浙江中考数学考点专题复习含答案

合集下载

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题14 圆(解析版)

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题14  圆(解析版)

专题14圆一、单选题1.(2022·宁波)已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积为( )A .236πcmB .224πcmC .216πcmD .212πcm【答案】B【解析】4624S rl πππ==⋅⋅=侧2cm , 故选B .2.(2022·温州)如图,,AB AC 是O 的两条弦,⊥OD AB 于点D ,OE AC ⊥于点E ,连结OB ,OC .若130DOE ∠=︒,则BOC ∠的度数为( )A .95︒B .100︒C .105︒D .130︒【答案】B【解析】解:∵OD ⊥AB ,OE ⊥AC ,∴∠ADO =90°,∠AEO =90°,∵∠DOE =130°,∴∠BAC =360°-90°-90°-130°=50°,∴∠BOC =2∠BAC =100°,故选:B .3.(2022·丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m ,高为,则改建后门洞的圆弧长是( )A .5πm 3B .8πm 3C .10πm 3D .5π+2m 3⎛⎫ ⎪⎝⎭【答案】C 【解析】如图,连接AD ,BC ,交于O 点,∵90BDC ∠=︒ ,∴BC 是直径,∴4BC ===, ∵四边形ABDC 是矩形,∴122OC OD BC ===, ∵2CD =,∴OC OD CD ==,∴COD ∆是等边三角形,∴60COD ∠=︒,∴门洞的圆弧所对的圆心角为36060300︒-︒=︒ , ∴改建后门洞的圆弧长是11300300410221801803BC πππ︒⨯︒⨯⨯==︒︒(m), 故选:C4.(2022·杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( ) A .1M B .2M C .3M D .4M【答案】B【解析】解:∵点A (4,2),点P (0,2),∴P A ⊥y 轴,P A =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,,设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩∴直线PB 的解析式为:y +2,当y =0+2=0,x =∴点M 1(0)不在直线PB 上,当x =y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y ,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上. 故选:B .5.(2022·湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连接PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A .B .6C .D .【答案】C【解析】 作线段MN 中点Q ,作MN 的垂直平分线OQ ,并使OQ =12MN ,以O 为圆心,OM 为半径作圆,如图,因为OQ 为MN 垂直平分线且OQ =12MN ,所以OQ =MQ =NQ ,∴∠OMQ =∠ONQ =45°,∴∠MON =90°,所以弦MN 所对的圆O 的圆周角为45°,所以点P 在圆O 上,PM 为圆O 的弦,通过图像可知,当点P 在P '位置时,恰好过格点且P M '经过圆心O ,所以此时P M '最大,等于圆O 的直径,∵BM =4,BN =2,∴MN ==∴MQ =OQ∴OM∴2P M OM '==故选 C .6.(2022·杭州)如图,已知△ABC 内接于半径为1的⊙O ,∠BAC =θ(θ是锐角),则△ABC 的面积的最大值为()A .()cos 1cos θθ+B .()cos 1sin θθ+C .()sin 1sin θθ+D .()sin 1cos θθ+【答案】D【解析】解:当△ABC 的高AD 经过圆的圆心时,此时△ABC 的面积最大,如图所示,∵AD ⊥BC ,∴BC =2BD ,∠BOD =∠BAC =θ,在Rt △BOD 中,sin θ= 1BD BD OB =,cos θ=1OD OD OB =, ∴BD =sin θ,OD =cos θ,∴BC =2BD =2sin θ,AD =AO +OD =1+cos θ,∴S △ABC =12AD •BC =12•2sin θ(1+cos θ)=sin θ(1+cos θ). 故选:D .二、填空题7.(2022·湖州)如图,已知AB 是⊙O 的弦,∠AOB =120°,OC ⊥AB ,垂足为C ,OC 的延长线交⊙O 于点D .若∠APD 是AD 所对的圆周角,则∠APD 的度数是______.【答案】30°##30度【解析】∵OC ⊥AB ,OD 为直径,∴BD AD =,∴∠AOB =∠BOD ,∵∠AOB =120°,∴∠AOD =60°,∴∠APD =12∠AOD =30°,故答案为:30°.8.(2022·宁波)如图,在△ABC 中,AC =2,BC =4,点O 在BC 上,以OB 为半径的圆与AC 相切于点A ,D 是BC 边上的动点,当△ACD 为直角三角形时,AD 的长为___________.【答案】32或65【解析】解:连接OA,①当D点与O点重合时,∠CAD为90°,设圆的半径=r,∴OA=r,OC=4-r,∵AC=4,在Rt△AOC中,根据勾股定理可得:r2+4=(4-r)2,解得:r=32,即AD=AO=32;②当∠ADC=90°时,过点A作AD⊥BC于点D,∵12AO•AC=12OC•AD,∴AD=AO AC OC⋅,∵AO=32,AC=2,OC=4-r=52,∴AD=65,综上所述,AD的长为32或65,故答案为:32或65.9.(2022·金华)如图,木工用角尺的短边紧靠⊙O于点A,长边与⊙O相切于点B,角尺的直角顶点为C,已知6cm,8cmAC CB==,则⊙O的半径为_____cm.【答案】253##183【解析】解:连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,如图所示:∵CB 与O 相切于点B ,∴OB CB ⊥,∴90CBD BDA ACB ∠=∠=∠=︒,∴四边形ACBD 为矩形,∴8AD CB ==,6BD AC ==,设圆的半径为r cm ,在Rt △AOD 中,根据勾股定理可得:222OA OD AD =+,即r 2=(r −6)2+82,解得:253r =, 即O 的半径为253cm . 故答案为:253. 10.(2022·绍兴)如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或354【解析】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan ∠CBN =3x ,∵△CAD ,△ECD 都是等腰直角三角形,∴CA =CD ,EC =ED ,∠EDC =45°,∠CAN +∠ACN =90°,∠DCM +∠ACN =90°,则∠CAN =∠DCM ,在△ACN 和△CDM 中:∠CAN =∠DCM ,∠ANC =∠CMD =90°,AC =CD ,∴△ACN ≌△CDM (AAS ),∴AN =CM =10+x ,CN =DM =3x ,∵∠CMD =∠CED =90°,∴点C 、M 、D 、E 四点共圆,∴∠CME =∠CDE=45°,∵∠ENM =90°,∴△NME 是等腰直角三角形,∴NE =NM =CM -CN =10-2x ,Rt △ANC 中,AC =Rt △ECD 中,CD =AC ,CE 2CD , Rt △CNE 中,CE 2=CN 2+NE 2,∴()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54, ∵BE =BN +NE =x +10-2x =10-x ,∴BE =5或BE =354; 故答案为:5或354; 11.(2022·杭州)如图是以点O 为圆心,AB 为直径的圆形纸片,点C 在⊙O 上,将该圆形纸片沿直线CO 对折,点B 落在⊙O 上的点D 处(不与点A 重合),连接CB ,CD ,AD .设CD 与直径AB 交于点E .若AD =ED ,则∠B =_________度;BC AD的值等于_________.【答案】3635 2 +【解析】解:∵AD=DE,∴∠DAE=∠DEA,∵∠DEA=∠BEC,∠DAE=∠BCE,∴∠BEC=∠BCE,∵将该圆形纸片沿直线CO对折,∴∠ECO=∠BCO,又∵OB=OC,∴∠OCB=∠B,设∠ECO=∠OCB=∠B=x,∴∠BCE=∠ECO+∠BCO=2x,∴∠CEB=2x,∵∠BEC+∠BCE+∠B=180°,∴x+2x+2x=180°,∴x=36°,∴∠B=36°;∵∠ECO=∠B,∠CEO=∠CEB,∴△CEO∽△BEC,∴CE BE EO CE=,∴CE2=EO•BE,设EO=x,EC=OC=OB=a,∴a2=x(x+a),解得,x a(负值舍去),∴OE a,∴AE=OA-OE=a a,∵∠AED=∠BEC,∠DAE=∠BCE,∴△BCE∽△DAE,∴BC EC AD AE=,∴BC AD = 故答案为:36三、解答题12.(2022·绍兴)如图,半径为6的⊙O 与Rt △ABC 的边AB 相切于点A ,交边BC 于点C ,D ,∠B=90°,连接OD ,A D .(1)若∠ACB=20°,求AD 的长(结果保留π).(2)求证:AD 平分∠BDO .【答案】(1)43π;(2)见解析 【解析】(1)解:连接OA , ∵∠ACB =20°,∴∠AOD =40°, ∴180n r AD π=, 18040⨯π⨯6=43π=. (2)证明:OA OD =,OAD ODA ∠=∠∴, AB 切O 于点A ,OA AB ∴⊥,90B ∠=︒,//OA BC ∴,OAD ADB ∴∠=∠,ADB ODA ∴∠=∠,AD ∴平分BDO ∠.13.(2022·台州)如图,在ABC 中,AB AC =,以AB 为直径的⊙O 与BC 交于点D ,连接AD .(1)求证:BD CD =;(2)若⊙O 与AC 相切,求B 的度数;(3)用无刻度的直尺和圆规作出劣弧AD 的中点E .(不写作法,保留作图痕迹) 【答案】(1)证明见详解;(2)45B ∠=︒;(3)作图见详解【解析】 (1)证明:∵AB 是O 的直径, ∴90ADB ∠=︒, ∴AD BC ⊥, ∵AB AC =, ∴BD CD =. (2)∵O 与AC 相切, ∴90BAC ∠=︒, 又∵AB AC =, ∴45B ∠=︒.(3)如下图,点E 就是所要作的AD 的中点.14.(2022·湖州)如图,已知在Rt △ABC 中,90C ∠=︒,D 是AB 边上一点,以BD 为直径的半圆O 与边AC 相切,切点为E ,过点O 作OF BC ⊥,垂足为F .(1)求证:OF EC =;(2)若30A ∠=︒,2BD =,求AD 的长.【答案】(1)见解析;(2)1 【解析】(1)解:如图,连接OE ,∵AC 切半圆O 于点E ,∴OE ⊥A C ,∵OF ⊥BC ,90C ∠=︒, ∴∠OEC =∠OFC =∠C =90°. ∴四边形OFCE 是矩形, ∴OF =E C ; (2)∵2BD =, ∴112122OE BD ==⨯=, ∵30A ∠=︒,OE ⊥AC , ∴2212AO OE ==⨯=, ∴211AD AO DO =-=-=.15.(2022·嘉兴)如图,在廓形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为_______;折痕CD 的长为_______.【答案】 60°##60度 46【解析】作O 关于CD 的对称点M ,则ON =MN 连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将CD 沿弦CD 折叠∴点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F . ∴ME ⊥OA ,MF ⊥OB ∴90MEO MFO ∠=∠=︒∵120AOB ∠=︒∴四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒ 即EF 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF = ∴MEO MFO ≅(HL )∴1302EMO FMO FME ∠=∠=∠=︒∴6cos cos30ME OM EMO ===∠︒∴MN =∵MO ⊥DC∴12DN CD ==∴CD =故答案为:60°;16.(2022·温州)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE CD ⊥,交CD 延长线于点E ,交半圆于点F ,已知5,3BC BE ==.点P ,Q 分别在线段AB BE ,上(不与端点重合),且满足54AP BQ =.设,BQ x CP y ==.(1)求半圆O 的半径.(2)求y 关于x 的函数表达式.(3)如图2,过点P 作PR CE ⊥于点R ,连结,PQ RQ . ①当PQR 为直角三角形时,求x 的值.②作点F 关于QR 的对称点F ',当点F '落在BC 上时,求CF BF ''的值. 【答案】(1)158;(2)5544y x =+;(3)①97或2111;②199 【解析】(1)解:如图1,连结OD .设半圆O 的半径为r .∵CD 切半圆O 于点D , ∴OD CD ⊥. ∵BE CD ⊥, ∴OD BE ∥,∴△∽△COD CBE , ∴OD CO BE CB=, 即535r r -=, ∴158r =,即半圆O 的半径是158.(2)由(1)得:1555284CA CB AB =-=-⨯=. ∵5,4AP BQ x BQ ==, ∴54AP x =. ∵CP AP AC =+, ∴5544y x =+. (3)①显然90PRQ ∠<︒,所以分两种情况. ⅰ)当90RPQ ∠=︒时,如图2.∵PR CE ⊥,∴90ERP ∠=︒. ∵90E ∠=︒,∴四边形RPQE 为矩形, ∴PR QE =.∵333sin 544PR PC C y x =⋅==+, ∴33344x x +=-,∴97x =.ⅰ)当90PQR ∠=︒时,过点P 作PH BE ⊥于点H ,如图3,则四边形PHER 是矩形,∴,PH RE EH PR ==. ∵5,3CB BE ==,∴4CE ==. ∵4cos 15CR CP C y x =⋅==+, ∴3PH RE x EQ ==-=, ∴45EQR ERQ ∠=∠=︒, ∴45PQH QPH ∠=︒=∠, ∴3HQ HP x ==-,由EH PR =得:33(3)(3)44x x x -+-=+, ∴2111x =. 综上所述,x 的值是97或2111.②如图4,连结,AF QF ',由对称可知QF QF =',F QR EQR ∠=∠'∵BE ⊥CE ,PR ⊥CE , ∴PR ∥BE ,∴∠EQR =∠PRQ ,∵BQ x =,5544CP x =+, ∴EQ =3-x , ∵PR ∥BE , ∴CPR CBE △∽△,∴CP CBCR CE=, 即:x CR +=555444,解得:CR =x +1, ∴ER =EC -CR =3-x , 即:EQ = ER∴∠EQR =∠ERQ =45°, ∴45F QR EQR ∠=∠='︒ ∴90BQF ∠='︒, ∴4tan 3QF QF BQ B x ==⋅='. ∵AB 是半圆O 的直径, ∴90AFB ∠=︒, ∴9cos 4BF AB B =⋅=, ∴4934x x +=, ∴2728x =, ∴319119CF BC BF BC BF BF BF x -==''''=-='-. 17.(2022·宁波)如图1,O 为锐角三角形ABC 的外接圆,点D 在BC 上,AD 交BC 于点E ,点F 在AE 上,满足,∠-∠=∠∥AFB BFD ACB FG AC 交BC 于点G ,BE FG =,连结BD ,DG .设ACB α∠=.(1)用含α的代数式表示BFD ∠.(2)求证:△≌△BDE FDG .(3)如图2,AD 为O 的直径. ①当AB 的长为2时,求AC 的长. ②当:4:11=OF OE 时,求cos α的值. 【答案】(1)902︒∠=-BFD α;(2)见解析;(3)①3;②5cos 8α=【解析】(1)∵∠-∠=∠=AFB BFD ACB α,①又∵180∠+∠=︒AFB BFD ,② ②-①,得2180∠=︒-BFD α, ∴902︒∠=-BFD α.(2)由(1)得902︒∠=-BFD α,∵∠=∠=ADB ACB α,∴180902∠=︒-∠-︒-∠=FBD ADB BFD α,∴DB DF =. ∵FGAC ,∴∠=∠CAD DFG . ∵CAD DBE ∠=∠, ∴∠=∠DFG DBE . ∵BE FG =,∴()BDE FDG SAS △≌△. (3)①∵△≌△BDE FDG , ∴∠=∠=FDG BDE α,∴2∠=∠+∠=BDG BDF EDG α. ∵DE DG =, ∴()11809022∠=︒-∠=︒-DGE FDG α, ∴在BDG 中,3180902∠=︒-∠-∠=︒-DBG BDG DGE α, ∵AD 为O 的直径, ∴90ABD ∠=︒.∴32∠=∠-∠=ABC ABD DBG α. ∴AC 与AB 的度数之比为3∶2.∴AC 与AB 的的长度之比为3∶2, ∵2AB =, ∴3=AC . ②如图,连结BO .∵OB OD =,∴∠=∠=OBD ODB α,∴2∠=∠+∠=BOF OBD ODB α. ∵2∠=BDG α, ∴∠=∠BOF BDG . ∵902∠=∠=︒-BGD BFO α,∴△∽△BDG BOF ,设BDG 与BOF 的相似比为k , ∴==DG BDk OF BO. ∵411=OF OE , ∴设4OF x =,则114OE x DE DG kx ===,, ∴114==+=+OB OD OE DE x kx , 154==+BD DF x kx ,∴154154114114++==++BD x kx kBO x kx k, 由154114+=+kk k,得247150+-=k k ,解得154k =,23k =-(舍), ∴11416=+=OD x kx x ,15420=+=BD x kx x , ∴232==AD OD x , 在Rt ABD △中,205cos 328∠===BD x ADB AD x , ∴5cos 8α=.18.(2022·金华)如图1,正五边形ABCDE 内接于⊙O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接,,AM MN NA .(1)求ABC ∠的度数.(2)AMN 是正三角形吗?请说明理由.(3)从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值. 【答案】(1)108︒;(2)是正三角形,理由见解析;(3)15n = 【解析】(1)解:∵正五边形ABCDE . ∴BC CD DE AE AB ====,∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒;(2)解:AMN 是正三角形,理由如下: 连接,ON FN ,由作图知:FN FO =,∵ON OF =, ∴ON OF FN ==, ∴OFN △是正三角形,∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒, 同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠, ∴AMN 是正三角形; (3)∵AMN 是正三角形,∴2120A N A N M O =∠=︒∠. ∵2AD AE =,∴272144AOD ∠=⨯︒=︒, ∵DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==. 19.(2022·丽水)如图,以AB 为直径的O 与AH 相切于点A ,点C 在AB 左侧圆弧上,弦CD AB ⊥交O 于点D ,连接,AC AD .点A 关于CD 的对称点为E ,直线CE 交O 于点F ,交AH 于点G .(1)求证:CAG AGC ∠=∠;(2)当点E 在AB 上,连接AF 交CD 于点P ,若25EF CE =,求DP CP的值; (3)当点E 在射线AB 上,2AB =,以点A ,C ,O ,F 为顶点的四边形中有一组对边平行时,求AE 的长. 【答案】(1)证明过程见解析 (2)57352或22【解析】 【分析】(1)设CD 与AB 相交于点M ,由O 与AH 相切于点A ,得到90BAG ,由CD AB ⊥,得到90AMC ∠=,进而得到AG CD ∥,由平行线的性质推导得,CAG ACD ,AGC FCD ,最后由点A 关于CD 的对称点为E 得到FCD ACD ∠=∠即可证明.(2)过F 点作FK AB ⊥于点K ,设AB 与CD 交于点N ,连接DF ,证明FAD ADC ∠=∠得到DP AP =,再证明CPA FPD △≌△得到PF PC =;最后根据KEF NEC △∽△及APN AFK △∽△得到25KE EF EN CE 和512PA ANAF AK ,最后根据平行线分线段成比例求解.(3)分四种情形:如图1中,当∥OC AF 时,如图2中,当∥OC AF 时,如图3中,当AC OF ∥时,如图4中,当AC OF ∥时,分别求解即可.. (1)证明:如图,设CD 与AB 相交于点M ,∵O 与AH 相切于点A ,∴90BAG ,∵CD AB ⊥,∴90AMC ∠=,∴AG CD ∥,∴CAG ACD ,AGC FCD ,∵点A 关于CD 的对称点为E ,∴FCD ACD ∠=∠,∴CAG AGC ∠=∠.(2)解:过F 点作FK AB ⊥于点K ,设AB 与CD 交于点N ,连接DF ,如下图所示:由同弧所对的圆周角相等可知:FCD FAD ,∵AB 为O 的直径,且CD AB ⊥,由垂径定理可知:AC AD =, ∴ACD ADC ∠=∠,∵点A 关于CD 的对称点为E ,∴FCD ACD ∠=∠,∴FAD FCD ACD ADC ∠=∠=∠=∠,即FAD ADC ∠=∠, ∴DP AP =,由同弧所对的圆周角相等可知:ACP DFP ,且CPA FPD ,∴CPA FPD △≌△, ∴PC PF =,∵FK AB ⊥,AB 与CD 交于点N ,∴90FKE CNE . ∵KEF NEC ,90FKE CNE , ∴KEF NEC △∽△, ∴25KEEF EN CE ,设KE =2x ,EN =5x ,∵点A 关于CD 的对称点为E ,5AN EN x ∴==,10AE AN NE x =+=,12AK AE KE x =+=, 又FK PN ∥,∴APN AFK , ∴551212PA ANx AF AK x . ∵FCD CDA ,∴CF AD ∥, ∴57DPAP AP CP PF AF AP ; (3)解:分类讨论如下:解:如图1中,当∥OC AF 时,连接OC ,OF ,设AGF α∠=,则CAG ACD DCF AFG α∠=∠=∠=∠=,∵∥OC AF ,OCF AFC α∴∠=∠=,OC OA =,3OCA OAC α∴∠=∠=,45OAG ∠=︒,490α∴=︒,22.5α∴=︒,OC OF =,OA OF =,22.5OFC OCF AFC ∴∠=∠-∠=︒,45OFA OAF ∴∠=∠=︒,AF ∴==,∵∥OC AF ,AE AF OE OC∴=∴, 1OA =,2AE ∴=如图2中,当∥OC AF 时,连接OC ,设CD 交AE 点M .设OAC α∠=,∵∥OC AF ,FAC OCA α∴∠=∠=,2COE FAE α∴∠=∠=,AFD D ∠=∠,AGF D ∠=∠,3AGC AFG AEC FAE α∴∠=∠=∠+∠=, 90AGC AEC ∠+∠=︒,490α∴=︒,22.5α∴=︒,245α=︒,COM ∴∆是等腰直角三角形,OC ∴,OM ∴=1AM =,22AE AM ∴==如图3中,当AC OF ∥时,连接OC ,OF ,设AGF α∠=,2ACF ACD DCF α∠=∠+∠=, ∵AC OF ∥,2CFO ACF α∴∠=∠=,4CAO ACO α∴∠=∠=,180AOC OAC ACO ∠+∠+∠=︒, 10180α∴=︒,18α∴=︒,36COE ECO CFO ∴∠=∠-∠=︒, OCE FCO ∴∆∆ 、,2OC CE CF ∴=⋅ 、, ()11CE CE ∴=+ 、,CE AC OE ∴===AE OA OE ∴=-; 如图4中,当AC OF ∥时,连接OC ,OF ,BF .设FAO α∠=,∵AC OF ∥,CAF OFA α∴∠=∠=,2COF BOF α∴∠=∠=,AC AE =,AEC CAE EFB ∴∠=∠=∠, BF BE ∴=,由OCF OBF ∆≅∆,CF BF BE ∴==,E COF ∠=∠,COF CEO ∴∆∆,2OC CE CF ∴=⋅,BE CF ∴==AE AB BE ∴=+=.综上所述,满足条件的AE 的长为22352或。

浙江中考数学备考专题有理数、无理数与实数含参考答案(精选5套)

浙江中考数学备考专题有理数、无理数与实数含参考答案(精选5套)

2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共36分)1.x是最大的负整数,y是最小的正整数,z是绝对值最小的数,则x−y+z的值是().A.−2B.−1C.0D.22.大于-2.5且小于3.5的整数之和为().A.-3B.2C.0D.33.下列说法中,正确的是().A.两个负数的差一定是负数B.只有0的绝对值等于它本身C.有理数可以分为正有理数和负有理数D.只有0的相反数等于它本身4.下列4个式子,计算结果最小的是()A.−5+(−12)B.−5−(−12)C.−5×(−12)D.−5÷(−1 2)5.用四舍五入法,把4.76精确到十分位,取得的近似数是()A.5B.4.7C.4.8D.4.77 6.下列说法中正确的是()A.正数都带“+”号B.不带“+”号的数都是负数C.负数一定带“−”号D.带“−”号的数都是负数7.下列说法中正确的个数有()①最大的负整数是−1;②相反数是本身的数是正数;③有理数分为正有理数和负有理数;④数轴上表示−a的点一定在原点的左边;⑤几个有理数相乘,负因数的个数是奇数个时,积为负数.A.1个B.2个C.3个D.4个8.如图,a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,−a,b,−b按照从大到小的顺序排列,正确的是()A.b>−a>a>−b B.b>a>−a>−bC.−a>b>a>−b D.−a>−b>a>b9.已知a,b满足|a+3|+(b﹣2)2=0,则a+b的值为()A.1B.5C.﹣1D.﹣5 10.7个有理数相乘的积是负数,那么其中负因数的个数最多有()A.2种可能B.3种可能C.4种可能D.5种可能11.下列对于式子(−3)2的说法,错误的是()A.指数是2B.底数是−3C.幂为−3D.表示2个−3相乘12.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3B.3,3C.2,4D.3,4二、填空题(每题3分,共18分)13.绝对值大于2且不大于4的非负整数有.14.﹣123的倒数等于.15.某平台进行“天宫课堂”中国空间站全程直播.某一时刻观看人数达到3790000人.用科学记数法表示3790000=.16.若|a-1|与|b+2|互为相反数,则a+b-12的值为.17.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a-b+c.18.定义运算a∗b={a b(a≤b,a≠0)b a(a>b,a≠0),若(m−1)∗(m−3)=1,则m的值为.三、计算题(共8分)19.计算(1)(−134)−(+613)−2.25+103;(2)214×(−67)÷(12−2);(3)(−34+56−712)÷(−124);(4)−14−16×[2−(−3)2].四、解答题(共5题,共35分)20.把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③﹣13,④0.618,⑤﹣√16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{ ……};分数集合:{ ……};无理数集合:{ ……}.21.在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,−(−1),−1.5,−|−2|,−312.22.如果a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2.那么代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是多少?23.暑假《孤注一掷》成为了群众观影的首选,某市7月31日该电影首映日的售票量为1.1万张,8月1日到8月7日售票量的变化如下表(正号表示售票量比前一天多,负号表示售票量比前一天少):请根据以上信息,回答下列问题:(1)8月2日的售票量为多少万张?(2)8月7日与7月31日相比较,哪一天的售票量多?多多少万张?(3)若平均每张票价为50元,则8月1日到8月7日该市销售《孤注一掷》电影票共收入多少万元?24.2022年天猫平台“双十一”促销活动如火如荼地进行.小明发现天猫平台甲、乙、丙三家店铺在销售同一款标价均为30元的杯子,但三家的促销方式不同,具体优惠信息如下:(1)若小明想买25个该款杯子,请你帮小明分别计算一下甲、乙、丙三家店铺优惠后的实际价格,再挑选哪家店铺购买更优惠.(2)若小明想从丙店铺购买n个(n>100)该款杯子,请用含n的代数式表示优惠后购买的总价.(3)若小明想花费3000元在丙店铺来购买该款杯子,且恰好用完,则他能买多少个该款杯子?(注:假设小明均一次性购买)五、实践探究题(共3题,共23分)25.观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);…青解答下列问题:(1)按以上规律列出第5个等式:a5=.(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+⋯+a100的值.26.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为−1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为−2,点N所表示的数为4.(1)数所表示的点是【M,N】的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为−20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?27.小江同学注意到妈妈手机中的电费短信(如下左图),对其中的数据产生了浓厚的兴趣,谷85度是什么意思电费是如何计算的?第一档与第二档又有什么关系?表1:宁波市居民生活用电标准(部分修改)【解读信息】通过互联网查询后获得上表(如表1).小江家采用峰谷电价计费,谷时用电量为85度,那么峰时用电量就是227−85=142度,由于小江家年用电量处在第一档,故9月份电费为:0.568×142+0.288×85=105.136≈105.14.第一档年用电量的上限为2760度,所以截至9月底小江家已经用电2760-581=2179度.不难发现,第二档所有电价均比第一档提高0.05元/度,第三档所有电价均比第一档提高0.3元/度.【理解信息】(1)若采用普通电价计费,小江家九月份的电费为元.(精确到0.01)(2)若采用峰谷电价计费,假设某月谷时用电量与月用电量的比值为m,那么处在第一档的1度电的电费可以表示成元.(用含有m的代数式表示)(3)【重构信息】12月份,小江家谷时用电量与月用电量的比值为0.2.请根据上述对话完成下列问题:①通过计算判断:截至12月底小江家的年用电量是否仍处于第一档?②12月份谁家的用电量多,多了多少?答案解析部分1.【答案】A 2.【答案】D 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】A 9.【答案】C 10.【答案】C 11.【答案】C 12.【答案】C 13.【答案】-3,-4 14.【答案】﹣3515.【答案】3.79×106 16.【答案】−3217.【答案】2 18.【答案】1或419.【答案】(1)解:原式=(−134−214)+(−613+313)=−4−3=−7;(2)解:原式=94×(−67)÷(−32)=94×(−67)×(−23)=94×67×23=97; (3)解:原式=(−34+56−712)×(−24)=−34×(−24)+56×(−24)−712×(−24) =18−20+14=12;(4)解:原式=−1−16×[2−9]=−1−16×(−7)=−1+76=16.20.【答案】解:整数有:⑤﹣√16=﹣4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③﹣13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1)21.【答案】解:如图所示,,由图可知,−312⟨−|−2|<−1.5<−(−1)<3.22.【答案】解:∵a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2,∴a+b=0,cd=1,y+1=0,x−1=2或x−1=−2,解得y=−1,x=3或x=−1,当x=3时,原式=0+13+(−2)×(−1)=0+13+2=213;当x=−1时,原式=0+1−1+(−2)×(−1)=−1+2=1;综上,代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是213或1.23.【答案】(1)解:1.1+0.5+0.1=1.7(万张)(2)解:8月1日:1.1+0.5=1.6(万张);8月2日:1.6+0.1=1.7(万张);8月3日:1.7-0.3=1.4(万张);8月4日:1.4-0.2=1.2(万张);8月5日:1.2+0.4=1.6(万张);8月6日:1.6-0.2=1.4(万张);8月7日:1.4+0.1=1.5(万张).1.5-1.1=0.4(万张)答:8月7日的售票量多,多0.4万张.(3)解:1.6+1.7+1.4+1.2+1.6+1.4+1.5=10.4(万张)50x10.4=520(万元)答:共收入520万元24.【答案】(1)解:甲:30×25×90%−30×3=585(元)乙:30×25−60−50×2=590(元)丙:30×10+30×90%×15=705(元)因为585<590<705,所以挑选甲店铺更优惠.(2)解:30×10+30×90%×(50−10)+30×80%×(100−50)+30×70%×(n−100)=21n+480(元)(3)解:假设花费3000元以标价30元来购买该款杯子,则能买3000÷30=100个,那么优惠后至少能买100个.由(2)可知,令21n+480=3000,n=120答:他能买120个该款杯子.25.【答案】(1)19×11=12(19−111)(2)1(2n−1)(2n+1);12(12n−1−12n+1)(3)解:a1+a2+a3+⋯+a100=12(1−13)+12(13−15)+12(15−17)+...+12(1199−1201) =12×(1−13+13−15+15−17+...+1199−1201)=12×(1−1201) =12×200201=100201.26.【答案】(1)2或10(2)解:设点P表示的数为y,分四种情况:①P为【A,B】的好点.由题意,得y−(−20)=2(40−y),解得y=20,t=(40−20)÷2=10(秒);②A为【B,P】的好点.由题意,得40−(−20)=2[y−(−20)],解得y=10,t=(40−10)÷2=15(秒);③P为【B,A】的好点.由题意,得40−y=2[y−(−20)],解得y=0,t=(40−0)÷2=20(秒);④A为【P,B】的好点由题意得y−(−20)=2[40−(−20)]解得y=100(舍).⑤B为【A,P】的好点30=2t,t=15.综上可知,当t为10秒、15秒或20秒时,P、A和B中恰有一个点为其余两点的好点.故答案为:2或10.27.【答案】(1)122.13(2)(0.568-0.28m)(3)解:①假设小江家12月的用电量未超过第一档,那么该月最多支付电费:281×(0.568−0.28×0.2)=143.872(元),∵143.872<154.55,∴小江家12月份的用电量必定超过第一档;②设小江家12月份用电量为x度,143.872+0.8×0.618(x−281)+0.2×0.338(x−281)=154.55,143.872+0.4944x−138.9264+0.0676x−18.9956=154.55解得x=300,300−275=25(度),即小江家用电量多,比小北家多用25度.2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题1.2022的倒数是()A.2022B.-2022C.12022D.−1 20222.手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(午位:dBm),则下列信号最强的是()A.-50B.-60C.-70D.-80 3.计算结果等于2的是()A.|−2|B.−|2|C.2−1D.(−2)0 4.(−2)2+22=()A.0B.2C.4D.8 5.如图,比数轴上点A表示的数大3的数是()A.-1B.0C.1D.2 6.据中国宁波网消息:2023年一季度宁波全市实现地区生产总值380180000000元,同比增长4.5%.数380180000000用科学记数法表示为()A.0.38018×1012B.3.8018×1011C.3.8018×1010D.38.018×10107.已知数轴上的点A,B分别表示数a,b,其中−1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是()A.B.C.D.8.已知M=20222,N=2021×2023,则M与N的大小关系是()A.M>N B.M<N C.M=N D.不能确定9.已知方程组{a−2b=63a−b=m中,a,b互为相反数,则m的值是()A.4B.﹣4C.0D.8 10.在某次演讲比赛中,五位评委要给选手圆圆打分,得到互不相等的五个分数。

浙江省2023年中考数学真题(一次函数与反比例函数)附答案

浙江省2023年中考数学真题(一次函数与反比例函数)附答案

浙江省2023年中考数学真题(一次函数与反比例函数)一、选择题1.如图是中国象棋棋盘的一部分建立如图所示的平面直角坐标系已知“車”所在位留的坐标为(−2,2)则“炮”所在位置的坐标为().A.(3,1)B.(1,3)C.(4,1)D.(3,2)2.在直角坐标系中把点A(m,2)先向右平移1个单位再向上平移3个单位得到点B.若点B的横坐标和纵坐标相等则m=()A.2B.3C.4D.53.在平面直角坐标系中将点(m,n)先向右平移2个单位再向上平移1个单位最后所得点的坐标是()A.(m−2,n−1)B.(m−2,n+1)C.(m+2,n−1)D.(m+2,n+1)4.在平面直角坐标系中点P(-1 m2+1)位于()A.第一象限B.第二象限C.第三象限D.第四象限5.下图是底部放有一个实心铁球的长方体水槽轴截面示意图现向水槽匀速注水下列图象中能大致反映水槽中水的深度(y)与注水时间(x)关系的是()A.B.C.D.6.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1)B(x2,y2)两点若x1+x2<0则直线y=ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限7.已知点M(−4,a−2),N(−2,a),P(2,a)在同一个函数图象上则这个函数图象可能是()A.B.C.D.8.已知点A(−2,y1),B(−1,y2),C(1,y3)均在反比例函数y=3x的图象上则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y19.如图两盘灯笼的位置A B的坐标分别是(-3 3)(1 2)将点B向右平移2个单位再向上平移1个单位得到点B' 则关于点A' B'的位置描述正确是()A.关于x轴对称B.关于y轴对称C.关于原点O对称D.关于直线y=x对称10.如果100N的压力F作用于物体上产生的压强p要大于1000Pa 则下列关于物体受力面积S(m2)的说法正确的是()A.S小于0.1m2B.S大于0.1m2C.S小于10m2D.S大于10m211.如图一次函数y=ax+b的图象与反比例函数y=kx的图象交于点A(2,3),B(m,−2)则不等式ax+b>kx的解是()A.−3<x<0或x>2B.x<−3或0<x<2 C.−2<x<0或x>2D.−3<x<0或x>312.如图一次函数y1=k1x+b(k1>0)的图像与反比例函数y2=k2x(k2>0)的图像相交于A,B两点点A的横坐标为1 点B的横坐标为−2当y1<y2时x的取值范围是()A.x<−2或x>1B.x<−2或0<x<1C.−2<x<0或x>1D.−2<x<0或0<x<1二、填空题13.在“探索一次函数y=kx+b的系数k、b与图象的关系”活动中老师给出了直角坐标系中的三个点:A(0 2)B(2 3)C(3 1).同学们画出了经过这三个点中每两个点的一次函数的图象并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1k2+b2,k3+b3的值其中最大的值等于.14.在温度不变的条件下通过一次又一次地对汽缸顶部的活塞加压加压后气体对气缸壁所产生的压强p(kPa)与气缸内气体的体积V(mL)成反比例p关于V的函数图象如图所示.若压强由75kPa加压到100kPa则气体体积压缩了mL.15.如图在平面直角坐标系xOy中函数y=kx(k为大于0的常数x>0)图象上的两点A(x1,y1),B(x2,y2)满足x2=2x1.△ABC的边AC//x轴边BC//y轴若△OAB的面积为6 则△ABC的面积是.16.如图点A B分别在函数y=ax(a>0)图象的两支上(A在第一象限)连接AB交x轴于点C.点D E在函数y=bx(b<0,x<0)图象上AE∥x轴BD∥y轴连接DE,BE.若AC=2BC△ABE的面积为9 四边形ABDE的面积为14 则a−b的值为a的值为.三、解答题17.在直角坐标系中已知k1k2≠0设函数y1=k1x与函数y2=k2(x−2)+5的图象交于点A和点B.已知点A的横坐标是2 点B的纵坐标是−4.(1)求k1,k2的值.(2)过点A作y轴的垂线过点B作x轴的垂线在第二象限交于点C;过点A作x轴的垂线过点B作y轴的垂线在第四象限交于点D.求证:直线CD经过原点.18.如图在直角坐标系中点A(2,m)在直线y=2x−52上过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式。

相似三角形-备战2022年中考数学一轮复习考点(浙江专用)(解析版)

相似三角形-备战2022年中考数学一轮复习考点(浙江专用)(解析版)

考点14 相似三角形【命题趋势】相似三角形是中考数学中非常重要的一个考点,它不仅可以作为简单考点单独考察,还经常作为压轴题的重要解题方法,和其他如函数、特殊四边形、圆等问题一起考察。

而且,在很多压轴题中,虽然题面上没有明确考察相似三角形的判定或性质,但是经常通过相似三角形的判定以及性质来得到角相等或者边长间的关系,也是动点问题中得到函数关系式的重要手段。

需要考生在复习的时候给予加倍的重视! 【中考考查重点】 一、比例线段 二、相似三角形的性质 三、相似三角形的判定 四、相似三角形的基本图形考向一:比例线段一.比例的性质1.基本性质:bc ad d c b a =⇔=::;2.比例中项:b a c b c c a ⋅=⇔=2::,此时,c 为a 、b 的比例中项; 二.比例线段1.比例线段:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段简称比例线段;2.黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB . 3.平行线分线段成比例的基本性质: 如图:AB ∥CD ∥EF ⇔DE BD CF AC =【同步练习】 1.已知=,则的值为( ) A .B .C .D .【分析】直接利用同一未知数表示出a,b的值,进而代入化简即可.【解答】解:∵=,∴设a=2x,b=5x,∴==.故选:C.2.线段AB的长为2,点C是线段AB的黄金分割点,则线段AC的长可能是()A.+1B.2﹣C.3﹣D.﹣2【分析】根据黄金分割点的定义,知AC可能是较长线段,也可能是较短线段,分别求出即可.【解答】解:∵点C是线段AB的黄金分割点,AB=2,∴AC=AB=×2=﹣1,或AC=2﹣(﹣1)=3﹣,故选:C.3.如图,直线a,b,c截直线e和f,a∥b∥c,,则下列结论中,正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理即可解答本题.【解答】解:∵a∥b∥c,,∴=,∴,,,故选项A正确,符合题意,选项B、D不正确,不符合题意;连接AF,交BE于H,∵BE∥CF,∴△ABH∽△ACF,∴,,∴选项C不正确,不符合题意;故选:A.4.若==(a≠c),则=.【分析】根据等比的性质即可求解.【解答】解:∵==(a≠c),∴=.故答案为:.5.若(x、y、z均不为0),则=.【分析】设比值为k,然后用k表示出x、y、z,再代入比例式进行计算即可得解.【解答】解:设===k(k≠0),则x=6k,y=4k,z=3k,所以,==3.故答案为:3.6.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是.【分析】根据平行线分线段成比例定理的推论得出=,将AE=6代入,求出AC=14,那么EC=AC﹣AE=8.【解答】解:∵DE∥BC,∴=,∵AE=6,∴=,解得:AC =14,∴EC =AC ﹣AE =14﹣6=8. 故答案是:8.考向二:相似三角形的性质相似三角形的性质相似 三角 形的 性质相似三角形的对应角相等,对应边成比例 相似三角形的周长之比等于相似比 相似三角形的面积之比等于相似比的平方相似三角形的对应“三线”(高线、中线、角平分线)之比等于相似比【方法提炼】【同步练习】1.如图,已知△ABE ∽△CDE ,AD 、BC 相交于点E ,△ABE 与△CDE 的周长之比是,若AE =2、BE =1,则BC 的长为( )A .3B .4C .5D .6【分析】首先利用周长之比求得相似比,然后根据AE 的长求得CE 的长,从而求得BC 的长. 【解答】解:∵△ABE ∽△CDE ,△ABE 与△CDE 的周长之比是, ∴AE :CE =2:5, ∵AE =2, ∴CE =5,相似三角形性质的主要应用方向: ➢ 求角的度数 ➢ 求或证明比值关系 ➢ 证线段等积式 ➢ 求面积或面积比相似三角形的对应边成比例是求线段长度的重要方法,也是动点问题中得到函数关系式的重要手段∵BE=1,∴BC=BE+EC=1+5=6,故选:D.2.如图,已知△ABC∽△DEF,若∠A=35°,∠B=65°,则∠F的度数是()A.30°B.35°C.80°D.100°【分析】先根据三角形内角和定理求出∠C的度数,再根据相似三角形对应角相等即可解决问题.【解答】解:∵△ABC中,∠A=35°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣65°=80°,又∵△ABC∽△DEF,∴∠F=∠C=80°,故选:C.3.如图,在正方形网格中:△ABC、△EDF的顶点都在正方形网格的格点上,△ABC∽△EDF,则∠ABC+∠ACB的度数为()A.30°B.45°C.60°D.75°【分析】利用相似三角形的性质,证明∠BAC=135°,可得结论.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF=135°,∴∠ABC+∠ACB=180°﹣135°=45°,故选:B.4.如图,△ABC∽△A'B′C′,下列说法正确的是()A.∠B=∠C′B.S△ABC=2S△A′B'C'C.AC=4A'C'D.A'B′=6【分析】根据相似三角形的性质解答即可.【解答】解:∵△ABC∽△A'B′C′,AB=12,BC=2a,B'C'=a,∴∠B=∠B',S△ABC:S△ABC==4,AC=2A'C',A'B'=AB==6.故A、B、C错误,D正确;故选:D.5.若D为△ABC中AB边上一点,且DE∥BC交AC于E,AB=6,BC=8,AC=10,若△ADE与△ABC 的相似比为,则AE =.【分析】先根据DE∥BC得出△ADE∽△ABC,再根据AC=10以及△ADE与△ABC的相似比为,即可求出AE.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵△ADE与△ABC的相似比为,∴=,∵AC=10,∴AE=5.故答案为:5.考向三:相似三角形的判定一.相似三角形的判定方法:判定方法1·平行∵DE∥BC∴△ABC∽△ADE判定方法2·“AA”∵∠A=∠A`,∠C=∠C` ∴△ABC∽△A,B,C,二.判定三角形相似的思路:(1)有平行截线——用平行线的性质,找等角 (2)有一对等角,找⎩⎨⎧该角的两边对应成比例另一对等角 (3)有两边对应成比例,找夹角相等(4)直角三角形,找⎩⎨⎧例直角边、斜边对应成比一对锐角相等 (5)等腰三角形,找⎩⎨⎧底边和腰长对应成比例一对底角相等 【同步练习】1.如图,在△ABC 纸片中,∠A =76°,∠B =34°.将△ABC 纸片沿某处剪开,下列四种方式中剪下的阴影三角形与原三角形相似的是( ) A .①②B .②④C .①③D .③④【分析】根据相似三角形的判定定理逐个判断即可.【解答】解:图①中,∠B =∠B ,∠A =∠BDE =76°,所以△BDE 和△ABC 相似;图②中,∠B =∠B ,不符合相似三角形的判定,不能推出△BCD 和△ABC 相似;判定方法3·“SAS ”∵````C B BCB A AB =,∠B=∠B ∴△ABC ∽△A ,B ,C , 判定方法4·“SSS ”∵``````C A ACC B BC B A AB == ∴△ABC ∽△A ,B ,C ,图③中,∠C=∠C,∠CED=∠B,所以△CDE和△CAB相似;图④中,∠C=∠C,不符合相似三角形的判定,不能推出△CDE和△ABC相似;所以阴影三角形与原三角形相似的有①③,故选:C.2.下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.=D.AB2=AD•AC【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、不能判定△ADB∽△ABC,故此选项符合题意;D、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意.故选:C.3.如图,在下列四个条件:①∠B=∠C,②∠ADB=∠AEC,③AD:AC=AE:AB,④PE:PD=PB:PC 中,随机抽取一个能使△BPE∽△CPD的概率是()A.0.25B.0.5C.0.75D.1【分析】根据相似三角形的判定方法判断即可.【解答】解:由题意得:∠DPC=∠EPB,①∠B=∠C,根据两角相等的两个三角形相似可得:△BPE∽△CPD,②∵∠ADB=∠AEC,∴∠PDC =∠PEB ,所以,根据两角相等的两个三角形相似可得:△BPE ∽△CPD , ③∵AD :AC =AE :AB ,∠A =∠A , ∴△ADB ∽△AEC , ∴∠B =∠C ,所以,根据两角相等的两个三角形相似可得:△BPE ∽△CPD ,④PE :PD =PB :PC ,根据两边成比例且夹角相等的两个三角形相似可得:△BPE ∽△CPD , ∴在上列四个条件中,随机抽取一个能使△BPE ∽△CPD 的概率是:1, 故选:D .4.如图,在△ABC 中,AB =12,BC =15,D 为BC 上一点,且BD =BC ,在AB 边上取一点E ,使以B ,D ,E 为顶点的三角形与△ABC 相似,则BE= .【分析】根据相似三角形对应边成比例得出或,再代值计算即可.【解答】解:∵△BDE ∽△BCA 或△BDE ∽△BAC , ∴或,∵BD =BC ,BC =15, ∴BD =5, ∵AB =12, ∴或, 解得:BE =4或. 故答案为:4或.考向四:相似三角形的基本图形 一、A 字图及其变型“斜A 型”当∠ADE=∠ACB 时 △ADE ∽△ACB 性质:BCDEAB AE AC AD ==当DE ∥BC 时 △ADE ∽△ABC 性质:BCDEACAE ABAD ==①当∠A=∠C 时 △AJB ∽△CJD 性质:JDJBJC JA CDAB ==变型☆:斜A 型在圆中的应用: 如图可得:△PAB ∽△PCD二、8字图及其变型“蝴蝶型”变型三、一般母子型:联系应用:切割线定理:如图,PB 为圆O 切线,B 为切点,则:△PAB ∽△PBC得:四、一线三等角:同侧型(通常以等腰三角形或者等边三角形为背景)当AB ∥CD 时 △AOB ∽△DOC性质:OCOBOD OA CD AB ==当∠ABD=∠ACB 时 △ABD ∽△ACB 性质:ACAD AB •=2 PC PA PB •=2其中: ∠A 是公共角 AB 是公共边 BD 与BC 是对应边异侧型五、手拉手相似模型:模型名称几何模型图形特点具有性质相似型手拉手△ABC∽△ADEA、D、E逆时针A、B、C逆时针连结BD、CE①△ABD∽△ACE②△AOB∽△HOC③旋转角相等④A、B、C、H四点共圆“反向”相似型手拉手△ABC∽△ADEA、D、E顺时针A、B、C逆时针A、D、E`逆时针作△ADE关于AD对称的△ADE`性质同上①②③【同步练习】1.如图,已知,DE∥BC,AD:DB=1:2,那么下列结论中,正确的是()A.DE:BC=1:2B.AE:AC=1:3C.AD:AE=1:2D.S△ADE:S四边形BDEC=1:4【分析】利用平行线分线段成比例定理,比例的性质和相似三角形的性质对每个选项进行逐一判断即可得出结论.【解答】解:∵AD:DB=1:2,∴.∵DE∥BC,∴△ADE∽△ABC.∴.∴A选项的结论错误;∵DE∥BC,∴△ADE∽△ABC.∴.∴B选项的结论正确;∵DE∥BC,∴△ADE∽△ABC.∴.∴C选项的结论错误;∵DE∥BC,∴△ADE∽△ABC.∴.设S△ADE=k,则S△ABC=9k,∴S四边形BDEC=S△ABC﹣S△ADE=8k,∴.∴D选项的结论错误.综上所述,正确的结论是B,故选:B.2.如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是()A.4B.C.D.5【分析】由矩形的性质可求出∠A=∠B=∠C=90°,AB=CD,证明△EFB∽△FGC,由相似三角形的性质得出,求出CG=4,同理可得出△DAE∽△EBF,由相似三角形的性质求出AE的长,则可求出答案.【解答】解:∵EF⊥FG,∴∠EFB+∠GFC=90°,∵四边形ABCD为矩形,∴∠A=∠B=∠C=90°,AB=CD,∴∠GFC+∠FGC=90°,∴∠EFB=∠FGC,∴△EFB∽△FGC,∴,∵BE=3,BF=2,FC=6,∴,∴CG=4,同理可得△DAE∽△EBF,∴,∴,∴AE=,∴BA=AE+BE=+3=,∴DG=CD﹣CG=﹣4=.故选:B.3.如图,将△ABC绕点C顺时针旋转α得到△DEC,此时点D落在边AB上,且DE垂直平分BC,则的值是()A.B.C.D.【分析】根据旋转的性质和线段垂直平分线的性质证明△DCF∽△DEC,对应边成比例即可解决问题.【解答】解:如图,设DE与BC交于点F,由旋转可知:CA=CD,AB=DE,BC=EC,∠B=∠E,∵DE垂直平分BC,∴DF⊥BC,DC=DB,CF=BF=BC=EC,∴∠DCB=∠B=∠E,∵∠DCB+∠FDC=90°,∴∠E+∠FDC=90°,∴∠DCE=90°,∴△DCF∽△DEC,∴==,∴=.故选:B.4.如图,已知在△ABC中,点D在边AB上,那么下列条件中不能判定△ABC∼△ACD的是()A.B.AC2=AD•AB C.∠B=∠ACD D.∠ADC=∠ACB【分析】△ABC和△ACD有公共角,然后根据相似三角形的判定方法对各选项进行判断.【解答】解:∵∠DAC=∠CAB,∴当∠ACD=∠B或∠ADC=∠ACB,可根据有两组角对应相等的两个三角形相似可判断△ACD∽△ABC;当,即AC2=AD•AB时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似可判断△ACD∽△ABC.故选:A.5.如图,AB∥CD,AD与BC相交于点E,若AE=3,ED=5,则的值为.【分析】利用平行线的性质判定△ABE∽△DCE,利用相似三角形的性质可得结论.【解答】解:∵AB∥CD,∴△ABE∽△DCE.∴.∵AE=3,ED=5,∴=.故答案为:.1.已知,则的值是()A.B.C.D.【分析】设=k(k≠0),得出a=13k,b=5k,再代入要求的式子进行计算即可求出答案.【解答】解:设=k(k≠0),则a=13k,b=5k,∴==;故选:D.2.如图,在△ABC中,∠ABC=3∠A,AC=6,BC=4,所以AB长为()A.2B.C.D.4【分析】将∠ABC三等分,与△ABC外接圆相交,交点分别为:E与F,利用托勒密定理列出方程组,求解即可解决问题.【解答】解:将∠ABC三等分,与△ABC外接圆相交,交点分别为:E与F,如图所示:圆上依次为ABCEF,记BE=m,AB=b,则利用托勒密定理有:,可得:,即,∴b=,故选:B.3.如图,在平行四边形ABCD中,E是AB的中点,F是AD的中点,FE交AC于O点,交CB的延长线于G点,那么S△AOF:S△COG=()A.1:4B.1:9C.1:16D.1:25【分析】根据平行四边形的性质求出AD=BC,AD∥BC,推出△AFE∽△BGE,△AFO∽△CGO,再根据相似三角形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E为AB的中点,F为AD的中点,∴AE=BE,AF=AD=BC,∵AD∥BC,∴△AFE∽△BGE,∴,∵AE=BE,∴AF=BG=BC,∴=∵AD∥BC,∴△AFO∽△CGO,∴=()2=,即S△AOF:S△COG=1:9,故选:B.4.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.B.C.D.【分析】根据平行线分线段成比例性质进行解答便可.【解答】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:A.5.如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△P AB 的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24B.12C.6D.3【分析】过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP 都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC 的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ面积,即为△PDC面积+△P AB面积,即为平行四边形面积的一半,即可求出所求的面积.【解答】解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.6.如图,在平行四边形ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=4,则S△ADF的值为()A.6B.10C.15D.【分析】因为四边形ABCD是平行边形,所以AD∥BC,则△AEF∽△ABC,得==,根据相似三角形面积的比等于相似比的平方求出△ABC的面积为25,而△CDA≌△ABC,则△CDA的面积为25,根据等高三角形面积的比等于底的比即可求出△ADF的面积.【解答】解:如图,∵四边形ABCD是平行边形,∴AD∥BC,∴△AEF∽△ABC,∵3AE=2EB,∴=,∴==,∴===,∵S△AEF=4,∴S△ABC===25,∴CD=AB,AD=BC,AC=CA,∴△CDA≌△ABC(SSS),∴S△CDA=S△ABC=25,∴S△ADF=S△CDA=×25=10,∴S△ADF的值为10,故选:B.7.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,那么=.【分析】由平行四边形的对边相等可求得BC=AD,BC∥AD,易证得△BEF∽△DAF,则,根据比例的性质即可得解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵=,∵AD∥BC,∴△BEF∽△DAF,∴,∴,∴==.故答案为:.8.在矩形ABCD中,AB=6,AD=8,E是BC的中点,连接AE,过点D作DF⊥AE于点F,连接CF、AC.(1)线段DF的长为;(2)若AC交DF于点M,则=.【分析】(1)利用三角形面积相等,列出等式,求解即可;(2)延长DF交CB的延长线于K,利用相似三角形的性质求出KE,再利用平行线分线段成比例定理求解即可.【解答】解:(1)根据题意,画出下图:∵AB=6,AD=8,BE==4,∴AE=,∴S△ADE==,S△ADE==24,∴DF==.(2)若AC交DF于点M,延长DF交BC延长线于点K,如图所示:∵∠KEF=∠AEB,∠EFK=∠ABE=90°,∴△KEF∽△AEB,∴,∴,∴KE=5,∴CK=KE+EC=9,∵AD∥CK,∴=.9.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:BD•AD=DE•AC.(2)若AB=13,BC=10,求线段DE的长.(3)在(2)的条件下,求cos∠BDE的值.【分析】(1)证明∠B=∠C,∠DEB=∠ADC=90°,可证明△BDE∽△CAD即可解决问题;(2)利用面积法:•AD•BD=•AB•DE求解即可;(3)可得出∠BDE=∠BAD,则cos∠BDE=cos∠BAD=.【解答】证明:(1)∵AB=AC,BD=CD,∴AD⊥BC,∠B=∠C,∵DE⊥AB,∴∠DEB=∠ADC,∴△BDE∽△CAD.∴,∴BA•AD=DE•CA;(2)∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,AD===12,∵•AD•BD=•AB•DE,∴DE=.(3)∵∠ADB=∠AED=90°,∴∠BDE=∠BAD,∴cos∠BDE=cos∠BAD=.10.已知:四边形ABCD中,AC=AB=20,点E为BC边上一点,BE≥CE,且DE=DC,∠AED=∠B,AC、DE相交于点F,cos∠B=.(1)求证:△ABE∽△ECF;(2)若BE=18,求EF的长;(3)若∠DAE=90°,求CE的长.【分析】(1)正确作出辅助线,找到对等关系,即可证明△ABE∽△ECF;(2)找到包含有要求解的边长有关系的三角形,利用勾股定理,求出AE的边长,再利用相似三角形,找到对应关系,即可求出EF的长;(3)在直角三角形内,根据给定的余弦值,找到对应边长,即可求出CE的长.【解答】(1)证明:如图所示:过点A作AH⊥BC于H,∵AB=AC=20,∴∠AED=∠B,∴∠1+∠2=180°﹣∠AED,∵∠3+∠2=180°﹣∠B,∴∠1=∠3,∴△ABE∽△ECF;(2)解:由(1)知,过点A作AH⊥BC于H,∵AB=20,cos∠B=,∴BH=16,∵AB=AC,∴BH=CH=16,∴BC=32,∵BE=18,∴EC=14,在△ABH中,AH=,HE=BE﹣BH=18﹣16=2,∴AE=,∵△ABE∽△ECF,∴,即,∴EF=.(3)解:若∠DAE=90°,则∠BAE=90°,∵AB=20,cos∠B=,∴BE=25,∴CE=BC﹣BE=32﹣25=7.1.(2021·浙江衢州)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且OA=OB,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,F A,EB均与地面垂直,测得F A=54cm,EB=45cm,AB=48cm.(1)椅面CE的长度为cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD 的度数达到最小值30°时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)【分析】(1)由平行线的性质可得∠ECB=∠ABF,由锐角三角函数可得,即可求解;(2)如图2,延长AD,BE交于点N,由“ASA”可证△ABF≌△BAN,可得BN=AF,可求NE的长,由锐角三角函数可求DE的长,即可求DH的长,如图3,连接CD,过点H作HP⊥CD于P,由锐角三角函数和等腰三角形的性质,可求DC的长,通过相似三角形的性质可求解.【解答】解:(1)∵CE∥AB,∴∠ECB=∠ABF,∴tan∠ECB=tan∠ABF,∴,∴,∴CE=40(cm),故答案为:40;(2)如图2,延长AD,BE交于点N,∵OA=OB,∴∠OAB=∠OBA,在△ABF和△BAN中,,∴△ABF≌△BAN(ASA),∴BN=AF=54(cm),∴EN=9(cm),∵tan N=,∴=,∴DE=8(cm),∴CD=32(cm),∵点H是CD的中点,∴CH=DH=16(cm),∵CD∥AB,∴△AOB∽△DOC,∴===,如图3,连接CD,过点H作HP⊥CD于P,∵HC=HD,HP⊥CD,∴∠PHD=∠CHD=15°,CP=DP,∵sin∠DHP==sin15°≈0.26,∴PD≈16×0.26=4.16(cm),∴CD=2PD=8.32(cm),∵CD∥AB,∴△AOB∽△DOC,∴,∴,∴AB=12.48≈12.5(cm),故答案为:12.5.2.(2021·浙江宁波)【证明体验】(1)如图1,AD为△ABC的角平分线,∠ADC=60°,点E在AB上,AE=AC.求证:DE平分∠ADB.【思考探究】(2)如图2,在(1)的条件下,F为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,求BD的长.【拓展延伸】(3)如图3,在四边形ABCD中,对角线AC平分∠BAD,∠BCA=2∠DCA,点E在AC上,∠EDC=∠ABC.若BC=5,CD=2,AD=2AE,求AC的长.【分析】(1)由△EAD≌△CAD得∠ADE=∠ADC=60°,因而∠BDE=60°,所以DE平分∠ADB;(2)先证明△BDE∽△CDG,其中CD=ED,再由相似三角形的对应边成比例求出BD的长;(3)根据角平分线的特点,在AB上截取AF=AD,连结CF,构造全等三角形和相似三角形,由相似三角形的性质求出AC的长.【解答】(1)证明:如图1,∵AD平分∠BAC,∴∠EAD=∠CAD,∵AE=AC,AD=AD,∴△EAD≌△CAD(SAS),∴∠ADE=∠ADC=60°,∵∠BDE=180°﹣∠ADE﹣∠ADC=180°﹣60°﹣60°=60°,∴∠BDE=∠ADE,∴DE平分∠ADB.(2)如图2,∵FB=FC,∴∠EBD=∠GCD;∵∠BDE=∠CDG=60°,∴△BDE∽△CDG,∴;∵△EAD≌△CAD,∴DE=CD=3,∵DG=2,∴BD===.(3)如图3,在AB上取一点F,使AF=AD,连结CF.∵AC平分∠BAD,∴∠F AC=∠DAC,∵AC=AC,∴△AFC≌△ADC(SAS),∴CF=CD,∠FCA=∠DCA,∠AFC=∠ADC,∵∠FCA+∠BCF=∠BCA=2∠DCA,∴∠DCA=∠BCF,即∠DCE=∠BCF,∵∠EDC=∠ABC,即∠EDC=∠FBC,∴△DCE∽△BCF,∴,∠DEC=∠BFC,∵BC=5,CF=CD=2,∴CE===4;∵∠AED+∠DEC=180°,∠AFC+∠BFC=180°,∴∠AED=∠AFC=∠ADC,∵∠EAD=∠DAC(公共角),∴△EAD∽△DAC,∴=,∴AC=2AD,AD=2AE,∴AC=4AE=CE=×4=.3.(2021·浙江杭州)如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连接BG.(1)求证:△ABG∽△AFC.(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).(3)已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD =∠CBE,求证:BG2=GE•GD.【分析】(1)根据∠BAC的平分线AG交⊙O于点G,知∠BAC=∠F AC,由圆周角定理知∠G=∠C,即可证△ABG∽△AFC;(2)由(1)知=,由AC=AF得AG=AB,即可计算FG的长度;(3)先证△DGB∽△BGE,得出线段比例关系,即可得证BG2=GE•GD.【解答】(1)证明:∵AG平分∠BAC,∴∠BAG=∠F AC,又∵∠G=∠C,∴△ABG∽△AFC;(2)解:由(1)知,△ABG∽△AFC,∴=,∵AC=AF=b,∴AB=AG=a,∴FG=AG﹣AF=a﹣b;(3)证明:∵∠CAG=∠CBG,∠BAG=∠CAG,∴∠BAG=∠CBG,∵∠ABD=∠CBE,∴∠BDG=∠BAG+∠ABD=∠CBG+∠CBE=∠EBG,又∵∠DGB=∠BGE,∴△DGB∽△BGE,∴=,∴BG2=GE•GD.4.(2021·浙江金华)在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.【分析】(1)①由BC⊥AB,CO⊥BO,可得∠BAD+∠ADB=∠COD+∠DOB=90°,而根据已知有∠BAD=∠DOB,故∠ADB=∠COD,从而可得∠COD=∠CDO,CD=CO;②过A作AM⊥OB于M,过M作MN⊥y轴于N,设M(m,m),可得tan∠OMN=tan∠AOM=,即=,设AM=3n,则OM=8n,Rt△AOM中,AM2+OM2=OA2,可求出AM=3,OM=8,由∠CBO=45°可知△BOC是等腰直角三角形,△ABM是等腰直角三角形,从而有AM=BM=3,BO=CO =OM﹣BM=5,AB=AM=3,BC=BO=5,即可求出S四边形ABOC=S△ABC+S△BOC=;(2)(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,设OB=x,则BM=|8﹣x|,AB =,由△AMB∽△BOC,=,即=,得OC=,BC==,以A,B,C为顶点的三角形与△BCO相似,分两种情况:①若=,OB=4;②若=,OB =4+或OB=4﹣或OB=9;(二)当B在线段MO延长线上时,设OB=x,则BM=8+x,AB=,由△AMB∽△BOC,=,即=,得OC=•(8+x),以A,B,C为顶点的三角形与△BCO相似,需满足=,即=,可得OB=1.【解答】(1)①证明:∵BC⊥AB,CO⊥BO,∴∠ABC=∠BOC=90°,∴∠BAD+∠ADB=∠COD+∠DOB=90°,∵BA=BO,∴∠BAD=∠DOB,∴∠ADB=∠COD,∵∠ADB=∠CDO,∴∠COD=∠CDO,∴CD=CO;②解:过A作AM⊥OB于M,过M作MN⊥y轴于N,如图:∵M在直线l:y=x上,设M(m,m),∴MN=|m|=﹣m,ON=|m|=﹣m,Rt△MON中,tan∠OMN==,而OA∥MN,∴∠AOM=∠OMN,∴tan∠AOM=,即=,设AM=3n,则OM=8n,Rt△AOM中,AM2+OM2=OA2,又A的坐标为(﹣,0),∴OA=,∴(3n)2+(8n)2=()2,解得n=1(n=﹣1舍去),∴AM=3,OM=8,∵∠CBO=45°,CO⊥BO,∴△BOC是等腰直角三角形,∵BC⊥AB,∠CBO=45°,∴∠ABM=45°,∵AM⊥OB,∴△ABM是等腰直角三角形,∴AM=BM=3,BO=CO=OM﹣BM=5,∴等腰直角三角形△ABM中,AB=AM=3,等腰直角三角形△BOC中,BC=BO=5,∴S△ABC=AB•BC=15,S△BOC=BO•CO=,∴S四边形ABOC=S△ABC+S△BOC=;(2)解:存在点B,使得以A,B,C为顶点的三角形与△BCO相似,理由如下:(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB=x,则BM=|8﹣x|,AB=,∵CO⊥BO,AM⊥BO,AB⊥BC,∴∠AMB=∠BOC=90°,∠ABM=90°﹣∠OBC=∠BCO,∴△AMB∽△BOC,∴=,即=,∴OC=,Rt△BOC中,BC==,∵∠ABC=∠BOC=90°,∴以A,B,C为顶点的三角形与△BCO相似,分两种情况:①若=,则=,解得x=4,∴此时OB=4;②若=,则=,解得x1=4+,x2=4﹣,x3=9,x4=﹣1(舍去),∴OB=4+或OB=4﹣或OB=9;(二)当B在线段MO延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB=x,则BM=8+x,AB=,∵CO⊥BO,AM⊥BO,AB⊥BC,∴∠AMB=∠BOC=90°,∠ABM=90°﹣∠OBC=∠BCO,∴△AMB∽△BOC,∴=,即=,∴OC=•(8+x),Rt△BOC中,BC==•,∵∠ABC=∠BOC=90°,∴以A,B,C为顶点的三角形与△BCO相似,需满足=,即=,解得x1=﹣9(舍去),x2=1,∴OB=1,综上所述,以A,B,C为顶点的三角形与△BCO相似,则OB的长度为:4或4+或4﹣或9或1;1.(2021•瓯海区模拟)若=,则的值是()A.3B.C.D.2【分析】根据比例的性质求出b=2a,再代入求出答案即可.【解答】解:∵=,∴b=2a,∴===,故选:C.2.(2021•下城区校级四模)在比例尺为1:10000的地图上,相距4cm的A、B两地的实际距离是()A.400m B.400dm C.400cm D.400km【分析】设AB的实际距离为xcm,根据比例尺的定义得到4:x=1:10000,利用比例的性质求得x的值,注意单位统一.【解答】解:设AB的实际距离为xcm,∵比例尺为1:10000,∴4:x=1:10000,∴x=40000cm=400m.故选:A.3.(2021•温岭市一模)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,则BC:CE=()A.3:5B.1:3C.5:3D.2:3【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵AB∥CD∥EF,∴===.故选:A.4.(2021•拱墅区二模)如图,在正方形ABCD中,E,F分别是BC、AB上一点,且AF=BE,AE与DF 交于点G,连接CG.若CG=BC,则AF:FB的比为()A.1:1B.1:2C.1:3D.1:4【分析】作CH⊥DF于点H,证明△AGD≌△DHC,可得AG=DH=GH,tan∠ADG==.由此可解决此问题.【解答】解:作CH⊥DF于点H,如图所示.在△ADF和△BAE中,,∴△ADF≌△BAE(SAS).∴∠ADF=∠BAE,又∠BAE+∠GAD=90°,∴∠ADF+∠GAD=90°,即∠AGD=90°.由题意可得∠ADG+∠CDG=90°,∠HDC+∠CDG=90°,.∴∠ADG=∠HDC.在△AGD和△DHC中,,∴△AGD≌△DHC(AAS).∴DH=AG.又CG=BC,BC=DC,∴CG=DC.由等腰三角形三线合一的性质可得GH=DH,∴AG=DH=GH.∴tan∠ADG=.又tan∠ADF==,∴AF=AB.即F为AB中点,∴AF:FB=1:1.故选:A.5.(2021•宁波模拟)如图,在△ABC中,DE∥AB,且=2,则的值为()A.B.C.2D.3【分析】根据平行线分线段成比例定理定理列出比例式,计算即可.【解答】解:∵=2,∴=,∵DE∥AB,∴==,故选:B.6.(2021•丽水模拟)如图,已知△ABC∽△BDC,其中AC=4,CD=2,则BC=()A.2B.C.D.4【分析】直接利用相似三角形的性质得出BC2=AC•CD,进而得出答案.【解答】解:∵△ABC∽△BDC,∴=,∵AC=4,CD=2,∴BC2=AC•CD=4×2=8,∴BC=2.故选:B.7.(2021•宁波模拟)如图,△ABC的两条中线BE,CD交于点O,则下列结论不正确的是()A.=B.=C.△ADE∽△ABC D.S△DOE:S△BOC=1:2【分析】根据三角形中位线定理得到DE=BC,DE∥BC,根据相似三角形的性质进行计算,判断即可.【解答】解:∵AD=DB,AE=EC,∴DE=BC,DE∥BC,∴=,A选项结论正确,不符合题意;∵DE∥BC,∴=,B选项结论正确,不符合题意;∵DE∥BC,∴△ADE∽△ABC,C选项结论正确,不符合题意;∵DE∥BC,∴△DOE∽△COB,∴S△DOE:S△COB=1:4,D选项结论错误,符合题意;故选:D.8.(2021•西湖区校级二模)如图,正六边形ABCDEF外作正方形DEGH,连接AH交DE于点O,则等于()A.3B.C.2D.【分析】连接BD,如图所示:由正六边形和正方形的性质得:B、D、H三点共线,设正六边形的边长为a,则AB=BC=CD=DE=a,解直角三角形求出BD,再利用平行线分线段成比例定理解决问题即可.【解答】解:连接BD,如图所示:由正六边形和正方形的性质得:B、D、H三点共线,设正六边形的边长为a,则AB=BC=CD=DE=a,∵在△BCD中,BC=CD=a,∠BCD=120°,∴BD=a.∵OD∥AB,∴===,故选:B.9.(2021•拱墅区二模)黄金分割比符合人的视觉习惯,在人体躯干和身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士身高165cm,若她下半身的长度(脚底到肚脐的高度)与身高的比值是0.60,为尽可能达到匀称的效果,她应该选择约厘米的高跟鞋看起来更美.(结果保留整数)【分析】根据黄金分割定义:下半身长与全身的比等于0.618即可求解.【解答】解:根据已知条件可知:下半身长是165×0.6=99(cm),设需要穿的高跟鞋为ycm,则根据黄金分割定义,得=0.618,解得:y≈8,经检验y≈8是原方程的根,答:她应该选择大约8cm的高跟鞋.故答案为8.10.(2021•金东区校级模拟)如图,已知直角坐标系中四点A(﹣2,4)、C(2,﹣3),分别过A、C作AB、CD垂直于x轴于B、D.设P是x轴上的点,且P A、PB、AB所围成的三角形与PC、PD、CD所围成的三角形相似,请写出所有符合上述条件的点P的坐标是.【分析】需要分情况分析,当点P在AB左边,在AB与CD之间,在CD的右边,通过相似三角形的性质:相似三角形的对应边成比例即可求得.【解答】解:设OP=x(x>0),分三种情况:一、若点P在AB的左边,有两种可能:①此时△ABP∽△PDC,则PB:CD=AB:PD,则(x﹣2):3=4:(x+2),解得x=4,∴点P的坐标为(﹣4,0);②若△ABP∽△CDP,则AB:CD=PB:PD,则(﹣x﹣2):(2﹣x)=4:3,解得:x=14,与假设在B点左边矛盾,舍去.二、若点P在AB与CD之间,有两种可能:①若△ABP∽△CDP,则AB:CD=BP:PD,∴4:3=(x+2):(2﹣x),解得:x=,∴点P的坐标为(,0);②若△ABP∽△PDC,则AB:PD=BP:CD,∴4:(2﹣x)=(x+2):3,方程无解;三、若点P在CD的右边,有两种可能:①若△ABP∽△CDP,则AB:CD=BP:PD,∴4:3=(2+x):(x﹣2),∴x=14,∴点P的坐标为(14,0),②若△ABP∽△PDC,则AB:PD=BP:CD,∴4:(x﹣2)=(x+2):3,∴x=4,∴点P的坐标为(4,0);∴点P的坐标为(,0)、(14,0)、(4,0)、(﹣4,0).故答案为:(,0)、(14,0)、(4,0)、(﹣4,0).11.(2021•宁波模拟)如图,▱ABCD中,对角线AC与BD相交于点O,∠ABD=∠ACB,G是线段OD上一点,∠DGC﹣∠DCG=90°,tan∠DCG=,则的值为.【分析】由锐角三角函数可设GF=a,CF=2a,由“AAS”可证△GCE≌△GCF,可得CE=CF=2a,GF=EG=a,通过证明△GFD∽△CED,可求DC=a,DE=a,通过证明△DCO∽△ACD,可得,由勾股定理可求OE,即可求解.【解答】解:如图,过点C作CE⊥BD于E,过G作GF⊥CD于F,∵∠DGC=∠CEG+∠GCE=90°+∠GCE,∴∠DGC﹣∠GCE=90°,又∵∠DGC﹣∠DCG=90°,∴∠GCD=∠ECG,∵tan∠DCG==,∴设GF=a,CF=2a,在△GCE和GCF中,,∴△GCE≌△GCF(AAS),∴CE=CF=2a,GF=EG=a,∵∠GDF=∠EDC,∠GFD=∠CED=90°,∴△GFD∽△CED,∴,∴==,∴DF=a,DG=a,∴DC=a,DE=a,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AO=CO,BO=DO,∴∠ABD=∠BDC,∠DAC=∠ACB,∵∠ABD=∠ACB,∴∠BDC=∠DAC,又∵∠ACD=∠DCO,∴△DCO∽△ACD,∴,∴DC2=2OC2,∴OC2=a2=a2,∴OE==a,∴OD=DE+OE=a=OB,∴=,故答案为:.12.(2021•西湖区二模)如图,在矩形ABCD中,E是CD上一点,AE=AB,作BF⊥AE.(1)求证:△ADE≌△BF A;(2)连接BE,若△BCE与△ADE相似,求.【分析】(1)根据矩形的性质得出∠D=∠DAB=90°,求出∠DAE+∠F AB=90°,∠FBA+∠F AB=90°,求出∠D=∠AFB,∠DAE=∠FBA,再根据全等三角形的判定推出即可;(2)根据矩形的性质得出∠C=∠D=90°,DC∥AB,根据平行线的性质得出∠CEB=∠ABE,设∠CEB=∠ABE=x°,根据等腰三角形的性质求出∠AEB=∠EBA=x°,根据相似三角形的性质得出两种情况:①∠DEA=∠CEB=x°,根据∠DEA+∠AEB+∠CEB=180°得出x+x+x=180,求出x,再解直角三角形求出AE和AD,再求出答案即可;②∠DEA=∠EBC,设∠DEA=∠EBC=y°,求出∠DEA+∠AEB+∠CEB=(y+2x)°=180°,∠EBC+∠CEB=(y+x)°=90°,求出x,再得出答案即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAB=90°,∴∠DAE+∠F AB=90°,∵BF⊥AE,∴∠AFB=90°,∴∠D=∠AFB,∠FBA+∠F AB=90°,∴∠DAE=∠FBA,在△ADE和△BF A中,∴△ADE≌△BF A(AAS);(2)解:∵四边形ABCD是矩形,∴∠C=∠D=90°,DC∥AB,∴∠CEB=∠ABE,设∠CEB=∠ABE=x°,∵AE=AB,∴∠AEB=∠EBA=x°,当△BCE与△ADE相似时,有两种情况:①∠DEA=∠CEB=x°,∵∠DEA+∠AEB+∠CEB=180°,∴x+x+x=180,解得:x=60,即∠DEA=60°,∴∠DAE=90°﹣60°=30°,∴AE=2DE,由勾股定理得:AD===DE,∵AE=AB,∴===;②∠DEA=∠EBC,设∠DEA=∠EBC=y°,∵∠CEB=∠EBA=∠AEB=x°,则∠DEA+∠AEB+∠CEB=y°+x°+x°=(y+2x)°=180°,在Rt△BCE中,∠EBC+∠CEB=y°+x°=(y+x)°=90°,即,解得:x=90°,即∠CEB=90°,此时点E和点C重合,△BEC不存在,舍去;所以=.13.(2021•拱墅区二模)如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.【分析】(1)首先利用中位线定理得到DE∥AB以及DE的长,再证明∠DEC=∠F即可;(2)根据等腰三角形的性质得到∠A=∠B,进而求出∠CDE=∠F并结合∠CED=∠DEF即可证明△CDE∽△DFE.【解答】解:(1)∵D、E分别是AC、BC的中点,∴DE∥AB,DE=AB=5,∵DE∥AB,∴∠DEC=∠B,而∠F=∠B,∴∠DEC=∠F,∴DF=DE=5;(2)∵AC=BC,∴∠A=∠B,∵∠CDE=∠A,∠CED=∠B,∴∠CDE=∠B,∵∠B=∠F,∴∠CDE=∠F,∵∠CED=∠DEF,∴△CDE∽△DFE.14.(2021•宁波模拟)如图,矩形ABCD中,E是边AD的中点,CE与BD交于点P,将△ABE沿BE翻折,点A的对应点F刚好落在线段CP上.(1)求证:△EBC是等边三角形.(2)求的值.【分析】(1)根据矩形的性质证明△ABE≌△DCE(SAS),可得EB=EC,∠AEB=∠CED,由翻折可知:∠AEB=∠FEB,进而可以解决问题;(2)证明△PDE∽△PBC,可得==,所以=,进而可以解决问题.【解答】(1)证明:∵E是边AD的中点,∴AE=DE,∵四边形ABCD是矩形,∴∠A=∠CDA=90°,AB=CD,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC,∠AEB=∠CED,由翻折可知:∠AEB=∠FEB,∴∠AEB=∠FEB=∠CED=60°,∴△EBC是等边三角形;(2)解:∵四边形ABCD是矩形,∴AD∥BC,。

2022年浙江各地中考数学真题按知识点分类汇编专题13 二次函数及应用(解析版)

2022年浙江各地中考数学真题按知识点分类汇编专题13  二次函数及应用(解析版)

专题13二次函数及应用一、单选题1.(2022·湖州)把抛物线y=x 2向上平移3个单位,平移后抛物线的表达式是( ) A .y=2x -3 B .y=2x +3 C .y=2(3)x + D .y=2(3)x -【答案】B 【解析】∵抛物线y=x 2向上平移3个单位, ∴平移后的抛物线的解析式为:y=x 2+3. 故答案为:B.2.(2022·嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A .52B .2C .32D .1【答案】B 【解析】把(,)A a b 代入3y kx =+得:3b ka =+∴2239(3)3()24ab a ka ka a k a k k=+=+=+- ∵ab 的最大值为9 ∴0k <,且当32a k =-时,ab 有最大值,此时994ab k=-= 解得14k =-∴直线解析式为134=-+y x把(4,)B c 代入134=-+y x 得14324c =-⨯+=故选:B .3.(2022·温州)已知点(,2),(,2),(,7)A a B b C c 都在抛物线2(1)2y x =--上,点A 在点B 左侧,下列选项正确的是( ) A .若0c <,则a c b << B .若0c <,则a b c << C .若0c >,则a c b << D .若0c >,则a b c <<【答案】D 【解析】解:当0c >时,画出图象如图所示,根据二次函数的对称性和增减性可得a b c <<,故选项C 错误,选项D 正确; 当0c <时,画出图象如图所示,根据二次函数的对称性和增减性可得c a b <<,故选项A 、B 都错误;故选:D4.(2022·宁波)点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为( ) A .2m > B .32m >C .1m <D .322m <<【答案】B 【解析】解:∵点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上, ∴y 1=(m -1-1)2+n =(m -2)2+n , y 2=(m -1)2+n , ∵y 1<y 2,∴(m -2)2+n <(m -1)2+n , ∴(m -2)2-(m -1)2<0, 即-2m +3<0, ∴m >32,故选:B .5.(2022·绍兴)已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( ) A .0,4 B .1,5C .1,-5D .-1,5【答案】D【解析】抛物线2y x mx =+的对称轴为直线2x =,221m∴-=⨯, 解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-, 故选:D .6.(2022·杭州)已知二次函数2y x ax b =++(a ,b 为常数).命题①:该函数的图像经过点(1,0);命题②:该函数的图像经过点(3,0);命题③:该函数的图像与x 轴的交点位于y 轴的两侧;命题④:该函数的图像的对称轴为直线1x =.如果这四个命题中只有一个命题是假命题,则这个假命题是( ) A .命题① B .命题② C .命题③ D .命题④【答案】A 【解析】假设抛物线的对称轴为直线1x =, 则12ax =-=, 解得a = -2,∵函数的图像经过点(3,0), ∴3a +b +9=0, 解得b =-3,故抛物线的解析式为223y x x =--, 令y =0,得2230x x --=, 解得121,3x x =-=,故抛物线与x 轴的交点为(-1,0)和(3,0), 函数的图像与x 轴的交点位于y 轴的两侧; 故命题②,③,④都是正确,命题①错误, 故选A . 二、解答题7.(2022·嘉兴)已知抛物线L 1:y =a (x +1)2-4(a ≠0)经过点A (1,0). (1)求抛物线L 1的函数表达式.(2)将抛物线L 1向上平移m (m >0)个单位得到抛物线L 2.若抛物线L 2的顶点关于坐标原点O 的对称点在抛物线L 1上,求m 的值.(3)把抛物线L 1向右平移n (n >0)个单位得到抛物线L 3,若点B (1,y 1),C (3,y 2)在抛物线L 3上,且y 1>y 2,求n的取值范围.【答案】(1)223y x x =+-;(2)m 的值为4;(3)3n > 【解析】(1)解:把(1,0)A 代入2(1)4y a x =+-得:2(11)40a +-=,解得1a =,22(1)423y x x x ∴=+-=+-;答:抛物线1L 的函数表达式为223y x x =+-; (2)解:抛物线21:(1)4L y x =+-的顶点为(1,4)--,将抛物线1L 向上平移(0)m m >个单位得到抛物线2L ,则抛物线2L 的顶点为(1,4)m --+, 而(1,4)m --+关于原点的对称点为(1,4)m -, 把(1,4)m -代入223y x x =+-得:212134m +⨯-=-,解得4m =, 答:m 的值为4;(3)解:把抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,抛物线3L 解析式为2(1)4y x n =-+-, 点1(1,)B y ,2(3,)C y 都在抛物线3L 上,221(11)4(2)4y n n ∴=-+-=--, 222(31)4(4)4y n n =-+-=--,y 1>y 2,22(2)4(4)4n n ∴-->--,整理变形得:22(2)(4)0n n --->,(24)(24)0n n n n -+---+>2(62)0n -⨯->,620n -<解得3n >,n ∴的取值范围是3n >.8.(2022·杭州)设二次函数212y x bx c =++(b ,c 是常数)的图像与x 轴交于A ,B 两点.(1)若A ,B 两点的坐标分别为(1,0),(2,0),求函数1y 的表达式及其图像的对称轴.(2)若函数1y 的表达式可以写成()2122y x h =--(h 是常数)的形式,求b c +的最小值.(3)设一次函数2y x m =-(m 是常数).若函数1y 的表达式还可以写成()()122y x m x m =---的形式,当函数12y y y =-的图像经过点()0,0x 时,求0x m -的值. 【答案】(1)()()1212y x x =--,32x =;(2)4-;(3)00x m -=或052x m -= 【解析】(1)由题意,二次函数212y x bx c =++(b ,c 是常数)经过(1,0),(2,0),∴2b+c 0420b c +=⎧⎨++=⎩,解得b 64c =-⎧⎨=⎩,∴抛物线的解析式()()21264212y x x x x =-+=--.∴ 图像的对称轴是直线632222b x a -=-=-=⨯. (2)由题意,得2212422y x hx h =-+-,∵212y x bx c =++,∴b =-4h ,c =222h -∴2242b c h h +=--()2214h =--, ∴当1h =时,b c +的最小值是4-.(3)由题意,得12y y y =-()()()22x m x m x m =-----()()25x m x m =---⎡⎤⎣⎦ 因为函数y 的图像经过点()0,0x , 所以()()00250x m x m ---=⎡⎤⎣⎦,所以00x m -=,或052x m -=.9.(2022·绍兴)已知函数2y x bx c =-++(b ,c 为常数)的图象经过点(0,﹣3),(﹣6,﹣3). (1)求b ,c 的值.(2)当﹣4≤x ≤0时,求y 的最大值.(3)当m ≤x ≤0时,若y 的最大值与最小值之和为2,求m 的值.【答案】(1)b =-6,c =-3;(2)x =-3时,y 有最大值为6;(3)m =-2或3- (1)解:把(0,-3),(-6,-3)代入y =2x bx c -++,得∶33663c b c =-⎧⎨--+=-⎩,解得:63b c =-⎧⎨=-⎩; (2)解:由(1)得:该函数解析式为y =263x x ---=2(3)6x -++,∴抛物线的顶点坐标为(-3,6), ∵-1<0∴抛物线开口向下, 又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.(3)解:由(2)得:抛物线的对称轴为直线x =-3,∴当x >-3时,y 随x 的增大而减小;当x ≤-3时,y 随x 的增大而增大, ①当-3<m≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为263m m ---, ∴263m m ---+(-3)=2, ∴m =-2或m =-4(舍去). ②当m≤-3时,当x =-3时,y 有最大值为6, ∵y 的最大值与最小值之和为2, ∴y 最小值为-4, ∴2(3)6m -++=-4,∴m =3-m =3-.综上所述,m =-2或3-10.(2022·丽水)如图,已知点()()1122,,,M x y N x y 在二次函数2(2)1(0)y a x a =-->的图像上,且213x x -=.(1)若二次函数的图像经过点(3,1).①求这个二次函数的表达式;②若12y y =,求顶点到MN 的距离;(2)当12x x x ≤≤时,二次函数的最大值与最小值的差为1,点M ,N 在对称轴的异侧,求a 的取值范围. 【答案】(1)①2287y x x =-+;②92;(2)1994a <≤【解析】(1)解:①将点(3,1)代入2(2)1(0)y a x a =-->中, ∴21(32)1a ,解得2a =,∴二次函数的表达式为:222(2)1287y x x x ; ②当12y y =时,此时MN 为平行x 轴的直线, 将()11,M x y 代入二次函数中得到:2111287y x x , 将()22,N x y 代入二次函数中得到:2222287y x x ,∵12y y =, ∴211287x x =222287x x ,整理得到:121212()()4()0x x x x x x , 又∵213x x -=,代入上式得到:214x x +=,解出1217,22x x , ∴2211172()87222y y ,即直线MN 为:72y =,又二次函数的顶点坐标为(2,-1), ∴顶点(2,-1)到MN 的距离为79122; (2)解:若M ,N 在对称轴的异侧,12y y ≥, ∴x 1+3>2, ∴x 1>-1, ∵213x x -= ∴112x ≤, ∴-1<112x ≤, ∵函数的最大值为y 1=a (x 1-2)2-1,最小值为-1, ∴y -(-1)=1,∴a =()2112x -,∴()219294x ≤-<, ∴1994a <≤; 若M 、N 在对称轴的异侧,12y y ≤,x 1<2, ∵112x >, ∴1122x <<, ∵函数的最大值为y =a (x 2-2)2-1,最小值为-1,∴y -(-1)=1, ∴a =()2111x +,∴()219194x ≤+<, ∴1994a <≤, 综上所述,a 的取值范围为1994a <≤.11.(2022·湖州)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)①求点A ,B ,C 的坐标;②求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM ⊥AP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.【答案】(1)①A (3,0),B (3,3),C (0,3);②23b c =⎧⎨=⎩;(2)2133324n m ⎛⎫=--+ ⎪⎝⎭;34【解析】(1)解:①∵正方形OABC 的边长为3,∴点A ,B ,C 的坐标分别为A (3,0),B (3,3),C (0,3); ②把点A (3,0),C (0,3)的坐标分别代入y =−x 2+bx +c ,得9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩;(2)解:由题意,得∠APB =90°-∠MPC =∠PMC ,∠B =∠PCM =90°, ∴Rt △ABP ∽Rt △PCM , ∴AB BP PC CM =,即33m m n=-. 整理,得213n m m =-+,即2133324n m ⎛⎫=--+ ⎪⎝⎭.∴当32m =时,n 的值最大,最大值是34. 12.(2022·宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?【答案】(1)0.55y x =-+(28x ≤≤,且x 为整数);(2)每平方米种植5株时,能获得最大的产量,最大产量为12.5千克 【解析】(1)解:∵∵每平方米种植的株数每增加1株,单株产量减少0.5千克, ∴40.5(2)0.55y x x =--=-+(28x ≤≤,且x 为整数); (2)解:设每平方米小番茄产量为W 千克, 22(0.55)0.550.5(5)12.5=-+=-+=--+w x x x x x .∴当5x =时,w 有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克. 13.(2022·温州)根据以下素材,探索完成任务.【答案】任务一:见解析,2120y x =-;任务二:悬挂点的纵坐标的最小值是 1.8-;66x -≤≤;任务三:两种方案,见解析 【解析】任务一:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且经过点(10,5)-.设该抛物线函数表达式为2(0)y ax a =≠, 则5100a -=,∴120a =-, ∴该抛物线的函数表达式是2120y x =-. 任务二:∵水位再上涨1.8m 达到最高,灯笼底部距离水面至少1m ,灯笼长0.4m , ∴悬挂点的纵坐标5 1.810.4 1.8y ≥-+++=-, ∴悬挂点的纵坐标的最小值是 1.8-. 当 1.8y =-时,211.820x -=-,解得16x =或26x =-, ∴悬挂点的横坐标的取值范围是66x -≤≤. 任务三:有两种设计方案方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼.∵66x -≤≤,相邻两灯笼悬挂点的水平间距均为1.6m ,∴若顶点一侧挂4盏灯笼,则1.646⨯>, 若顶点一侧挂3盏灯笼,则1.636⨯<,∴顶点一侧最多可挂3盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂7盏灯笼.∴最左边一盏灯笼悬挂点的横坐标是 4.8-.方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为0.8m,∵若顶点一侧挂5盏灯笼,则0.8 1.6(51)6+⨯->,若顶点一侧挂4盏灯笼,则0.8 1.6(41)6+⨯-<,∴顶点一侧最多可挂4盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂8盏灯笼.∴最左边一盏灯笼悬挂点的横坐标是 5.6-.14.(2022·台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度3mDE=,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若 1.5h=,0.5mEF=;①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;(2)若1mEF=.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.【答案】(1)①6m;②(2,0);③21d≤≤;(2)65 32【解析】(1)①如图1,由题意得(2,2)A 是上边缘抛物线的顶点,设2(2)2y a x =-+.又∵抛物线经过点(0,1)5., ∴1.542a =+, ∴18a =-. ∴上边缘抛物线的函数解析式为21(2)28y x =--+. 当0y =时,21(2)208x --+=, ∴16x =,22x =-(舍去).∴喷出水的最大射程OC 为6m .图1②∵对称轴为直线2x =,∴点(0,1)5.的对称点的坐标为(4,1.5). ∴下边缘抛物线是由上边缘抛物线向左平移4m 得到的,即点B 是由点C 向左平移4m 得到,则点B 的坐标为(2,0).③如图2,先看上边缘抛物线,∵0.5EF =,∴点F 的纵坐标为0.5.抛物线恰好经过点F 时,21(2)20.58x --+=.解得2x =±∵0x >,∴2x =+当0x >时,y 随着x 的增大而减小,∴当26x ≤≤时,要使0.5y ≥,则2x ≤+∵当02x ≤<时,y 随x 的增大而增大,且0x =时, 1.50.5y =>,∴当06x ≤≤时,要使0.5y ≥,则02x ≤≤+∵3DE =,灌溉车喷出的水要浇灌到整个绿化带,∴d 的最大值为(231+-=.再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB d ≤,∴d 的最小值为2.综上所述,d 的取值范围是21d ≤≤.(2)h 的最小值为6532. 由题意得(2,0.5)A h +是上边缘抛物线的顶点,∴设上边缘抛物线解析式为2(2)0.5y a x h =-++.∵上边缘抛物线过出水口(0,h )∴40.5y a h h =++=解得18a =- ∴上边缘抛物线解析式为21(2)0.58y x h =--++ ∵对称轴为直线2x =,∴点(0,)h 的对称点的坐标为(4,)h .∴下边缘抛物线是由上边缘抛物线向左平移4m 得到的,∴下边缘抛物线解析式为21(2)0.58y x h =-+++. 当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D ,F 恰好分别在两条抛物线上,∵DE =3∴设点(),0D m ,()3,0E m +,213,(32)0.58F m m h ⎛⎫+-+-++ ⎪⎝⎭, ∵D 在下边缘抛物线上,∴21(2)0.508m h -+++= ∵EF =1∴21(32)0.518m h -+-++= ∴21(32)0.58m h -+-++-21(2)0.518m h ⎡⎤-+++=⎢⎥⎣⎦, 解得 2.5m =,代入21(2)0.508m h -+++=,得6532h =. 所以h 的最小值为6532. 15.(2022·金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量1y (吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为21y ax c =+,部分对应值如表:②该蔬菜供给量2y (吨)关于售价x (元/千克)的函数表达式为21y x =-,函数图象见图1.③1~7月份该蔬菜售价1x (元/千克),成本2x (元/千克)关于月份t 的函数表达式分别为11=22x t +,2213342x t t =-+,函数图象见图2. 请解答下列问题:(1)求a ,c 的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.【答案】(1)1,95a c =-= (2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元【解析】(1)把3,7.2x y =⎧⎨=⎩,4,5.8x y =⎧⎨=⎩代入2y ax c =+需求可得 97.2,16 5.8.a c a c +=⎧⎨+=⎩①②②-①,得7 1.4a =-,解得15a =-, 把15a =-代入①,得9c =, ∴1,95a c =-=. (2)设这种蔬菜每千克获利w 元,根据题意, 有211323242w x x t t t ⎛⎫=-=+--+ ⎪⎝⎭售价成本, 化简,得221121(4)344w t t t =-+-=--+, ∵10,44t -<=在17t ≤≤的范围内, ∴当4t =时,w 有最大值.答:在4月份出售这种蔬菜每千克获利最大.(3)由y y =需求供给,得21195x x -=-+, 化简,得25500x x +-=,解得125,10x x ==-(舍去),∴售价为5元/千克.此时,14y y x ==-=需求供给(吨)4000=(千克),把5x =代入122x t =+售价,得6t =, 把6t =代入21214w t t =-+-,得13626124w =-⨯+⨯-=, ∴总利润240008000w y =⋅=⨯=(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.。

考点12 等腰三角形-备战2023年中考数学一轮复习考点帮(浙江专用)(解析版)

考点12 等腰三角形-备战2023年中考数学一轮复习考点帮(浙江专用)(解析版)

考点12 等腰三角形【命题趋势】等腰三角形的性质及判定是初中数学最为重要的知识点之一,也是重要几何模型的“发源地”,最为经典的“手拉手”模型就是以等腰三角形为特征总结的。

在浙江中考中,等腰三角形可以以选择题、填空题出现,来考察其性质;也可以以解答题出题,来考察其性质和判定的综合(此时多为压轴题)。

所占分值也是比较多,属于是中考必考的中等偏上难度的考点。

【中考考查重点】一、等腰三角形的性质和判定二、角平分线的性质与判定三、线段垂直平分线的性质与判定考向一:等腰三角形的性质和判定【方法提炼】1.在△ABC中,AB=AC,D是BC中点,∠BAD=35°,则∠B的度数为()A.35°B.45°C.55°D.60°【分析】由等腰三角形的三线合一性质可知∠BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【解答】解:AB=AC,D为BC中点,∴AD是∠BAC的平分线,∠B=∠C,∵∠BAD=35°,∴∠BAC=2∠BAD=70°,∴∠B=(180°﹣70°)=55°.故选:C.2.等腰三角形的一边等于5,一边等于11,则此三角形的周长为()A.10B.21C.27D.21或27【分析】因为等腰三角形的两边分别为11和5,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当5为底时,其它两边都为11,11、11、5可以构成三角形,周长为27;当5为腰时,其它两边为11和5,因为5+5=10<11,所以不能构成三角形,故舍去.所以答案只有27.故选:C.3.在直角坐标系中,已知点A(﹣1,1),在y轴负半轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的坐标为()A.(﹣1,0)B.(﹣,0)C.(0,1)D.(0,﹣)【分析】由勾股定理得OA=,当OA为腰时,以O为圆心,OA为半径画弧交y轴负半轴上一点:(0,﹣).【解答】解:∵点A(﹣1,1),∴OA=,当OA为腰时,以O为圆心,OA为半径画弧交y轴负半轴上一点,此点P的坐标为(0,﹣).故选:D.4.已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定【分析】由a2+b2﹣2ab=0,可得出a=b,结合a,b是△ABC的两条边长,即可得出△ABC为等腰三角形.【解答】解:∵a2+b2﹣2ab=0,即(a﹣b)2=0,∴a﹣b=0,∴a=b.又∵a,b是△ABC的两条边长,∴△ABC为等腰三角形.故选:A.5.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长()A.大于9B.等于9C.小于9D.不能确定【分析】利用角平分线和平行可以证明△BME和△CNE是等腰三角形,而可得BM+CN =MN即可解答.【解答】解:∵BE平分∠ABC,CE平分∠ACB,∴∠ABE=∠EBC,∠ACE=∠ECB,∵MN∥BC,∴∠MEB=∠EBC,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠NCE,∴MB=ME,NE=NC,∵BM+CN=9,∴ME+NE=9,∴MN=9,故选:B.6.如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG =NQ,若△MNP的周长为12,MQ=m,则△MGQ周长是()A.8+2m B.8+m C.6+2m D.6+m【分析】根据等边三角形的判定得出△PMN是等边三角形,根据等边三角形的性质得出∠PMN=∠PNM=60°,PN=MN=PM=4,PQ=NQ=PN=2,∠QMN=PMN =30°,求出∠G=∠GQN=30°,根据等腰三角形的性质得出GQ=MQ=m,再求出答案即可.【解答】解:∵∠P=60°,MN=NP,∴△PMN是等边三角形,∵△MNP的周长是12,∴∠PMN=∠PNM=60°,PN=MN=PM=4,∵MQ⊥PN,∴PQ=NQ=PN=2,∠QMN=PMN=30°,∵NG=NQ,∴∠G=∠GQN,NG=2,∵∠G+∠∠GQN=∠PNM=60°,∴∠G=∠GQN=30°,即∠QMN=∠G=30°,∴GQ=MQ=m,∴△MGQ是周长=MQ+GQ+MG=m+m+4+2=6+2m,故选:C.7.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个【分析】根据先证明△BCE≌△ACD,得出AD=BE,根据已知给出的条件即可得出答案;【解答】解:∵△ABC和△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴AD=BE,故选项①正确;∵∠ACB=∠ACE=60°,由△BCE≌△ACD得:∠CBE=∠CAD,∴∠BMC=∠ANC,故选项②正确;由△BCE≌△ACD得:∠CBE=∠CAD,∵∠ACB是△ACD的外角,∴∠ACB=∠CAD+∠ADC=∠CBE+∠ADC=60°,又∠APM是△PBD的外角,∴∠APM=∠CBE+∠ADC=60°,故选项③正确;在△ACN和△BCM中,,∴△ACN≌△BCM,∴AN=BM,故选项④正确;∴CM=CN,∴△CMN为等腰三角形,∵∠MCN=60°,∴△CMN是等边三角形,故选项⑤正确;故选:D.8.一个等腰三角形一腰上的高与另一腰夹角为50°,则顶角的度数为.【分析】分别从此等腰三角形是锐角三角形与钝角三角形去分析求解即可求得答案.【解答】解:①当为锐角三角形时,如图1,∵∠ABD=50°,BD⊥AC,∴∠A=90°﹣50°=40°,∴三角形的顶角为40°;②当为钝角三角形时,如图2,∵∠ABD=50°,BD⊥AC,∴∠BAD=90°﹣50°=40°,∵∠BAD+∠BAC=180°,∴∠BAC=140°,∴三角形的顶角为140°,故答案为:40°或140°.9.如图,在正方形网格中,网格线的交点称为格点;已知A,B是两格点,若C点也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.【分析】分三种情况,CA=CB,AB=AC,BA=BC.【解答】解:如图:当CA=CB时,作AB的垂直平分线,符合条件的点有6个,当AB=AC时,以A为圆心,AB长为半径作圆,符合条件的点有2个,当BA=BC时,以B为圆心,BA长为半径作圆,符合条件的点有2个,综上所述,△ABC为等腰三角形,则符合条件的点C有10个,故答案为:10.10.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交直角两边于A,B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则△AOC的形状为.【分析】根据已知条件得出OA=OC=AC,根据等边三角形的判定得出即可.【解答】解:∵以直角顶点O为圆心,以适当半径画一条弧交直角两边于A,B两点,∴OA=OC,∵以A为圆心,以OA为半径画弧,与弧AB交于点C,∴AC=AO,∴OC=AC=OA,∴△AOC的形状是等边三角形,故答案为:等边三角形.11.“中国海监50”在南海海域B处巡逻,观测到灯塔A在其北偏东80°的方向上,现该船以每小时10海里的速度沿南偏东40°的方向航行2小时后到达C处,此时测得灯塔A 在其北偏东20°的方向上,求货轮到达C处时与灯塔A的距离AC.【分析】利用平行线性质得出:∠ABC=60°,∠1=40°,进而得出∠BAC=∠BCA=60°,得出△ABC是等边三角形,进而得出答案.【解答】解:由题意得:∠ABC=180°﹣80°﹣40°=60°,BC=10×2=20(海里),∵CD∥BE,∴∠1=∠CBE=40°,∵∠ACD=20°,∴∠ACB=∠1+∠ACD=60°,∴△ABC是等边三角形,∴AC=BC=20海里,答:货轮到达C处时与灯塔A的距离AC为20海里.12.已知:如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=36°,求∠DBC的度数;(3)若AE=8,△CBD的周长为24,求△ABC的周长.【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)首先利用三角形内角和求得∠ABC的度数,然后减去∠ABD的度数即可得到答案;(3)将△ABC的周长转化为AB+AC+BC的长即可求得.【解答】解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=36°,∴∠ABD=∠A=36°,∠ABC=∠C=(180°﹣36°)÷2=72°∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°;(3)∵AB的垂直平分线MN交AC于点D,AE=8,∴AB=2AE=16,∵△CBD的周长为24,∴AC+BC=24,∴△ABC的周长=AB+AC+BC=16+24=40.13.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE =∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【分析】先证△BDF≌△CEF(AAS),得出BF=CF,则∠FBC=∠FCB,得出∠ABC=∠ACB,则AB=AC.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴∠FBC=∠FCB,∴∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.考向二:角平分线的性质与判定一.角平分线的性质定理与判定定理性质定理:角平分线上的点到角两边的距离相等。

浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.分式的加减法(共1小题)1.(2023•温州)计算:(1)|﹣1|++()﹣2﹣(﹣4);(2)﹣.二.待定系数法求一次函数解析式(共1小题)2.(2023•温州)如图,在直角坐标系中,点A (2,m )在直线y =2x ﹣上,过点A 的直线交y 轴于点B (0,3).(1)求m 的值和直线AB 的函数表达式;(2)若点P (t ,y 1)在线段AB 上,点Q (t ﹣1,y 2)在直线y =2x ﹣上,求y 1﹣y 2的最大值.三.一次函数的应用(共1小题)3.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克原料每千克含铁甲食材50毫克配料表乙食材10毫克规格每包食材含量每包单价A 包装1千克45元B 包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?四.待定系数法求二次函数解析式(共1小题)4.(2021•温州)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.五.二次函数的应用(共1小题)5.(2022•温州)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.六.平行四边形的判定与性质(共2小题)6.(2022•温州)如图,在△ABC 中,AD ⊥BC 于点D ,E ,F 分别是AC ,AB 的中点,O 是DF 的中点,EO 的延长线交线段BD 于点G ,连结DE ,EF ,FG .(1)求证:四边形DEFG 是平行四边形.(2)当AD =5,tan ∠EDC =时,求FG 的长.7.(2021•温州)如图,在▱ABCD 中,E ,F 是对角线BD 上的两点(点E 在点F 左侧),且∠AEB =∠CFD =90°.(1)求证:四边形AECF 是平行四边形;(2)当AB =5,tan ∠ABE =,∠CBE =∠EAF 时,求BD 的长.七.圆的综合题(共2小题)8.(2022•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3,点P,Q分别在线段AB,BE上(不与端点重合),且满足=.设BQ=x,CP=y.(1)求半圆O的半径.(2)求y关于x的函数表达式.(3)如图2,过点P作PR⊥CE于点R,连结PQ,RQ.①当△PQR为直角三角形时,求x的值.②作点F关于QR的对称点F′,当点F′落在BC上时,求的值.9.(2021•温州)如图,在平面直角坐标系中,⊙M经过原点O,分别交x轴、y轴于点A (2,0),B(0,8),连结AB.直线CM分别交⊙M于点D,E(点D在左侧),交x轴于点C(17,0),连结AE.(1)求⊙M的半径和直线CM的函数表达式;(2)求点D,E的坐标;(3)点P在线段AC上,连结PE.当∠AEP与△OBD的一个内角相等时,求所有满足条件的OP的长.八.利用平移设计图案(共1小题)10.(2021•温州)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.九.作图-旋转变换(共1小题)11.(2023•温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.一十.相似形综合题(共1小题)12.(2023•温州)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE ⊥CD ,交CD 延长线于点E ,交半圆于点F ,已知OA =,AC =1.如图2,连结AF ,P 为线段AF 上一点,过点P 作BC 的平行线分别交CE ,BE 于点M ,N ,过点P 作PH ⊥AB 于点H .设PH =x ,MN =y .(1)求CE 的长和y 关于x 的函数表达式;(2)当PH <PN ,且长度分别等于PH ,PN ,a 的三条线段组成的三角形与△BCE 相似时,求a 的值;(3)延长PN 交半圆O 于点Q ,当NQ =x ﹣3时,求MN 的长.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•温州)根据背景素材,探索解决问题.测算发射塔的高度背景素材某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN (如图1),他们通过自制的测倾仪(如图2)在A ,B ,C 三个位置观测,测倾仪上的示数如图3所示.经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度问题解决分析规划选择两个观测位置:点 和点  .任务1获取数据写出所选位置观测角的正切值,并量出观测点之间的图上距离.任务2推理计算计算发射塔的图上高度MN .任务3换算高度楼房实际宽度DE 为12米,请通过测量换算发射塔的实际高度.注:测量时,以答题纸上的图上距离为准,并精确到1mm .浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.分式的加减法(共1小题)1.(2023•温州)计算:(1)|﹣1|++()﹣2﹣(﹣4);(2)﹣.【答案】(1)12;(2)a﹣1.【解答】解:(1)原式=1﹣2+9+4=12;(2)原式===a﹣1.二.待定系数法求一次函数解析式(共1小题)2.(2023•温州)如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.【答案】(1)m=;直线AB的函数表达式为y=﹣x+3.(2)当t =0,y 1﹣y 2的最大值为.【解答】解:(1)把点A (2,m )代入y =2x ﹣中,得m =;设直线AB 的函数表达式为:y =kx +b ,把A (2,),B (0,3)代入得:,解得,∴直线AB 的函数表达式为y =﹣x +3.(2)∵点P (t ,y 1)在线段AB 上,∴y 1=﹣t +3(0≤t ≤2),∵点Q (t ﹣1,y 2)在直线y =2x ﹣上,∴y 2=2(t ﹣1)﹣=2t ﹣,∴y 1﹣y 2=﹣t +3﹣(2t ﹣)=﹣t +,∵﹣<0,∴y 1﹣y 2随t 的增大而减小,∴当t =0,y 1﹣y 2的最大值为.三.一次函数的应用(共1小题)3.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克原料每千克含铁甲食材50毫克配料表乙食材10毫克规格每包食材含量每包单价A 包装1千克45元B 包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?【答案】(1)甲食材每千克进价为40元,乙食材每千克进价为20元;(2)①每日购进甲食材400千克,乙食材100千克;②当A为400包时,总利润最大,最大总利润为2800元.【解答】解:(1)设乙食材每千克进价为a元,则甲食材每千克进价为2a元,由题意得,解得a=20,经检验,a=20是所列方程的根,且符合题意,∴2a=40(元),答:甲食材每千克进价为40元,乙食材每千克进价为20元;(2)①设每日购进甲食材x千克,乙食材y千克,由题意得,解得,答:每日购进甲食材400千克,乙食材100千克;②设A为m包,则B为=(2000﹣4m)包,∵A的数量不低于B的数量,∴m≥2000﹣4m,∴m≥400,设总利润为W元,根据题意得:W=45m+12(2000﹣4m)﹣18000﹣2000=﹣3m+4000,∵k=﹣3<0,∴W随m的增大而减小,∴当m=400时,W的最大值为2800,答:当A为400包时,总利润最大,最大总利润为2800元.四.待定系数法求二次函数解析式(共1小题)4.(2021•温州)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.【答案】(1)y=x2﹣2x﹣8;(1,﹣9).(2)﹣4<x P<5,﹣9≤y P<16.【解答】解:(1)把(﹣2,0)代入y=ax2﹣2ax﹣8得0=4a+4a﹣8,解得a=1,∴抛物线的函数表达式为y=x2﹣2x﹣8,∵y=x2﹣2x﹣8=(x﹣1)2﹣9,∴抛物线顶点坐标为(1,﹣9).(2)把x=﹣4代入y=x2﹣2x﹣8得y=(﹣4)2﹣2×(﹣4)﹣8=16,∴m=16,把y=7代入函数解析式得7=x2﹣2x﹣8,解得x=5或x=﹣3,∴n=5或n=﹣3,∵n为正数,∴n=5,∴点A坐标为(﹣4,16),点B坐标为(5,7).∵抛物线开口向上,顶点坐标为(1,﹣9),∴抛物线顶点在AB下方,∴﹣4<x P<5,﹣9≤y P<16.五.二次函数的应用(共1小题)5.(2022•温州)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.【答案】任务1:y=﹣x2;任务2:﹣1.8m,﹣6≤x≤6;任务3:挂7盏或8盏,横坐标分别为﹣4.8和﹣5.6,方案见解答.【解答】解:任务1:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且过点B(10,﹣5),设抛物线的解析式为:y=ax2,把点B(10,﹣5)代入得:100a=﹣5,∴a=﹣,∴抛物线的函数表达式为:y=﹣x2;任务2:∵该河段水位再涨1.8m达到最高,灯笼底部距离水面不小于1m,灯笼长0.4m,∴当悬挂点的纵坐标y≥﹣5+1.8+1+0.4=﹣1.8,即悬挂点的纵坐标的最小值是﹣1.8m,当y=﹣1.8时,﹣x2=﹣1.8,∴x=±6,∴悬挂点的横坐标的取值范围是:﹣6≤x≤6;任务3:方案一:如图2(坐标轴的横轴),从顶点处开始悬挂灯笼,∵﹣6≤x≤6,相邻两盏灯笼悬挂点的水平间距均为1.6m,∴若顶点一侧悬挂4盏灯笼时,1.6×4>6,若顶点一侧悬挂3盏灯笼时,1.6×3<6,∴顶点一侧最多悬挂3盏灯笼,∵灯笼挂满后成轴对称分布,∴共可挂7盏灯笼,∴最左边一盏灯笼的横坐标为:﹣1.6×3=﹣4.8;方案二:如图3,∵若顶点一侧悬挂5盏灯笼时,0.8+1.6×(5﹣1)>6,若顶点一侧悬挂4盏灯笼时,0.8+1.6×(4﹣1)<6,∴顶点一侧最多悬挂4盏灯笼,∵灯笼挂满后成轴对称分布,∴共可挂8盏灯笼,∴最左边一盏灯笼的横坐标为:﹣0.8﹣1.6×3=﹣5.6.六.平行四边形的判定与性质(共2小题)6.(2022•温州)如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O 是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形.(2)当AD=5,tan∠EDC=时,求FG的长.【答案】(1)证明见解析;(2),【解答】(1)证明:∵E,F分别是AC,AB的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠EFO=∠GDO,∵O是DF的中点,∴OF=OD,在△OEF和△OGD中,,∴△OEF≌△OGD(ASA),∴EF=GD,∴四边形DEFG是平行四边形.(2)解:∵AD⊥BC,∴∠ADC=90°,∵E是AC的中点,∴DE=AC=CE,∴∠C=∠EDC,∴tan C==tan∠EDC=,即=,∴CD=2,∴AC===,∴DE=AC=,由(1)可知,四边形DEFG是平行四边形,∴FG=DE=.7.(2021•温州)如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧),且∠AEB=∠CFD=90°.(1)求证:四边形AECF是平行四边形;(2)当AB=5,tan∠ABE=,∠CBE=∠EAF时,求BD的长.【答案】见试题解答内容【解答】(1)证明:∵∠AEB=∠CFD=90°,∴AE⊥BD,CF⊥BD,∴AE∥CF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF是平行四边形;(2)解:在Rt△ABE中,tan∠ABE==,设AE=3a,则BE=4a,由勾股定理得:(3a)2+(4a)2=52,解得:a=1或a=﹣1(舍去),∴AE=3,BE=4,由(1)得:四边形AECF是平行四边形,∴∠EAF=∠ECF,CF=AE=3,∵∠CBE=∠EAF,∴∠ECF=∠CBE,∴tan∠CBE=tan∠ECF,∴=,∴CF2=EF×BF,设EF=x,则BF=x+4,∴32=x(x+4),解得:x=﹣2或x=﹣﹣2,(舍去),即EF=﹣2,由(1)得:△ABE≌△CDF,∴BE=DF=4,∴BD=BE+EF+DF=4+﹣2+4=6+.七.圆的综合题(共2小题)8.(2022•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3,点P,Q分别在线段AB,BE上(不与端点重合),且满足=.设BQ=x,CP=y.(1)求半圆O的半径.(2)求y关于x的函数表达式.(3)如图2,过点P作PR⊥CE于点R,连结PQ,RQ.①当△PQR为直角三角形时,求x的值.②作点F关于QR的对称点F′,当点F′落在BC上时,求的值.【答案】(1);(2)y=;(3)①或;②.【解答】解:(1)如图1,连接OD,设半径为r,∵CD切半圆于点D,∴OD⊥CD,∵BE⊥CD,∴OD∥BE,∴△COD∽△CBE,∴,∴,解得r=,∴半圆O的半径为;(2)由(1)得,CA=CB﹣AB=5﹣2×=,∵=,BQ=x,∴AP=,∴CP=AP+AC,∴y=;(3)①显然∠PRQ<90°,所以分两种情形,当∠RPQ=90°时,则四边形RPQE是矩形,∴PR=QE,∵PR=PC×sin C=,∴,∴x=,当∠PQR=90°时,过点P作PH⊥BE于点H,如图,则四边形PHER是矩形,∴PH=RE,EH=PR,∵CR=CP•cos C=,∴PH=RE=3﹣x=EQ,∴∠EQR=∠ERQ=45°,∴∠PQH=45°=∠QPH,∴HQ=HP=3﹣x,由EH=PR得:(3﹣x)+(3﹣x)=,∴x=,综上,x的值为或;②如图,连接AF,QF',由对称可知QF=QF',∵CP=,∴CR=x+1,∴ER=3﹣x,∵BQ=x,∴EQ=3﹣x,∴ER=EQ,∴∠F'QR=∠EQR=45°,∴∠BQF'=90°,∴QF=QF'=BQ•tan B=,∵AB是半圆O的直径,∴∠AFB=90°,∴BF=AB•cos B=,∴,∴x=,∴.9.(2021•温州)如图,在平面直角坐标系中,⊙M经过原点O,分别交x轴、y轴于点A (2,0),B(0,8),连结AB.直线CM分别交⊙M于点D,E(点D在左侧),交x轴于点C(17,0),连结AE.(1)求⊙M的半径和直线CM的函数表达式;(2)求点D,E的坐标;(3)点P在线段AC上,连结PE.当∠AEP与△OBD的一个内角相等时,求所有满足条件的OP的长.【答案】见试题解答内容【解答】解:(1)∵∠AOB=90°,∴AB为⊙M的直径,∵点M是AB的中点,则点M(1,4),则圆的半径为AM==,设直线CM的表达式为y=kx+b,则,解得,故直线CM的表达式为y=﹣x+;(2)设点D的坐标为(x,﹣x+),由AM=得:(x﹣1)2+(﹣x+﹣4)2=()2,解得x=5或﹣3,故点D、E的坐标分别为(﹣3,5)、(5,3);(3)过点D作DH⊥OB于点H,则DH=3,BH=8﹣5=3=DH,故∠DBO=45°,由点A、E的坐标,同理可得∠EAP=45°;由点A、E、B、D的坐标得,AE==3,同理可得:BD=3,OB=8,①当∠AEP=∠DBO=45°时,则△AEP为等腰直角三角形,EP⊥AC,故点P的坐标为(5,0),故OP=5;②∠AEP=∠BDO时,∵∠EAP=∠DBO,∴△EAP∽△DBO,∴,即==,解得AP=8,故PO=10;③∠AEP=∠BOD时,∵∠EAP=∠DBO,∴△EAP∽△OBD,∴,即,解得AP=,则PO=2+=,综上所述,OP为5或10或.八.利用平移设计图案(共1小题)10.(2021•温州)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.【答案】见试题解答内容【解答】解:(1)如图2所示,即为所求;(2)如图3所示,即为所求.九.作图-旋转变换(共1小题)11.(2023•温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.【答案】(1)(2)作图见解析部分.【解答】解:(1)图形如图1所示(答案不唯一);(2)图形如图2所示(答案不唯一).一十.相似形综合题(共1小题)12.(2023•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知OA=,AC=1.如图2,连结AF,P为线段AF上一点,过点P作BC的平行线分别交CE,BE于点M,N,过点P 作PH⊥AB于点H.设PH=x,MN=y.(1)求CE的长和y关于x的函数表达式;(2)当PH<PN,且长度分别等于PH,PN,a的三条线段组成的三角形与△BCE相似时,求a的值;(3)延长PN交半圆O于点Q,当NQ=x﹣3时,求MN的长.【答案】(1)CE=,y=﹣x+4;(2)a的值为或或;(3)MN的长为.【解答】解:(1)如图1,连接OD,∵CD切半圆O于点D,∴OD⊥CE,∵OA=,AC=1,∴OC=,BC=4,∴CD==2,∵BE⊥CE,∴OD∥BE,∴,∴,∴CE=,如图2,∵∠AFB=∠E=90°,∴AF∥CE,∴MN∥CB,∴四边形APMC是平行四边形,∴CM=PA====x,∵NM∥BC,∴△BCE∽△NME,∴,∴=,∴y=﹣x+4;(2)∵PN=y﹣1=﹣x+4﹣1=﹣x+3,PH<PN,△BCE的三边之比为3:4:5,∴可分为三种情况,当PH:PN=3:5时,x=﹣x+3,解得:x=,∴a=x=,当PH:PN=4:5时,x=﹣x+3,解得:x=,∴a=x=,当PH:PN=3:4时,x=﹣x+3,解得:x=,∴a=x=,综上所述:a的值为或或;(3)如图3,连接AQ,BQ,过点Q作QG⊥AB于点G,则∠AQB =∠AGQ =90°,PH =QG =x ,∴∠QAB =∠BQG ,∵NQ =x ﹣3,PN =y ﹣1=﹣x +3,∴HG =PQ =NQ +PN =x ,∵AH =x ,∴AG =AH +HG =3x ,∴tan ∠BQG =tan ∠QAB ===,∴BG =QG =x ,∴AB =AG +BG =x =3,∴x =,∴y =﹣x +4=,∴MN 的长为.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•温州)根据背景素材,探索解决问题.测算发射塔的高度背景素材某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN (如图1),他们通过自制的测倾仪(如图2)在A ,B ,C 三个位置观测,测倾仪上的示数如图3所示.经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度问题解决分析规划选择两个观测位置:点 A 和点 B (答案不唯一) .任务1获取数据写出所选位置观测角的正切值,并量出观测点之间的图上距离.任务2推理计算计算发射塔的图上高度MN .任务3换算高度楼房实际宽度DE 为12米,请通过测量换算发射塔的实际高度.注:测量时,以答题纸上的图上距离为准,并精确到1mm .【答案】任务1:A 、B ;tan ∠1=,tan ∠2=,tan ∠3=,测得图上AB =4mm ,任务2:MN =18mm ;任务3:43.2m .【解答】解:任务1:【分析规划】选择点A 和点B(答案不唯一),故答案为:A 、B (答案不唯一);【获取数据】tan ∠1=,tan ∠2=,tan ∠3=,测得图上AB =4mm ;任务2:如图1,过点A 作AF ⊥MN 于点F ,过点B 作BG ⊥MN 于点G ,则FG =AB =4mm,设MF=xmm,则MG=(x+4)mm,∵tan∠MAF==,tan∠MBG==,∴AF=4x,BG=3x+12,∵AF=BG,即4x=3x+12,∴x=12,即MF=12mm,∴AF=BG=4x=48(mm),∵tan∠FAN==,∴FN=6mm,∴MN=MF+FN=12+6=18(mm),任务3:测得图上DE=5mm,设发射塔的实际高度为hm,由题意得,=,解得h=43.2(m),∴发射塔的实际高度为43.2m.。

相似三角形的应用-2022年中考数学一轮复习考点(浙江专用)(解析版)

相似三角形的应用-2022年中考数学一轮复习考点(浙江专用)(解析版)

考点15 相似三角形的应用【命题趋势】相似三角形的应用在中考中主要考察热点有:8字图、A字图等简单相似模型。

出题类型可以是选择填空这类小题,也可以是18~19这类解答题,难度通常不大,问题背景多以现实中的实物如树高、楼高、物体尺寸等为背景,提炼出数学模型,进而利用(或构造)简单相似模型求解长度等问题。

【中考考查重点】一、相似三角形在实际生活中的应用二、位似图形三、相似三角形与函数综合考向一:相似三角形在实际生活中的应用相似三角形在实际生活中的应用:(一)建模思想:建立相似三角形的模型(二)常见题目类型:1.利用投影、平行线、标杆等构造相似三角形求解2.测量底部可以到达的物体的高度3.测量底部不可以到达的物体的高度4.测量河的宽度【同步练习】1.如图,小明周末晚上陪父母在马路上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为()A.1米B.2米C.3米D.4米【分析】依据△CBF∽△CAP,即可得到AP=8,再依据△EDG∽△EAP,即可得到DE 长.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴=,即=,解得AP=8,由GD∥AP可得,△EDG∽△EAP,∴=,即=,解得ED=2,故选:B.2.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为()A.2米B.3米C.米D.米【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD.【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴=,∴=,∴CD=3米,故选:B.3.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,它的影子QN=1.8m,MN=0.8m,木竿PQ的长度为.【分析】根据同一时刻物高与影长成正比列式求解即可.【解答】解:设木竿PQ长为xm,依题意得=,解得x=1.6,答:木竿PQ长度为1.6m,故答案为:1.6m.4.如图,有一块三角形余料,它的边BC=100m,高线AH=80m,要把它加工成矩形零件,使矩形的一边EF在BC上,其余两个顶点D、G分别在边AB、AC上,设矩形DEFG的一边长DE=xm,矩形DEFG的面积为S.(1)矩形DEFG的另一边长DG是多少?(用关于x的代数式表示)(2)求S关于x的函数表达式和自变量x的取值范围.(3)当x为多少时,矩形DEFG的面积S有最大值?最大值是多少?【分析】(1)利用矩形的性质,DG∥EF,利用同位角相等,证△ADG∽△ABC,利用相似三角形的性质求解即可;(2)由(1)可知,DG=(80﹣x),然后即可求出用x表示的矩形面积的关系式.(3)利用配方法求出最大值即可.【解答】解:(1)∵四边形DEFG是矩形,∴DG∥EF,∴∠ADG=∠ABC,∠AGD=∠ACB,∴△ADG∽△ABC,∴=,∴=,∴DG=(80﹣x)(m);(2)矩形面积S=x•(80﹣x)=﹣x2+100x(0<x<80);(3)∵S=﹣(x2﹣80x)=﹣(x﹣40)2+2000,∵﹣<0,∴x=40时,S的值最大,最大值为2000.答:当x=40时,S的值最大,最大值为2000m2.考向二:位似图形位似图形满足的条件:①所有经过对应点的直线都相交于同一点(该点叫做位似中心);②这个交点到两个对应点的距离之比都相等(这个比值叫做位似比)【同步练习】1.如图,BC∥ED,下列说法不正确的是()A.AE:AD是相似比B.点A是两个三角形的位似中心C.B与D、C与E是对应位似点D.两个三角形是位似图形【分析】根据位似变换的概念和性质判断即可.【解答】解:A、当BC∥ED时,△AED∽△ACB,AE:AC是相似比,本选项说法不正确,符合题意;B、点A是两个三角形的位似中心,本选项说法正确,不符合题意;C、B与D、C与E是对应位似点,本选项说法正确,不符合题意;D、两个三角形是位似图形,本选项说法正确,不符合题意;故选:A.2.如图,已知△ABC和△ADE是以点A为位似中心的位似图形,且△ABC和△ADE的周长比为2:1,则△ABC和△ADE的位似比是()A.1:4B.4:1C.1:2D.2:1【分析】利用位似的性质求解.【解答】解:∵△ABC和△ADE是以点A为位似中心的位似图形,∴△ABC∽△ADE,位似比等于相似比,∵△ABC和△ADE的周长比为2:1,∴△ABC和△ADE的相似比为2:1,∴△ABC和△ADE的位似比是2:1.故选:D.3.如图,在网格图中,以O为位似中心,把△ABC缩小到原来的,则点A的对应点为()A.D点B.E点C.D点或G点D.D点或F点【分析】作射线AO,根据位似变换的概念判断即可.【解答】解:作射线AO,由图可知,点D和点G都在射线AO上,且=,=,则点A的对应点为D点或G点,故选:C.4.如图,在7×4方格纸中,点A,B,C都在格点上,用无刻度直尺作图.(1)在图1中的线段AC上找一个点E,使AE=AC;(2)在图2中作一个格点△CDE,使△CDE与△ABC相似.【分析】(1)构造相似比为的相似三角形即可解决问题;(2)利用勾股定理的逆定理判断出∠ACB=90°,从而解决问题.【解答】解:(1)如图,构造相似比为的相似三角形,则点E即为所求;(2)如图,∵BC2=5,AC2=20,AB2=25,∴BC2+AC2=AB2,∴∠ACB=90°,AC=2BC,∴△CDE即为所求.5.如图,在平面直角坐标系中,△ABC的顶点为A(2,1),B (1,3),C(4,1),若△A1B1C1与△ABC是以坐标原点O为位似中心的位似图形,点A、B、C的对应点分别为A1、B1、C1,且A1的坐标为(4,2).(1)请在所给平面直角坐标系第一象限内画出△A1B1C1;(2)分别写出点B1、C1的坐标.【分析】(1)(2)利用点A和点A1的坐标特征确定位似比为2,然后把点B、C的横纵坐标都乘以2得到点B1、C1的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1;(2)点B1的坐标为(2,6),点C1的坐标为(8,2).考向三:相似三角形与函数综合【方法提炼】【同步练习】1.(2021•无棣县二模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④【分析】据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E 时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED 的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】解:根据图(2)可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,相似三角形与函数的综合重点是利用相似三角形的性质,设置参数,构建对应函数模型,再利用函数的性质求解后续问题在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB sin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故选:C.2.(2020•达州)如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P 为线段BC上的一动点,且和B、C不重合,连接P A,过点P作PE⊥P A交射线CD于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.83 1.33 1.50 1.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm… 1.17 2.00 2.50 2.67 2.50 2.00 1.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,的长度为自变量,的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.【分析】(1)根据两角对应相等两三角形相似证明即可.(2)①根据函数的定义判断即可.②设BP=xcm,CE=ycm.利用相似三角形的性质构建二次函数,利用二次函数的性质求出y的最大值即可解决问题.【解答】(1)证明:∵AB∥CD,∴∠B+∠C=180°,∵∠B=90°,∴∠B=∠C=90°,∵AP⊥PE,∴∠APE=90°,∴∠APB+∠EPC=90°,∵∠EPC+∠PEC=90°,∴∠APB=∠PEC,∴△ABP∽△PCE.(2)解:①根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,BP的长度为自变量,EC的长度为因变量,故答案为:BP,EC.②设BP=xcm,CE=ycm.∵△ABP∽△PCE,∴=,∴=,∴y=﹣x2+mx=﹣(x﹣m)2+,∵﹣<0,∴x=m时,y有最大值,∵点E在线段CD上,CD=2cm,∴≤2,∴m≤4,∴0<m≤4.1.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“”字高度为72.7mm,当测试距离为3m时,最大的“”字高度为()A.121.17mm B.43.62mm C.29.08mm D.4.36mm【分析】直接利用平行线分线段成比例定理列比例式,代入可得结论.【解答】解:由题意得:CB∥DF,,∵AD=3m,AB=5m,BC=72.7mm,,∴DF=43.62(mm),故选:B.2.如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【分析】根据相似三角形的判定和性质可以得到AB的长,然后由图可知AC=AB﹣BC,然后代入数据计算即可.【解答】解:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.3.国旗法规定:所有国旗均为相似矩形,在下列四面国旗中,其中只有一面不符合标准,这面国旗是()A.B.C.D.【分析】根据已知条件分别求出矩形的长与宽的比,即可得到结论.【解答】解:A、=,B、=,C、=,D、=,∵==≠,∴B选项不符合标准,故选:B.4.如图,△ABC与△A′B′C′位似,位似中心为点O,,△ABC的面积为9,则△A′B′C′面积为()A.B.6C.4D.【分析】根据位似图形的概念得到△ABC∽△A′B′C′,根据相似三角形的面积之比等于相似比的平方解答.【解答】解:根据题意知,△ABC∽△A′B′C′,∵,∴△ABC的面积:△A′B′C′面积=9:4.又∵△ABC的面积为9,∴△A′B′C′面积为4.故选:C.5.如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,若OA:AA′=2:5,则△ABC与△A′B′C′的周长比为()A.2:3B.4:3C.2:9D.4:9【分析】根据题意求出OA:OA′=2:3,根据相似三角形的性质求出AC:A′C′,根据相似三角形的性质计算即可.【解答】解:∵OA:AA′=2:5,∴OA:OA′=2:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,△ABC∽△A′B′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=2:3,∴△ABC与△A′B′C′的周长比为2:3,故选:A.6.小明的身高为1.6m,某一时刻他在阳光下的影子长为2m,与他邻近的一棵树的影长为10m,则这棵树的高为m.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设这棵树的高度为xm,根据相同时刻的物高与影长成比例,则可列比例为:,解得:x=8.故答案为:8.7.据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A、B的对应点分别是C、D).若物体AB的高为6cm,小孔O到物体和实像的水平距离BE、CE分别为8cm、6cm,则实像CD的高度为cm.【分析】根据相似三角形的判定和性质定理即可得到答案.【解答】解:∵AB∥CD,∴△OAB∽△OCD,∴,∴,∴CD=4.5,答:实像CD的高度为4.5cm,故答案为:4.5.8.小丽想利用所学知识测量旗杆AB的高度,如图,小丽在自家窗边看见旗杆和住宅楼之间有一棵大树DE,小丽通过调整自己的位置,发现半蹲于窗边,眼睛位于C处时,恰好看到旗杆顶端A、大树顶端D在一条直线上,小丽用测距仪测得眼睛到大树和旗杆的水平距离CH、CG分别为7米、28米,眼睛到地面的距离CF为3.5米,已知大树DE的高度为7米,CG∥BF交AB于点G,AB⊥BF于点B,DE⊥BF于点E,交CG于点H,CF⊥BF于点F.求旗杆AB的高度.【分析】根据相似三角形的判定与性质得出比例式求解即可.【解答】解:由题意知BG=HE=CF=3.5米,∴DH=DE﹣CF=7﹣3.5=3.5(米),∵AB⊥BF,DE⊥BF,∴AG∥DH,∴△CDH∽△CAG,∴=,即,∴AG=14米,∴AB=AG+GB=14+3.5=17.5(米),∴旗杆AB的高度为17.5米.9.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)求证:△APQ∽△ABC;(2)若这个矩形的边PN:PQ=1:2,则这个矩形的长、宽各是多少?【分析】(1)根据矩形的对边平行得到BC∥PQ,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设宽为xmm,则长为2xmm,同(1)列出比例关系求解即可.【解答】解:(1)∵四边形PNQM为矩形,∴MN∥PQ,即PQ∥BC,∴△APQ∽△ABC;(2)设边宽为xmm,则长为2xmm,∵四边形PNMQ为矩形,∴PQ∥BC,∵AD⊥BC,∴PQ⊥AD,∵PN:PQ=1:2,∴PQ为长,PN为宽,∵PQ∥BC,∴△APQ∽△ABC,∴=,由题意知PQ=2xmm,AD=80mm,BC=120mm,PN=xmm,∴=,解得x=,2x=.即长为mm,宽为mm.答:矩形的长mm,宽为mm.10.(2022•禅城区校级模拟)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B、C两点重合),点F是线段BA延长线的一动点,连接DE,EF,DF,EF交AD于点G,设BE,AF=y,已知y与x之间的函数关系式如图②所示,(1)图②中y与x的函数关系式为;(2)求证:△CDE∽△ADF;(3)当△DEG是等腰三角形时,求x的值.【分析】(1)利用待定系数法可得y与x的函数表达式.(2)利用两边成比例夹角相等证明△CDE∽△ADF即可.(3)分三种情况:①若DE=DG,则∠DGE=∠DEG,②若DE=EG,如图①,作EH ∥CD,交AD于H,③若DG=EG,则∠GDE=∠GED,分别列方程计算可得结论.【解答】(1)解:设y=kx+b,由图象得:当x=1时,y=2,当x=0时,y=4,代入得:,,∴y=﹣2x+4(0<x<2).故答案为:y=﹣2x+4(0<x<2).(2)证明:∵BE=x,BC=2∴CE=2﹣x,∴==,=,∴=,∵四边形ABCD是矩形,∴∠C=∠DAF=90°,∴△CDE∽△ADF,∴∠ADF=∠CDE.(3)解:假设存在x的值,使得△DEG是等腰三角形,①若DE=DG,则∠DGE=∠DEG,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2﹣x,在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2,x=.②若DE=EG,如图①,作EH∥CD,交AD于H,∵AD∥BC,EH∥CD,∴四边形CDHE是平行四边形,∴∠C=90°,∴四边形CDHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△F AG,∴=,∴=,∴x1=,x2=(舍),经检验x=是分式方程的解,∴x=.③若DG=EG,则∠GDE=∠GED,∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴=,∵△CDE∽△ADF,∴==,∴=,∴2﹣x=,∴x=.综上,x=或或.1.(2021·浙江绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【分析】利用相似三角形的性质求解即可.【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴,∴AB=2(m),故选:A.2.(2021·浙江嘉兴)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是.【分析】根据图示,对应点所在的直线都经过同一点,该点就是位似中心.【解答】解:如图,点G(4,2)即为所求的位似中心.故答案是:(4,2).3.(2021·浙江温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为()A.8B.9C.10D.15【分析】根据位似图形的概念列出比例式,代入计算即可.【解答】解:∵图形甲与图形乙是位似图形,位似比为2:3,AB=6,∴=,即=,解得,A′B′=9,故选:B.4.(2021·浙江金华)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.(1)ED的长为.(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.【分析】(1)由题意可得,△ABP∽△EDP,则=,进而可得出DE的长;(2)过点E′作∠E′FG=∠E′D′F,过点E′作E′G⊥BC′于点G,易得△ABP′∽△E′FP′,由此可得=,在Rt△BDD′中,由勾股定理可求出BD′的长,可求出∠BD′D的正切值,设P′F的长,分别表示E′F和E′D′及FG和GD′的长,再根据BD′=13,可建立等式,可得结论.【解答】解:(1)如图,由题意可得,∠APB=∠EPD,∠B=∠EDP=90°,∴△ABP∽△EDP,∴=,∵AB=6.5,BP=4,PD=8,∴=,∴DE=13;故答案为:13.(2)如图2,过点E′作∠E′FD′=∠E′D′F,过点E′作E′G⊥BC′于点G,∴E′F=E′D′,FG=GD′,∵AB∥MN,∴∠ABD′+∠E′D′B=180°,∴∠ABD′+∠E′FG=180°,∵∠E′FB+∠E′FG=180°,∴∠ABP′=∠E′FP′,又∠AP′B=∠E′P′F,∴△ABP′∽△E′FP′,∴=即,=,设P′F=4m,则E′F=6.5m,∴E′D′=6.5m,在Rt△BDD′中,∠BDD′=90°,DD′=5,BD=BP+PD=12,由勾股定理可得,BD′=13,∴cos∠BD′D=,在Rt△E′GD′中,cos∠BD′D==,∴GD′=2.5m,∴FG=GD′=2.5m,∵BP′+P′F+FG+GD′=13,∴4+4m+2.5m+2.5m=13,解得m=1,∴E′D′=6.5,∴EE′=DE+DD′﹣D′E′=13+5﹣6.5=11.5.故答案为:11.5.5.(2021·浙江湖州)已知在平面直角坐标系xOy中,点A是反比例函数y=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.【分析】(1)①设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),得出AE=OF,AE∥OF,由平行四边形的判定可得出结论;②过点B作BD⊥y轴于点D,如图1,证明△AEO∽△BDO,由相似三角形的性质得出,则可得出答案;(2)过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P 的坐标为(b,),则AE=a,OE=,PH=﹣,证明△AEO∽△GHP,由相似三角形的性质得出,解方程得出,由三角形面积公式可得出答案.【解答】(1)①证明:设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),∴AE=OF=a,∵AE⊥y轴,∴AE∥OF,∴四边形AEFO是平行四边形;②解:过点B作BD⊥y轴于点D,如图1,∵AE⊥y轴,∴AE∥BD,∴△AEO∽△BDO,∴,∴当k=4时,,即,∴S△BOE=2S△AOE=1;(2)不改变.理由如下:过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P的坐标为(b,),则AE=a,OE=,PH=﹣,∵四边形AEGO是平行四边形,∴∠EAO=∠EGO,AE=OG,∵∠EGO=∠PGH,∴∠EAO=∠PGH,又∵∠PHG=∠AEO,∴△AEO∽△GHP,∴,∵GH=OH﹣OG=﹣b﹣a,∴,∴﹣k=0,解得,∵a,b异号,k>0,∴,∴S△POE=×OE×(﹣b)=×(﹣b)=﹣,∴对于确定的实数k,动点A在运动过程中,△POE的面积不会发生变化.1.(2021•温州模拟)如图,在正六边形桌面中心正上方有一盏吊灯,在灯光下,桌面在水平地面的投影是一个面积为m2的正六边形,已知桌子的高度为0.75m,桌面边长为1m,则吊灯距地面的高度为()A.2.25m B.2.3m C.2.35m D.2.4m【分析】首先根据正六边形的面积可得正六边形的边长,进而可通过构造相似三角形,由相似三角形性质求出.【解答】解:设正六边形的边长是xm,则x•x••6=,解得x=1.5,如图,依题意知DF=FE=0.5米,FG=0.75米,CG=0.75米,∵DE∥BC,∴△F AE∽△GAC,∴,即=,解得:AF=1.5,∴AG=1.5+0.75=2.25(m),答:吊灯距地面的高度为2.25m.故选:A.2.(2021•临海市一模)如图,为测量楼高AB,在适当位置竖立一根高2m的标杆MN,并在同一时刻分别测得其落在地面上的影长AC=20m,MP=2.5m,则楼高AB为()A.15m B.16m C.18m D.20m【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵,即,∴楼高=16米.故选:B.3.(2022•温州模拟)如图,在4×7的方格中,点A,B,C,D在格点上,线段CD是由线段AB位似放大得到,则它们的位似中心是()A.点P1B.点P2C.点P3D.点P4【分析】延长CA、DB交于点P 1,根据位似中心的概念得到答案.【解答】解:延长CA、DB交于点P1,则点P1为位似中心,故选:A.4.(2021•嘉兴二模)如图,在直角坐标系中,△ABC的顶点B的坐标为(﹣1,1),现以坐标原点O为位似中心,作与△ABC的位似比为的位似图形△A'B'C',则B'的坐标为()A.B.C.或D.或【分析】根据以原点为位似中心的对应点的坐标关系,把B点的横纵坐标都乘以或﹣得到B'的坐标.【解答】解:∵位似中心为坐标原点,作与△ABC的位似比为的位似图形△A'B'C',而B的坐标为(﹣1,1),∴B'的坐标为(﹣,)或(,﹣).故选:C.5.(2021•嘉善县一模)如图,在平面直角坐标系中,点A的坐标为(1,0),点D的坐标为(3,0),若△ABC与△DEF是位似图形,则的值是()A.B.C.D.【分析】根据位似图形的概念得到AC∥DF,【解答】解:∵点A的坐标为(1,0),点D的坐标为(3,0),∴OA=1,OD=3,即=,∵△ABC与△DEF是位似图形,∴AC∥DF,∴△OAC∽△ODF,∴==,故选:B.6.(2021•瑞安市一模)数学兴趣小组计划测量公路上路灯的高度AB,准备了标杆CD,EF及皮尺,按如图竖直放置标杆CD与EF.已知CD=EF=2米,DF=2米,在路灯的照射下,标杆CD的顶端C在EF上留下的影子为G,标杆EF在地面上的影子是FH,测得FG=0.5米,FH=4米,则路灯的高度AB=米.【分析】延长CG交FH于M,根据相似三角形的判定和性质解答即可.【解答】解:如图,延长CG交FH于M,∵∠GMF=∠CMD,∠GFM=∠CDM=90°,∴△GFM∽△CDM,∴,设FM为a米,则a=(a+2)×,解得:a=,设BD=x米,AB=y米,同理可得,△CMD∽△AMB,∴,,可得,,整理得:,解得:,经检验是分式方程组的解,∴AB=5米.故答案为:5.7.(2022•鹿城区校级一模)如图,在8×8的网格中,△ABC是格点三角形,请分别在图1和图2中按要求作图.(1)在图1中以O为位似中心,作格点三角形△A1B1C1,使其与△ABC位似比为1:2.(2)在图2中作格点线段BM⊥AC.【分析】(1)连接OA,OB,OC,取OA,OB,OC的中点A1,B1,C1,连接A1B1,B1C1,C1A1即可;(2)利用数形结合的思想作出线段BM即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,线段BM即为所求.8.(2021•永嘉县校级模拟)已知一块等腰三角铁板废料如图所示,其中AB=AC=50cm,BC=60cm,现要用这块废料裁一块正方形DEFG铁板,使它的一边DE落在△ABC的一腰上,顶点F、G分别落在另一腰AB和BC上,求;(1)等腰三角形ABC的面积S△ABC;(2)正方形DEFG的边长.【分析】(1)过A作AH⊥BC于H,根据等腰三角形的性质得到BH=BC=30(cm),根据勾股定理得到AH===40(cm),由三角形的面积公式即可得到结论;(2)过B作BM⊥AC交FG于N,根据三角形的面积公式得到BM=48(cm),根据正方形的性质得到FG∥DE,根据相似三角形的性质即可得到结论.【解答】解:(1)过A作AH⊥BC于H,∵AB=AC=50cm,BC=60cm,∴BH=BC=30(cm),∴AH===40(cm),∴S△ABC=BC•AH=60×40=1200(cm2);(2)过B作BM⊥AC交FG于N,则S△ABC=AC•BM=1200,∵AC=50cm,∴BM=48(cm),∵四边形DEFG是正方形,∴FG∥DE,∴BN⊥FG,△BFG∽△BAC,∴=,∴,∴FG=,∴正方形DEFG的边长为.9.(2021•海曙区模拟)如图是某公园的一台滑梯,滑梯着地点B与梯架之间的距离BC=4m.(1)现在某一时刻测得身高1.8m的小明爸爸在阳光下的影长为0.9m,滑梯最高处A在阳光下的影长为1m,求滑梯的高AC;(2)若规定滑梯的倾斜角(∠ABC)不超过30°属于安全范围,请通过计算说明这架滑梯的倾斜角是否符合安全要求?【分析】(1)直接利用同一时刻太阳光下影长与物体高度成比例进而得出答案;(2)直接利用锐角三角函数关系得出∠ABC的取值范围.【解答】解:(1)由题意可得:=,解得:AC=2(m),答:滑梯的高AC为2m;(2)∵tan∠ABC===<tan30°=,∴∠ABC<30°,∴这架滑梯的倾斜角符合安全要求.10.(2021•婺城区校级模拟)已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D 不重合),且∠PCQ=30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.【分析】(1)如图1中,作PH⊥BC于H.解直角三角形求出BH,PH,在Rt△PCH中,理由勾股定理即可解决问题.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.证明△POQ∽△BOC,推出∠OPQ=∠OBC=30°=∠PCQ,推出PQ=CQ=y,推出PC=y,在Rt△PHB 中,BH=x,PH=x,根据PC2=PH2+CH2,可得结论.(3)分两种情形:①如图2中,若直线QP交直线BC于B点左侧于E.②如图3中,若直线QP交直线BC于C点右侧于E.分别求解即可.【解答】解:(1)如图1中,作PH⊥BC于H.∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴∠A+∠ABC=180°,∵∠A=120°,∴∠PBH=60°,∵PB=3,∠PHB=90°,∴BH=PB•cos60°=,PH=PB•sin60°=,∴CH=BC﹣BH=4﹣=,∴PC===.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.∵四边形ABCD是菱形,∴∠ABD=∠CBD=30°,∵∠PCQ=30°,∴∠PBO=∠QCO,∵∠POB=∠QOC,∴△POB∽△QOC,∴=,∴=,∵∠POQ=∠BOC,∴△POQ∽△BOC,∴∠OPQ=∠OBC=30°=∠PCQ,∴PQ=CQ=y,∴PC=y,在Rt△PHB中,BH=x,PH=x,∵PC2=PH2+CH2,∴3y2=(x)2+(4﹣x)2,∴y=(0≤x<8).(3)①如图2中,若直线QP交直线BC于B点左侧于E.此时∠CQE=120°,∵∠PBC=60°,∴△PBC中,不存在角与∠CQE相等,此时△QCE与△BCP不可能相似.②如图3中,若直线QP交直线BC于C点右侧于E.则∠CQE=∠B=QBC+∠QCP=60°=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75°,作CF⊥AB于F,则BF=2,CF=2,∠PCF=45°,∴PF=CF=2,此时PB=2+2,③如图4中,当点P在AB的延长线上时,∵△QCE与△BCP相似,∴∠CQE=∠CBP=120°,∴∠QCE=∠PCB=15°,作CF⊥AB于F.∵∠FCB=30°,∴∠FCP=45°,∴BF=BC=2,CF=PF=2,∴PB=2﹣2.综上所述,满足条件的PB的值为2+2或2﹣2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江中考数学考点专题复习---专题一《数与式》●中考点击考点分析:内容要求1、平方根,算术平方根、立方根的概念及表示,乘方的意义Ⅰ2、无理数和实数的概念,近似数和有效数字Ⅰ3、二次根式的概念及加、减、乘、除运算法则Ⅱ4、实数的大小比较,实数的混合运算Ⅱ5、单项式、多项式有整式概念Ⅰ6、整数指数幂的意义和基本性质,整式的加、减、乘、除运算,乘法公式Ⅱ7、提公因式法、公式法分解因式Ⅱ8、分式的概念,分式的基本性质,约分和通分Ⅱ9、简单的分式加、减、乘、除Ⅱ要求Ⅰ:理解掌握要求Ⅱ:灵活运用命题预测:实数是初中数学的基础知识,也是其他学科的重要工具.因此在近年来各地的中考试题中一直占有重要的地位.这部分试题大多数十分重视基础知识的考察,试题的呈现形式多以贴近生活实际的形式,试题的难度不大.多数来源于教材的习题或稍加变通.题型主要是填空题、选择题也有计算题,但是,计算题的难度不大,没有繁杂的计算.近几年来,部分地区还设计了开放性探索题.预计今后的中考对实数的考察难度将依然控制在2006年的基础上.这部分的试题量一般占试题总量的2%——6%,分值占总分的3%——5%.代数式的知识在历年全国各地的中考试卷中始终占有一定的地位,并且与实数部分一样,试题多数为题型小、难度低、思维量少、一捂即得的填空题和选择题,基本上没有难题和怪题,虽然近年部分省、市出现了一些开放、猜想题、规律探索题、阅读理解题等创新题型,但是,多数都来源于教材,考生依然会感到得心应手.这部分考题一般在6%左右,分值占7%左右.综上所述,预计今年中考对本专题的内容除继承以往的优点外,还会继续加强源于教材而又活于教材的题型,考察学生灵活应用知识的能力.促进课堂教学对创新能力的培养,从而全面提高素质教育.●难题透视000 110 010 111 001 111 A.100,011 B.011,100 C.011,101 D.101,110【考点要求】本题考查以计算机语言为背景,用符号来表示数字的问题.利用符号来表示数字0和1,要求能实现符号与数字的相互转化.【思路点拨】通过观察,不难发现两个并排的短横表示0,而一条长横表示1,所表示的数是从上往下看,因而表格中的两个空格中所填的数这011和100 .【答案】选B.【方法点拨】部分学生不能够读懂题意,无法做出正确选择,往往会随便猜出一个答案.突破方法:根据表格中所提供的信息,找出规律,容易发现短横与长横所表示的不同意义.然后对照分析出两个安全空格中所应填写的数字.解题关键:对题目中提供的信息要仔细观察分析,理解其表示的意义.例2用同样规格的黑白两种颜色的正方形瓷砖按图1-1方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖 块(用含n 的代数式表示).【考点要求】本题考查数形结合、整理信息,将图形转化为数据,猜想规律、探求结论. 【思路点拨】根据图形可得出以下数据:第1个图形,黑色瓷砖4块;第2个图形,黑色瓷砖7块;第3个图形,黑色瓷砖10块……不难看出,每幅图形中的黑色瓷砖依次增加3块,如果把第一个图形中的黑色瓷砖表示为1+3,则第2个图形中的黑色瓷砖可表示为1+3×2……所以第n 个图形中的黑色瓷砖为1+3n .【答案】黑色瓷砖10块,第n 个图形中的黑色瓷砖为1+3n .【方法点拨】部分学生缺乏一定的图形鉴别能力,不知如何分析.突破方法:抓住其中的黑色瓷砖数目的变化规律,结合图形,观察其变化规律.例3下列运算中,计算结果正确的是( )A .632x x x =⋅B .222+-=÷n n nx x xC . 9234)2(x x = D .633x x x =+【考点要求】本题考查整式运算公式. 【思路点拨】同底数幂的乘法法则是底数,不变指数相加,而除法可能转化为乘法进行,幂的乘方是底数不变,指数相乘.A 项结果应等于5x ,C 项结果应等于64x ,而D 项无法运算.【答案】选B .【方法点拨】部分学生对幂运算公式掌握不够熟练,容易前生计算错误.突破方法:加强相关练习,熟悉乘法公式.例4我国自行研制的“神舟6号飞船”载人飞船于2005年10月12日成功发射,并以每秒约7.820185公里的速度,在距地面343公里的轨道上绕地球一圈只需90分钟,飞行距离约42229000km .请将这一数字用科学记数法表示为________km .(要求保留两位有效数字).【考点要求】本题考查了学生科学记数法以及有效数字的知识.【思路点拨】用科学记数法表示绝对值较大的数时,关键是10的指数,可归纳为指数n 等于原数整数部分的位数减一.所以这一数字可表示为4.2×107.【答案】4.2×107.【方法点拨】部分学生在用科学记数法表声学家较大或者较小的数时,对于10的指数容易弄错.突破方法:掌握规律,记住幂的指数的确定方法.解题关键:科学记数法10na ⨯中,a 是整数数位只有一位的数,10的指数是由小数点移动的位数决定的,也可以简单的记作用原数的数位减去1所得到的数值.例5分解因式:2212a a b -+-= .(1)(2) (3)…… 图1-1【考点要求】本题考查多项式的因式分解. 【思路点拨】本题是四项,应采用分组分解法,分组分解法主要有两种,一是二二分组,另一种是一三分组,本题应采用一三分组法进行分解.原式2222(12)(1)a a b a b =-+-=--(1)(1)a b a b =-+--.【答案】填(1)(1)a b a b -+--【规律总结】部分学生含四项的多项式分解感到有一些困难.突破方法:在无法用提公因式或者直接运用公式进行因式分解时,往往还会进行分组分解.解题关键:分组分解一般是对含四项的多项式而言的,常见的有两种分组方法:二二分组,一三分组,有时还需要对原式的各项进行必要的交换.例6有一道题“先化简,再求值:22241()244x x x x x -+÷+--,其中.”小玲做题时把“”错抄成了“”,但她的计算结果也是正确的,请你解释这是怎么回事?【考点要求】本题考查的是分式的化简求值,同时也考查了学生辨析正误的学习能力.【思路点拨】把原式化简,可得2222444(4)44x x x x x x -++⨯-=+-.因为22(3)(3)-=,所以无论是“3x =-”或“3x =”,代入化简后的式子中,所求得的值都是相等的.因而即使代错数值,结果仍然是正确的.【方法点拨】部分学生不熟悉这种题型,因而不知如何下手,举棋不定.突破方法:平时要注意多加积累,熟悉各种不同形式的问题,同时要能有一定创新思维,能应对新问题.解题关键:解这类问题时,先按常规方法正确求解,再比较分析为什么会出现值代错了但结果正确的原因.例7已知,4a b m ab +==-,化简(2)(2)a b --的结果是( )A .6B .2m -8C .2mD .-2m【考点要求】本题考查多项式的求值运算,不仅考查了学生整式乘法运算,同时还要求具备整体思想,这也是数学解题中常用的一种技巧.【思路点拨】原式按多项式乘法运算后为2()4ab a b -++,再将,4a b m ab +==-代入,可得-2m . 【答案】选D .【方法点拨】部分学生想通过由已知条件求出a 、b 的值,然后再代入求值,一种情况是无法解得结果,另一种是会用含m 的式子表示a 、b ,但解题过程较繁琐,且容易出错.突破方法:运用整体思想解题,能发现原式乘开后可用含a b +和ab 的式子表示,再将已知条件代入即可.解题关键:许多类似的求代数式值的问题,往往不是直接将字母的值代入,而是利用整体代入求值.例8如图1-2,时钟的钟面上标有1,2,3…12共计12个数,一条直线把钟面分成了两部分,请你再用一图1-2条直线分割钟面,使钟面被分成三个不同的部分且各部分所包含的几个数的和都相等,则其中的两个部分所包含的几个数分别是 【考点要求】本题考查对数字的观察及推理能力.【思路点拨】钟面上的数字之和为78,依题意,三部分之和相等,则每部分之和只能为78÷3=26,而图中钟面上的1、2、11、12之和已经为26,所以所画的这条线只能在图中这条直线的下方,即过4和5,8和9之间画直线.【答案】3、4、9、10,5、6、7、8. 【误区警示】本题部分学生不知从何处入手,或者漫无目标的尝试去画,这样费时较多,而且容易达到目标.突破方法:仔细阅读,认真分析,理清题意可减少尝试分割的次数.例9我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如111236=+,1113412=+,1114520=+,…(1)根据对上述式子的观察,你会发现,请写出□,○所表示的数;(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证.【考点要求】本题考查学生对新信息的理解与运用.【思路点拨】通过对三组式子的观察,不难找出规律.等式右边的第一个分母是左边的分母加1,第二个分母是前两个分母的乘积,如果设左边的分母为n ,则右边第一个分母为(n +1),第二个分母为n (n +1).所以问题(1)中,□表示的数为6,○表示的数为30;问题(2)中,△表示的式为1+n ,⊙表示的式为)1(+n n .验证:)1(1)1()1(111+++=+++n n n n n n n n nn n n 1)1(1=++=,所以上述结论成立. 【答案】(1)□表示的数为6,○表示的数为30;(2)△表示的式为1+n ,⊙表示的式为)1(+n n .【方法点拨】部分学生不能看出题目已知条件中所反映出的规律.突破方法:对比已知的三个式子,进行比较分析,可以看出每个等式中的各个分子都是1,而分母也特殊关系,得到这些信息后,完成解题不再困难.解题关键:当题中有一组并列条件时,往往将它们放在一起进行观察、比较、分析,从中发现重要信息.例10阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-3,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-4,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;(2)如图1-5,点A 、B都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-;(3)如图1-6,点A、B在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = .【考点要求】本题通过阅读材料,引出数轴上两点A 、B 的距离公式AB a b =-,再引出相关问题,考查学生阅读材料,获取新的信息和结论,然后应用所得结论,解答新问题的能力.【思路点拨】依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解.(1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+;因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.O (A ) 0bB 图1-3O 0bB 图1-4a A B baA 图1-5O 0baA 图1-6O 0B【答案】(1)3,3,4;(2)1x =或3x =-.【误区警示】部分学生因为题目较长,阅读能力稍差的同学不易找出正确结论解题.突破方法:反复阅读材料,从中获取重要结论,帮助解题. ●难点突破方法总结实数是初中数学基础知识,中考试题中的实数问题各种题型都会涉及到,在解决实数问题时,要注意以下几点:1.要准确掌握各个概念.概念是组成数学知识的基本元素.实数一章中的概念较多,基础性强,对后续学习影响大,不少概念还含有运算性质.如相反数、倒数、绝对值、算术平方根、负整数指数幂、科学记数法等,所以必须要弄清各个概念的区别或者联系,防止应考过程中出现混淆.2.要熟练各种运算.明白各种运算法则和运算性质,要通过一定量的练习使实数的有关运算形成一定的运算技能.3.在解答有关实数的选择题、填空题和计算题时,一般采用直接求解法.对于体现创新意识的探索规律型问题,可采用图示、猜想、归纳、计算验证等各种方法.整式和分式是代数中的重要内容,填空、选择题以基本概念为主,而解答题则以化简、求值为主.一般要注意如下内容:1.要准确理解和辨析单项式次数、系数、同类项,分式的通分和约分、最简分式等概念的内涵.特别要关注简单整式和分式的运算.2.运用公式或法则进行计算,首先要判断题目是否具备某一公式或者法则的结构特征,在此基础上正确选用公式或法则进行计算.3.灵活运用分式的基本性质、变号法则、因式分解、整体变换等解题技能进行分式的约分和通分运算.4.充分关注数形结合思想、整体思想、分类讨论思想,在整式和分式变换求值中的应用.5.此外,试题呈现的背景贴近生活,贴近社会,而不再是拘泥于抽象的纯数学问题,因而要求学生要学会观察、分析、猜想、验证、表达等基本的解决辨别及解决问题的能力和策略.●拓展演练 一、填空题 1. (21)2007·(-2)2008= . 2. 如果数轴上不同的两点A 、B 所表示的数的绝对值相等,那么A 、B 两点所表示的数可以是(只写出一组即可).3. 若a ,b 互为相反数,c ,d 互为倒数,则(a +b )-cd = .4. 已知分式)1)(2(12---x x x ,当x = 时,分式的值为0.5. 德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数):第一行 11第二行12 12第三行13 16 13 第四行 14 112 112 14第五行 15 120 130120 15… …… …根据前五行的规律,可以知道第六行的数依次是: . 6. 在方格纸上,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形.如图,在4×4的方格纸上,以AB 为边的格点三角形ABC 的面积为2个平方单位,则符合条件的C 点共有 个.7. 观察按下列顺序排列的等式: 9×0+1=1 9×1+2=11 9×2+3=21 9×3+4=31 9×4+5=41 ……猜想:第n 个等式(n 为正整数)用n 表示,可以表示成_________________________. 8. 若非零实数a ,b 满足2244a b ab +=,则ba= . 9. 有一大捆粗细均匀的电线,现要确定其长度的值,从中先取出1米长的电线,称出它的质量为a ,再称其余的电线总质量为b ,则这捆电线的总长度是 . 10.已知二次三项式22x bx c ++分解因式为2(3)(1)x x -+,则b 、c 的值为 . 二、选择题11.按一定的规律排列的一列数依次为:111111,,,,,2310152635┅┅,按此规律排列下去,这列数中的第7个数是 ( ) A .145 B .140 C .146 D .15012.当x <1时,的结果为( )A . x -1B . -x -1C . 1-xD . x +113.如图所示,图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,•至第八个叠放的图形中,小正方体木块总数应是 ( )A . 66B . 91C . 120D .153AB14.用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第n 个图案中正方形的个数是 ( )A .nB .43n +C .41n -D .32n -15.将一张长方形纸片对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,那么对折n 次后折痕的条数是 ( )A .2n -1B .2n +1C .2n -1D .2n +1 16.把多项式1-x 2+2xy -y 2分解因式的结果是 ( )A .B .(1)(1)x y x y --+-C .(1)(1)x y x y ---+D .(1)(1)x y x y +-++ 17.计算44()()xy xyx y x y x y x y-++--+的正确结果是 ( ) A .B .22x y - C .224x y - D .18.在一个地球仪的赤道上用铁丝打一个箍,现将铁丝半径增大1米,需增加m 米长的铁丝.假设地球赤道上也有一个铁箍,同样半径增大1米,需增加n 米长的铁丝,则m 与n 的大小关系是 ( )A .m >nB .m <nC .m =nD .不能确定 三、解答题19.观察下列各式及其验证过程:验证: 23223+验证:233233222(22)22(21)22121-+-+=--223+ 验证: 338338+验证:3383383222(33)33(31)33131-+-+=--338+ (1)按照上述两个等式及其验证过程的基本思路,猜想415的变形结果并进行验证; n=1n=2……(2)针对上述各式反映的规律,写出用n(n 为任意自然数,且n ≥2)表示的等式,并给出证明.20.阅读下列题目的计算过程:xx x +---12132 =)1)(1()1(2)1)(1(3-+---+-x x x x x x (A )=(x -3)-2(x -1) (B ) =x -3-2x +1 (C ) =-x -1 (D )(1)上述计算过程中,从哪一步开始出现错误?请写出该步的代号 . (2)错误的原因 .(3)本题目正确的结论为 .●专题一《数与式》习题答案一、填空题1. 【答案】2(点拨:原式=20072007200711()22(2)2222==.) 2. 【答案】(答案不唯一)3. 【答案】-1(点拨:a ,b 互为相反数,所a +b=0,c ,d 互为倒数,所cd =1.)4. 【答案】-1(点拨:由题意210x -=且(2)(1)0x x --≠,所以x =-1.) 5. 【答案】16、130、160、160、130、16(点拨:每行中相邻两个数相加等于上一行中间的数值.) 6. 【答案】3个7. 【答案】9(1)10(1)1n n n ⨯-+=-+8. 【答案】2(点拨:将原式改写为22440a ab b -+=,所以2(2)0a b -=,可求出b =2a .)9. 【答案】1ba+(点拨:先取1米长的电线,称出它的质量为a ,其余电线质量为b ,则其余电线的长度为b a 米,这捆电线的总长度为(1ba+)米.)10. 【答案】-4,-6(点拨:将分解后的因式乘开,各项系数应与已知的二次三项式相等.)二、选择题11. 【答案】D (点拨:每个分数的分子均为1,分母为21n +或21n -(当n 为奇数时加1,当n 为偶数时减1),7为奇数,因而其分母为27150+=.) 12. 【答案】C (点拨:开方的结果必须为非负数.)13. 【答案】C (点拨:每增加一层所多出的个数为原来最下面一层个数加4,列出前面几组数据,第一层:1,第二层:1+(1+4) ,第三层:1 +(1+4)+(1+4×2)+…+[1+4(n - 1)]=2(1)422n n n n n -+=-(n 表示第几个叠放的图形),当n =8时,共有2288120⨯-=.)14. 【答案】C (点拨:n =1,有3个正方形;n =2,有7个正方形;n =3,有11个正方形…,规律:n 每增加1,就多出4个正方形.)15. 【答案】C (点拨:除了第一次对折得到1条折痕,其后,每次对折所得折痕都是上次多出来的折痕的两倍.) 16. 【答案】A (点拨:22222121(2)1()(1)(1)x xy y x xy y x y x y x y -+-=--+=--=+--+.)17. 【答案】B (点拨:将括号内的式子分别通分.)18. 【答案】C (点拨:设地球仪赤道半径为r ,则2(1)22m r r πππ=+-=;设地球赤道半径为R ,则2(1)22n R R πππ=+-=,所以相等.) 三、解答题19.【答案】.验证 (2)由题设及(1)的验证结果,•可猜想对任意自然数n (n ≥2)都有:.证明:∵n ,∴ 20.【答案】(1)B ;(2)去分母;(3)23211x x x---+; 32(1)(1)(1)(1)(1)x x x x x x --=-+-+-322(1)(1)x x x x --+=+-11(1)(1)1x x x x--==+--.。

相关文档
最新文档