。

一、芳香亲核取代芳香亲核取代反应是指芳香化合物中的氢原子被一个亲核试剂取代的过程。

亲核试剂可能是氢氧根离子、卤素离子、芳基负离子等。

这种反应一般需要在碱性条件下进行。

芳香亲核取代反应的机理是由共轭碳氢键的特殊性质决定的。

芳香环中的π电子可以共享给亲核试剂,而由于环上的π电子非常稳定,取代反应的活性较低,因此需要在碱性条件下进行。

常见的芳香亲核取代反应有苯酚的溴化反应、苯的硝化反应等。

苯酚的溴化反应以环境中的溴离子为亲核试剂,生成溴苯和溴化氢。

苯的硝化反应以硝酸为亲核试剂,生成硝基苯和水。

这些反应在有机合成中具有重要意义,可以用于合成药物、香料等化合物。

二、芳香亲电取代芳香亲电取代反应是指芳香化合物中的氢原子被一个亲电试剂取代的过程。

亲电试剂可能是正离子、电子不足的分子等。

这种反应一般需要在酸性条件下进行。

芳香亲电取代反应的原理是由共轭芳香体系的特殊稳定性决定的。

共轭芳香体系能够吸引亲电试剂的正电荷,使其参与反应。

芳香环上的π电子提供了稳定性和活性中心,使得亲电试剂能够与芳香化合物反应。

常见的芳香亲电取代反应有苯的硝化反应、苯的磺化反应等。

苯的硝化反应以浓硝酸为亲电试剂,在酸性条件下发生取代反应,生成硝基苯和水。

苯的磺化反应以浓硫酸为亲电试剂,生成苯磺酸和水。

这些反应在有机合成中也具有重要意义,可以用于合成各种化合物。

三、芳香亲核取代与芳香亲电取代的比较芳香亲核取代和芳香亲电取代在机理和反应条件上有明显的区别。

芳香亲核取代需要在碱性条件下进行,而芳香亲电取代需要在酸性条件下进行。

此外,芳香亲核取代的亲核试剂通常是负离子,而芳香亲电取代的亲电试剂通常是正离子或电子不足的分子。

两种反应类型在有机合成中有着不同的应用。

芳香族化合物的取代反应

芳香族化合物的取代反应
在芳基正离子机理中,C-H键的断裂不在决速步骤发 生,无同位素效应; 在芳环硝化反应中证实无同位素效应。
(D)H (D)H NO2 H(D) HNO3/H2SO4 H(D) H(D) kH/kD = 1.05 (D)H (D)H NO2 H(D) NO2 H(D)
容易观察到较小的同位素效应 (kH/kD = 1-3,而非正常的6-7): 第一步具有可逆性及由此引起 的分配效应所产生的。
:
:
:
:OMe
+
H
E
H
E :
H
E : :OMe H E
H
E
:OMe
+
:
:OMe
+
H E
H E
+
化学
-I > +C ,钝化苯环:X
Cl
Cl E H H E
B间位定位基 的定位能力次序大致为(从强到弱) 2.
-NR3, -NO2, -CF3, -CCl3, -CN, -SO3H, -CHO, -COR,-COOH, -CONH2。
反 应 进 程
化学
2. 同位素效应 当一个反应进行时,在决定反应速率的步骤中发生 了反应物分子的同位素键的断裂,将显示初级动力 学同位素效应。最常见的是,反应物分子中的氢被 氘取代后,反应时有速率上的不同,这种变化称为 氘同位素效应,用kH/kD表示。 例如下列反应有 动力学同位素效 应,说明质子是 在决速步的失去 的:
CH2CH3 H
CH3CH2 + [AlCl3Br]
CH2CH3
H+
+
HBr AlCl3
化学
特点: 1°常用的催化剂是无水AlCl3,此外 FeCl3、BF3、 无水HF、SnCl4、ZnCl2、H3PO4、H2SO4等都有催 化作用。

芳环的亲电取代、亲核取代反应及芳环取代基的反应

芳环的亲电取代、亲核取代反应及芳环取代基的反应
——活化作用影响 > 钝化作用影响 ——强活化作用的影响 > 弱活化作用的影响 (两个活化基存在时,则强活化基决定定位
两个钝化基存在时,则弱钝化基决定定位) —— 活性作用大小接近时,获得混合物 —— 空阻大的位置难进入
多取代苯的定位效应:
多取代苯的定位效应:
位阻较大
多取代苯的定位效应:
二、取代基对芳环亲电取代反应的影响
总反应机理如下:
E
+E
H
Step 1: 亲电试剂进攻苯环的
键,形成碳正离子
Nu
E 取代产物具有芳香性
E
Nu
加成产物失去芳香性
Nu
Step 2: 脱去一个质子, 回复芳香稳定结构
一、芳环的亲电取代反应及机制
2. Reaction coordinate diagrams:
一、芳环的亲电取代反应及机制
HCl
Cu HBr
N2+ Cl - 1) Cu, Na2SO3 2) H+
Cu
Cl Br
SO3H
四、芳环取代基的反应
5、 芳香重氮盐的偶联反应(与胺或酚反应)
——芳香重氮盐作为亲电试剂与非常活泼的芳香化合酚类或胺 类发生反应,生成偶氮化合物。
HO HO
+
CH3 +
N2+ Cl-
Br N2+ Cl-
particu larly s ta bl e
CH3
pa ra -
EH
m e ta-
CH3
E H
particu larly s ta bl e CH3
EH CH3 E H
CH3
EH CH3 E H
OH, OR;NH2, NHR, NR2:强致活基,邻对位定位基。

理论有机第九章-芳环上的亲电和亲核取代反应

理论有机第九章-芳环上的亲电和亲核取代反应

L Nu-
L Nu Nu

F 》Cl,Br, I
OCH3
H3CO OC2H5
OC2H5
O2N
NO2 KOC2H5 O2N
NO2 OCH3 O2N
NO2
NO2
NO2
NO2
L δ+
L Nu
Nu
+ Nu-
L-
δ+


NO2
NO2
NO2
CH3O OCH3
又称为SNAr2历程
K+ NO2
NO2 Meisenheimer络合物已被分离出
Zn-Hg HCl
CH3CH2CH2CH2
O
R C Cl + AlCl3
O R C Cl AlCl3
O R C Cl AlCl3
RCO
R C O + AlCl4
R
+C
O
H CR
O + AlCl4
H CR O
CR
O + HCl + AlCl3
O
+
H2C
C O
AlCl3
H2C C
CH2 CH2
Cl C O
-H+
NH2
N2+Cl-
I
NaNO2
KI
HCl
NN
+ CuCN
Zn +HCl
N2Cl
CN NH2 + NH3
NaNO2/HCl ArNH2 ArNH2 NaNO2/HCl
ArN2Cl HBF4 CuX
ArN2Cl
ArF ArX (X=Cl,Br)
合成???

大学有机化学反应方程式总结芳香醇的亲电取代反应与醛的亲核加成反应

大学有机化学反应方程式总结芳香醇的亲电取代反应与醛的亲核加成反应

大学有机化学反应方程式总结芳香醇的亲电取代反应与醛的亲核加成反应在有机化学中,芳香醇的亲电取代反应和醛的亲核加成反应是两类重要的反应类型。

本文将对这两类反应进行总结,并给出相应的反应方程式。

一、芳香醇的亲电取代反应芳香醇的亲电取代反应是指芳香醇通过亲电试剂的攻击,发生取代反应,取代掉醇基团。

这类反应常用于有机合成中,能够合成具有重要生物学活性的化合物。

1. 酸催化的芳香醇醚化反应芳香醇与酸催化剂反应生成相应的芳香醚。

反应方程式如下:Ar-OH + R-OH → Ar-O-R + H2O2. 酸催化的芳香醇酯化反应芳香醇与酸催化剂反应生成相应的芳香酯。

反应方程式如下:Ar-OH + RCOOH → Ar-OCOR + H2O3. 脱水缩合反应芳香醇通过酸催化剂与醛或酮缩合生成相应的芳香醚。

反应方程式如下:Ar-OH + RCHO → Ar-OR + H2O4. 酸催化的烷基化反应芳香醇与卤代烷反应生成烷基取代的芳香醚。

反应方程式如下:Ar-OH + R-X → Ar-OR + HX二、醛的亲核加成反应亲核加成是指亲核试剂通过攻击醛的羰基碳,与醛反应生成加成产物。

醛的亲核加成反应广泛应用于制备醇、醚、胺等有机化合物。

1. 羟胺与醛的加成反应醛与羟胺反应生成相应的胺类化合物。

反应方程式如下:RCHO + NH2OH → RCH=NHOH + H2O2. 羟胺与醛的缩合反应醛与羟胺反应生成相应的肟类化合物。

反应方程式如下:RCHO + NH2OH → R-C(=NOH)-R + H2O3. 亚胺与醛的加成反应醛与亚胺反应生成相应的缩酮类化合物。

反应方程式如下:RCHO + R'NR'' → R-C(=NR'')R'' + H2O4. 脱氧反应醛与次硫酸氢钠反应生成相应的烯醇化合物。

反应方程式如下:RCHO + NaHSO3 → R-CH=O + NaHSO4以上是大学有机化学中芳香醇的亲电取代反应和醛的亲核加成反应的一些常见例子和反应方程式。

有机化学基础知识点整理芳香亲电取代和芳香亲核取代反应

有机化学基础知识点整理芳香亲电取代和芳香亲核取代反应

有机化学基础知识点整理芳香亲电取代和芳香亲核取代反应有机化学基础知识点整理芳香亲电取代和芳香亲核取代反应在有机化学中,芳香亲电取代和芳香亲核取代反应是两种重要的反应类型。

它们涉及到芳香化合物的化学反应,对于理解和应用有机化学知识具有重要意义。

本文将对芳香亲电取代和芳香亲核取代反应进行整理和讲解。

一、芳香亲电取代反应芳香亲电取代反应是指在芳香环上发生的亲电取代反应。

亲电取代反应是指一个亲电试剂(通常是正离子或部分正离子)与芳香化合物发生反应,取代一个芳基上的原子或基团。

这种反应的机理通常经历亲电试剂的攻击,形成的中间体再经历解离、重排等步骤最终生成产物。

常见的芳香亲电取代反应有取代基的烷基化、酰基化、酰基氨基化、酰基氧代化等。

其中,取代基的烷基化反应是最为基础和典型的芳香亲电取代反应。

以氯代甲烷为例,氯离子是一个强亲电试剂,它可以与苯发生取代反应,生成氯代苯。

芳香亲电取代反应的速率受到电子密度、位阻效应和取代基效应等因素的影响。

电子密度越大,反应速率越快;位阻效应越大,反应速率越慢;取代基的性质也会影响反应速率。

二、芳香亲核取代反应芳香亲核取代反应是指在芳香环上发生的亲核取代反应。

亲核取代反应是指一个亲核试剂与芳香化合物发生反应,取代一个芳基上的离去基。

亲核试剂通常是以亲核离子形式存在,如氢氧根离子、氨根离子等。

芳香亲核取代反应的机理通常经历亲核试剂的进攻、解离、重排等步骤最终生成产物。

常见的芳香亲核取代反应有碱水解、碱醇解、碱胺解等,以氢氧根离子为例,它可以与苯发生取代反应,生成苯酚。

与芳香亲电取代反应相比,芳香亲核取代反应的速率受到反应性的影响更大。

反应性越高,反应速率越快;另外,电子密度、位阻效应和取代基效应等因素也会影响反应速率。

三、芳香亲电取代和芳香亲核取代反应的应用芳香亲电取代和芳香亲核取代反应在有机合成中有着广泛的应用。

根据有机化学的原理和方法,可以利用这两种反应来合成不同的有机化合物。

有机化学基础知识点整理亲电芳香取代和亲核芳香取代反应

有机化学基础知识点整理亲电芳香取代和亲核芳香取代反应

有机化学基础知识点整理亲电芳香取代和亲核芳香取代反应有机化学基础知识点整理:亲电芳香取代和亲核芳香取代反应亲电芳香取代和亲核芳香取代反应是有机化学中常见的反应类型,它们都与芳香族化合物的反应有关。

本文将对亲电芳香取代和亲核芳香取代的基本概念、反应条件、机理和应用进行整理和探讨。

1. 亲电芳香取代亲电芳香取代反应是指在芳香环上引入一个新的官能团(通常是通过一个亲电试剂)的反应过程。

该反应发生的条件包括有合适的亲电试剂、溶剂和温度,以及适当的反应过程。

亲电试剂可以是卤素化合物、羰基化合物、硝酸酯等。

反应机理通常包括电子亲和性试剂的亲电攻击、芳香环上电子密度的变化和氢的碱性。

2. 亲电芳香取代的应用2.1 酰基化反应酰基化反应是一种常见的亲电芳香取代反应,常用的试剂为酰氯。

该反应在有机合成中广泛应用,用于引入酰基团。

2.2 硝化反应硝化反应是指芳香烃在硝化混酸的条件下引入硝基基团。

硝基芳香化合物广泛应用于药物合成、爆炸物制备和染料合成等领域。

3. 亲核芳香取代亲核芳香取代反应是指在芳香环上引入一个新的官能团(通常是通过一个亲核试剂)的反应过程。

与亲电芳香取代不同,亲核芳香取代的反应机理涉及到亲核试剂的亲核攻击和芳香环上电子密度的变化。

常见的亲核试剂有醇、氨基化合物等。

4. 亲核芳香取代的应用4.1 氢化反应氢化反应是指通过亲核试剂在芳香环上引入氢原子,形成饱和环的反应。

该反应广泛应用于工业催化反应和药物合成等领域。

4.2 氨基化反应氨基化反应是指在芳香环上引入氨基基团的反应。

该反应在药物合成和聚合物合成等领域具有重要应用。

综上所述,亲电芳香取代和亲核芳香取代是有机化学中重要的反应类型。

它们的应用广泛,对于有机合成和药物合成等领域具有重要意义。

深入理解亲电芳香取代和亲核芳香取代的基本概念、反应条件和机理,对于提高有机化学研究的水平和进一步拓宽应用领域具有重要作用。

(本文仅为示例,实际内容请根据具体要求和知识点进行撰写)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Nu:RO-、CN-、RS-、-NH2等
8.5 芳环上的亲核取代反应
一.SNAr2历程
例:
Cl
Cl Nu
Nu
Nu-
-Cl-
NO2
NO2
Cl
+ NaOH
360℃ 高压
NO2 OH
Cl NO2 + NaHCO3 130℃
OH NO2
8.5 芳环上的亲核取代反应
一.SNAr2历程
Cl NO2 + NaHCO3 100℃
常见取代基定位效应
类别 邻 对 位 取 代 基
间位取代基
性质 致 活
致钝 致 钝
取 最强 强 中 弱 弱

最强

NR2
O NHC R
CH3
F
NO2 CN
NHR O CR3 Cl SO3H
基 O NH2 OC R
OH OR
Br CHO
ቤተ መጻሕፍቲ ባይዱ
NR3
I COCH3
COON
COOCH3
CONH2
电子 +I 效应 +C
二.亲电取代反应历程 三.亲电取代反应活性和定位效应
8.1 芳香亲电取代反应
卤代
+
X2
FeX3 或 Fe
X + HX
卤苯
硝化 磺化
反应活性 CI2>Br2>I2
+HNO3 浓50H~62S0O。4C
NO2+ H2O
硝基苯
+
HO-SO3H
70-80。C 。 或发烟 H2SO4 25 C
SO3H + H2O
反应速度与重氮盐的浓度成正比,而与亲核试剂 的浓度无关,
苯环间位上有供电子基时,如-OH、-OCH3、 -CH3等可使反应速度加快;
有吸电子时,如-COOH、-SO3H、-CI、-NO2等 使反应速度减慢。
8.5 芳环上的亲核取代反应
三.苯炔机理
Cl NH2-
NH2-
NH2 +
NH3
NH2
高等有机化学
第8章 芳香亲电和亲核取代反应
第8章 芳香亲电和亲核取代反应
8.1 亲电取代反应 8.2 结构与反应活性 8.3 同位素效应 8.4 离去基团效应 8.5 芳香亲核取代反应
8.1 芳香亲电取代反应
一.亲电取代反应类型 1.卤代反应 2.硝化反应 3.磺化反应 4.付-克烷基化反应及其相关的反应 5.付-克酰基化及其相关的反应 6.与重氮化合物的偶联反应
σ-配合物
卤素正离子 硝酰正离子 三氧化硫 烷基正离子 酰基正离子
8.1 芳香亲电取代反应
π络合物
络合物
一般来说, π络合物的形成是可逆的; 络合物的形成基本上是不可逆的, 且通常是速度的控制步骤。
8.2 结构与反应活性
定 第一类定位基-邻对位定位基
位 效
第二类定位基-间位定位基

反 致活效应:活化基团使芳环的反应活性提高; 应 活 致钝效应:钝化基团使芳环的反应活性降低。 性
苯磺酸
8.1 芳香亲电取代反应
烷基化 酰基化
+ R-X AlX3
R + HX
烷基苯
= =
O
+
R-C-X
(1)AlCl3 (2) H2O
O -C-R+ HX
芳香酮
8.1 芳香亲电取代反应
苯环亲电取代反应历程小结
+ E+
E+ 慢
+
H
E

E + H+
亲电试剂
X+ NO2+ SO3 R+ R-C+=O
+ E+
k1
k-1
H
+
k2 E
E + H+
k2 > k1, k-1时,无同位素效应
k2 < k1, k-1时,有同位素效应 芳环上多数亲电取代反应观察不到同位素效应, 但在有些反应中也观察到了同位素效应的存在。
8.4 离去基团效应
•在大量的芳香族亲电取代反应中,离去基团是质子, 质子确是最好的离去基团之一。其他离去基团的离去 能力次序如下:
8.4 离去基团效应
•(1) 无需协助即离去(即对于离去基团是SN1反应) 的基团:
•(2)需要从外界亲核试剂剂来的帮助才离去(SN2机理) 的基团:
这种顺序可以帮助人们估计形成什么样的芳烃正离 子,从而得到可能发生哪一个亲电取代的概念。
8.5 芳环上的亲核取代反应
• 芳环上电子云密度大,富电子的亲核试剂不易接近, 芳基正离子(如C6H5+)不稳定、不易生成。因此, 芳环上的亲核取代反应对反应物、试剂及反应条件 等都有一定限制,大多数的芳香族化合物在芳环上 不起亲核取代反应。
+C>-I
+C< -C
+I -I
-I
-I
+I:供电诱导;-I:吸电诱导; +C:供电共轭;-C:吸电共轭
8.3 同位素效应
反应物分子中的氢被重氢置换后引起反应速率发
生变化,称为重氢同位素效应。
当C-H、O-H、N-H键的断裂发生在决定速率步 骤时,就会出现同位素效应,kH/kD >1 一般C-H:C-D快7倍 C-H:C-T快20倍
8.5 芳环上的亲核取代反应
一.SNAr2历程 • 亲核试剂首先与芳环加成,生成一种叫迈森海默
(Meisen heimer)络合物的活性中间体,
• 然后从中间体中消去一个取代基而完成反应。 • 反应是一个双分子反应,通常第一步是定速步骤。
L + Nu- 慢
LL Nu

Nu + L-
• L可为卤素或烷氧基等,L的邻位或对位必须有强 吸电子基,如-NO2、-CN、-COR、-CF3等,使中 间体的稳定性增加,有助于反应的进行。
8.5 芳环上的亲核取代反应
二.SNAr1历程

CuCl


CuBr


N2+Cl-
KI

亲 核
H2O


H3PO2


CuCN
Cl
Br 桑德迈尔反应
I OH
CN H2O H+
COOH
8.5 芳环上的亲核取代反应
二.SNAr1历程 例如:重氮盐水解生成酚的反应
N N -N2
+H2O
OH + H+
NO2
Cl
O2N
NO2 + NaHCO3 35℃
NO2
OH NO2
NO2
OH
O2N
NO2
NO2
8.5 芳环上的亲核取代反应
二.SNAr1历程
• 芳香族重氮盐是合成芳香族化合物的一个重要中 间体,重氮基(N2+)可被其他原子或原子团取代并 放出氮气。重氮基(N2+)离去倾向特别强,故取代 反应较易进行。
• 芳环上的亲核取代反应在理论上和实际合成中也是 很重要的。
• 芳环上的亲核取代反应很少是一步反应,而大多数 涉及不同的活性中间体。从合成的观点,芳香重氮 化合物,其中氮作为离去基团的反应最重要。
8.5 芳环上的亲核取代反应
一.通过SNAr2历程(加成-消除历程)的取代反应 二.通过SNAr1历程(重氮离子)的亲核取代反应 三.通过苯炔机理(消除-加成)的取代反应
CH3 NH2-
Cl
CH3 NH3
CH3 +
NH2
CH3 NH2
8.5 芳环上的亲核取代反应
三.苯炔机理
Cl
Cl
Cl
+
Cl


消除哪个H?
卤素二个邻位均有可消除的氢时,优先消除酸性强的氢
相关文档
最新文档