坐标计算公式

合集下载

坐标计算程序及坐标计算公式

坐标计算程序及坐标计算公式

坐标计算程序及坐标计算公式一、坐标计算公式直线段:中桩公式:x=x1+(z-c)*cosay=y1+(z-c)*sina边桩公式:x=x1+(z-c)*cosa±d*cos(a-90)y=y1+(z-c)*sina±d*sin(a-90)说明: x1——起点x坐标,y1——起点y坐标,z——计算点桩号, c——起点桩号,a——方位角,d——距中桩距离。

“±”左边桩为“+”,右边桩为“-”。

二、方位角计算公式1、直线段方位角图纸提供。

2、若为单一圆曲线时,起点用直线段方位角图纸提供。

3、若为缓和曲线时:第一段缓和曲线方位角为直线段方位角图纸提供;第二段圆曲线起点方位角a1=a0±Ls*180/2∏r。

第三段缓和曲线方位角a2=a1±L*360/2∏r。

(a0为直线段方位角,Ls为缓和曲线长度,L为圆曲线长度,r为圆曲线半径,“±”右偏角为“+”、左偏角为“-”。

)三、5800计算器坐标程序坐标程序由1个主程序、5个子程序和1个数据库组成进入计算器编程模式(5:PROG—1:NEW新建程序名—3:EDIT),输写程序。

1、主程序adminFix 3(回车换行)Lb1 0:150→DimZ:“ZX→0,A→1,B1→2,B2→3,C→4,D→5,CR→6”?N:N→Z[149]:Prog “DAT2”:“ZS=>1,FS=>2”?N:If N=1:Then Goto 1:Else N=2=>Goto 2:IfEnd:Goto 0:Lb1 1:?S:“ANG=”?M:?Z:S=0=>Goto 0:0→N(回车换行)Lb1 5:Isz N:If S≤Z[8N+2]+Z[8N+4]:Then N→J:Prog“DAT1”:Else Goto5:IfEnd(回车换行)Abs(S-0)→W:Prog“SUB1”:“XS=”:X◢“YS=” :Y◢“FWI=”:F-M→F:If F≤360:Then F→F:Else F-360→F:IfEnd:F►DMS◢Goto4(回车换行)Lb1 2:?X:?Y:“ANG=”?M:M→Z[148]:If M<90:Then 180-M→M:IfEnd(回车换行)X-Z[4]:Y-Z[5]:X=0=>Goto 0:0→N(回车换行)Lb1 A:Isz N:N→Z[150]:Z[8N+3]-M→A:Z[8(N+1)+3]-M→B:Prog “ZX1”:If Z[6]×Z[7]≤0:Then N→J:Prog “DAT1”:Goto B:IfEnd(回车换行)Z[8N+3]+M→A:Z[8(N+1)+3]+M→B:Prog “ZX1”:If Z[6]×Z[7] ≤0:Then N→J:Prog “DAT1”:Goto B:Else Goto A: IfEnd(回车换行)Lb1 B:Prog “SUB2” (回车换行)Z[150]→N:0+W→S:If S>Z[8N+2]+Z[8N+4]+.001:Then Goto A: IfEnd(回车换行)If N>13:Then 0→N: Goto A: IfEnd(回车换行)If Z[148]>90: Then S+2Zsin(M-90) →S: IfEnd:“S=”:S◢“Z=”: Z◢“OK→2,NO→1”?N:If N=1: Then Z[150]→N: Goto A:Else Goto 2: IfEnd(回车换行)Lb1 4 :0→J:“DIST=”:Pol (X-Z[1],Y-Z[2])→I◢ J-F:If F<0:Then F+360→F:IfEnd:“FW=”: F►DMS◢ Goto 12、子程序DAT1Z[8J]→U:Z[8J+1]→V:Z[8J+2]→O:Z[8J+3]→G:Z[8J+4]→G:Z[8J+4]→H:Z[8J+5]→P:Z[8J+6]→R:Z[8J+7]→Q:1÷P→C:(P-R)÷(2HPR)→D:(180÷∏)→E:Return3、子程序ss“A”?→A:If A<0:Then 10A◢Else 9A◢IfEnd:Ans×1.05(回车)4、子程序SUB1.1184634425→A:.2393143352→B:.28444444444→N:.046910077→K:.2307653449→L:.5→Z[3]:U+W(Acos(G+QEKW(C+KWD))+Bcos(G+QELW(C+LWD))+Ncos(G+QEZ[3]W(C +Z[3]WD))+Bcos(G+QE(1-L)W(C+(1-L)WD))+Acos(G+QE(1-K)W(C+(1-K)WD)))→X:V+W(Asin(G+QEKW(C+KWD))+Bsin(G+QELW(C+LWD))+Nsin(G+QEZ[3]W(C+Z[3 ]WD))+Bsin(G+QE(1-L)W(C+(1-L)WD))+Asin(G+QE(1-K)W(C+(1-K)WD))) →Y:G+QEW(C+WD)+M→F:X+Zcos(F)→X:Y+Zsin(F)→Y: Return5、子程序SUB2G-M→T:Abs((Y-V)cos(T)-(X-U)sin(T))→W:0→Z:Lb1 0:Pros “SUB1” (回车换行)T+QEW(C+WD)→L:(Z[5]-Y)cos(L)-(Z[4]-X)sin(L)→Z:If Abs(Z)<1×10∧(-4):Then Goto 1:Else W+Z→W: Goto 0: IfEnd(回车换行)Lb1 1:0→Z:Prog“SUB1”:(Z[5]-Y)÷sin(F-2M+180)→Z:Return6、子程序ZX1(Z[5]-Z[8N+1])cos(A)-(Z[4]-z[8N])sin(A)→Z[6]:(Z[5]-Z[8(N+1)+1])C5]-Z[8(N+1)+1])cos(B)-(Z[4]-Z[8(N+1)]sin(B)→Z[7]:Return7、数据库DAT2If N=0:Then起点X坐标→Z[8]:起点Y坐标→Z[9]:起点桩号→Z[10]:起点坐标方位角→Z[11]:曲线长度→Z[12]:起点半径→Z[13]:终点半径→Z[14]:曲线转向(左转为“-1”右转为“+1”直线为“0”)→Z[15]:Return IfEnd(依次把所有平曲线要素输完)If N=1:Then起点X坐标→Z[8]:起点Y坐标→Z[9]:起点桩号→Z[10]:起点坐标方位角→Z[11]:曲线长度→Z[12]:起点半径→Z[13]:终点半径→Z[14]:曲线转向(左转为“-1”右转为“+1”直线为“0”)→Z[15]:Return IfEnd(依次把所有平曲线要素输完)说明:1、所有路线都是从Z[8]开始。

计算坐标与坐标方位角的基本公式

计算坐标与坐标方位角的基本公式

二 计算坐标与坐标方位角的基本公式控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的.下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式.一、坐标正算和坐标反算公式1.坐标正算根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。

如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为AB A B ABA B y y y x x x ∆+=∆+= }(5—1) 式中 AB x ∆ 、AB y ∆——坐标增量。

由图5—5可知AB AB AB AB AB AB S y S x ααsin cos =∆=∆ }(5—2)式中 AB S ——水平边长; AB α-—坐标方位角.将式(5-2)代入式(5—1),则有AB AB A B ABAB A B S y y S x x ααsin cos +=+= }(5—3)当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。

式(5—2)是计算坐标增量的基本公式,式(5-3)是计算坐标的基本公式,称为坐标正算公式.从图5—5可以看出AB x ∆是边长AB S 在x 轴上的投影长度,AB y ∆是边长AB S 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。

而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种情况,其正负符号取决于坐标方位角所在的象限,如图5-6所示。

从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3.图5-5 坐标计算图5—6 坐标增量符号表5—3 坐标增量符号表坐标方位角(°)所在象限坐标增量的正负号⊿x ⊿y0~9090~180180~270270~ⅠⅡⅢⅣ+--+++--例1 已知A 点坐标A x =100。

坐标公式大集合

坐标公式大集合

坐标公式大集合在数学中,坐标公式是用来计算两点之间的距离或者其他相关性质的公式。

它们在几何学、物理学、工程学等领域中具有举足轻重的作用。

本文将介绍一些常用的坐标公式,并提供了详细的解释和示例。

1.两点之间的距离公式:设平面上有两个点A(x1,y1)和B(x2,y2),它们之间的距离可以用以下公式计算:d=√((x2-x1)^2+(y2-y1)^2)其中√表示开方运算。

例如,点A(1,2)和点B(4,6)之间的距离可以这样计算:d=√((4-1)^2+(6-2)^2)=√(3^2+4^2)=√(9+16)=√25=5因此,点A和点B之间的距离是52.三维空间中两点之间的距离公式:如果我们在三维空间中有两个点A(x1,y1,z1)和B(x2,y2,z2),它们之间的距离可以用以下公式计算:d=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)例如,点A(1,2,3)和点B(4,6,8)之间的距离可以这样计算:d=√((4-1)^2+(6-2)^2+(8-3)^2)=√(3^2+4^2+5^2)=√(9+16+25)=√50因此,点A和点B之间的距离是√50。

3.两点之间的中点公式:中点是连接两个点线段的中心点。

对于两点A(x1,y1)和B(x2,y2),中点的坐标可以用以下公式计算:M=((x1+x2)/2,(y1+y2)/2)例如,点A(1,2)和点B(4,6)之间的中点可以这样计算:M=((1+4)/2,(2+6)/2)=(5/2,8/2)=(2.5,4)因此,点A和点B之间的中点是(2.5,4)。

4.长度比例公式:长度比例可以用来计算一条线段上任意点的坐标。

对于一条线段AB,知道了线段的长度L和点A的坐标,可以用以下公式计算点B的坐标:B=(A+λ*(B-A))其中,A和B是线段的两个端点,λ是长度比例。

例如,线段AB的长度是10,点A的坐标为(2,4),点B的坐标可以这样计算:B=(2,4)+λ((Bx-Ax),(By-Ay))(Bx,By)=(2,4)+λ((Bx-2),(By-4))对于不同的λ值,我们可以得到不同的点B的坐标。

直角坐标系的8大公式

直角坐标系的8大公式

直角坐标系的8大公式直角坐标系是数学中常用的坐标系之一,广泛应用于几何、物理和工程等领域。

在直角坐标系中,我们通过坐标对点进行唯一标识和定位。

本文将介绍直角坐标系中的8大公式,这些公式在解决几何和代数问题时非常有用。

一、坐标距离公式在直角坐标系中,我们可以通过两点的坐标计算它们之间的距离。

假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么点A和点B之间的距离可以由以下公式求得:d = √((x₂ - x₁)² + (y₂ - y₁)²)这个公式被称为坐标距离公式,可以通过计算两点之间的直线距离来确定它们之间的距离。

二、中点公式在直角坐标系中,我们可以通过两点的坐标计算它们的中点坐标。

假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么这两点的中点坐标可以由以下公式求得:M = ((x₁ + x₂) / 2, (y₁ + y₂) / 2)这个公式被称为中点公式,可以通过计算两点坐标的平均值来确定它们的中点坐标。

三、斜率公式在直角坐标系中,我们可以通过两点的坐标计算它们之间的斜率。

假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么这两点之间的斜率可以由以下公式求得:m = (y₂ - y₁) / (x₂ - x₁)这个公式被称为斜率公式,可以用于计算两点之间直线的斜率。

斜率表示直线的倾斜程度。

四、线性方程公式在直角坐标系中,我们可以通过直线的斜率和一点的坐标来确定直线的方程。

假设直线的斜率为m,一点的坐标为(x₁, y₁),那么直线的方程可以由以下公式给出:y - y₁ = m(x - x₁)这个公式被称为线性方程公式,可以用于描述直线在直角坐标系中的方程。

五、平行线公式在直角坐标系中,我们可以通过两条平行线的斜率来确定它们之间的关系。

假设平行线L₁的斜率为m₁,平行线L₂的斜率为m₂,那么这两条平行线之间的关系可以由以下公式给出:m₁ = m₂这个公式表示两条平行线的斜率相等。

角度、坐标测量计算公式细则

角度、坐标测量计算公式细则

计算细那么1、坐标计算:X 1=X+Dcosα,Y1=Y+Dsin α。

式中Y 、 X 为坐标, D 为两点之间的距离,Α 为方位角。

2、方位角计算:1〕、方位角 =tan=两坐标增量的比值,然后用计算器按出他们的反三角函数〔±号判断象限〕。

2〕、方位角: arctan〔 y2- y1)/(x2-x 1)。

加减 180〔大于 180 就减去 180〔还大于 360 就在减去 360〕、小于 180 就加 180 如果 x 轴坐标增量为负数,那么结果加 180°。

如果为正数,那么看 y 轴的坐标增量,如果 Y 轴上的结果为正,那么算出来的结果就是两点间的方位角,如果为负值,加360°。

S=√(y2- y1)+(x2-x 1),1)、当 y2- y1>0,x2-x 1>0 时;α =arctan〔 y2- y1)/(x2-x 1)。

2)、当 y2- y1<0,x2-x 1>0 时;α =360° +arctan〔y2- y1)/(x2-x 1)。

3)、当 x2-x 1<0 时;α =180° +arctan〔y2- y1)/(x2-x 1)。

再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加〕。

拨角: arctan〔y2- y1)/(x2-x 1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法〔前视边方位角减后视边方位〕在此后视边方位要加减 180°,假设拨角结果为负值为左偏“逆时针〞〔 +360°就可化为右偏,正值为右偏“顺时针〞。

2、在图上标识方位的方法:就是导线边与Y 轴的夹角。

3、高程计算:目标高程 =测点高程 +?h〔高差〕 +仪器高—占标高。

4、直角坐标与极坐标的换算:〔直角坐标用坐标增量表示;极坐标用方位角和边长表示〕1〕、坐标正算〔极坐标化为直角坐标〕一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya) 、Sab、αab,求 B(Xa,Ya)解: ?Xab=Sab×COSαab 那么有 Xb=Xa+?Xab ?Yab=Sab × SIN αab Yb=Ya+?Yab2)、坐标反算,两点的坐标,求两点的距离〔称反算边长〕和方位角(称反算方位角〕的方法A(Xa,Ya) 、 B(Xb,Yb), 求α ab、 Sab。

测量坐标计算公式大全

测量坐标计算公式大全

测量坐标计算公式大全1. 两点之间的距离计算公式两点之间的距离计算是测量中常见的需求之一。

当我们知道两个点的坐标时,可以使用下面的公式来计算它们之间的距离:d = √((x2 - x1)^2 + (y2 - y1)^2)其中,(x1, y1) 和 (x2, y2) 分别表示两个点的坐标,d 表示两点之间的距离。

2. 垂直距离计算公式垂直距离通常用于计算一个点到一条直线的距离。

给定一个点 P(x, y) 和一条直线 Ax + By + C = 0,垂直距离的计算公式如下:d = |Ax + By + C| / √(A^2 + B^2)其中,x 和 y 表示点 P 的坐标,A、B 和 C 表示直线的系数。

3. 线段的中点坐标计算公式线段的中点是线段上两个端点的平均位置。

当我们知道线段的两个端点坐标时,可以使用下面的公式来计算线段的中点坐标:xm = (x1 + x2) / 2 ym = (y1 + y2) / 2其中,(x1, y1) 和 (x2, y2) 分别表示线段的两个端点的坐标,(xm, ym) 表示线段的中点坐标。

4. 点关于坐标轴的对称点计算公式点关于坐标轴的对称点是指将点 P(x, y) 沿 x 轴或 y 轴进行对称得到的点。

对称点的计算公式如下:•关于 x 轴对称点:P’(x, -y)•关于 y 轴对称点:P’(-x, y)其中,(x, y) 表示原始点的坐标,P’ 表示对称点的坐标。

5. 三角形重心坐标计算公式三角形的重心是三条中线的交点,中线是连接三角形的一个顶点和对边中点的线段。

当我们知道三角形的三个顶点坐标时,可以使用下面的公式来计算三角形的重心坐标:xg = (x1 + x2 + x3) / 3 yg = (y1 + y2 + y3) / 3其中,(x1, y1),(x2, y2) 和 (x3, y3) 分别表示三角形的三个顶点的坐标,(xg, yg) 表示三角形的重心坐标。

工程测量坐标计算公式

工程测量坐标计算公式

工程测量坐标计算公式工程测量是工程建设的重要环节,准确的坐标计算是保证工程质量和施工安全的基础。

本文将介绍工程测量中常用的坐标计算公式,帮助读者更好地理解并应用于实践中。

一、坐标计算的基础知识在工程测量中,常用的坐标系统有直角坐标系和大地坐标系。

直角坐标系以某一点为原点,建立笛卡尔坐标系,用x、y、z三个轴线表示空间位置。

大地坐标系则以地球为基准,通过经度、纬度和高程来确定点的相对位置。

二、坐标计算公式1. 直角坐标系的坐标计算公式在直角坐标系中,常用的坐标计算公式有:- 两点间距离计算公式:设A点坐标为(x1, y1, z1),B点坐标为(x2, y2, z2)。

则两点间的距离d计算公式如下:d = √((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2)- 点到直线距离计算公式:设点A的坐标为(x1, y1, z1),直线方程为Ax + By + Cz + D = 0。

则A点到直线的距离d计算公式如下:d = |Ax1 + By1 + Cz1 + D| / √(A^2 + B^2 + C^2)- 点到平面距离计算公式:设点A的坐标为(x1, y1, z1),平面方程为Ax + By + Cz + D = 0。

则A点到平面的距离d计算公式如下:d = |Ax1 + By1 + Cz1 + D| / √(A^2 + B^2 + C^2)2. 大地坐标系的坐标计算公式在大地坐标系中,常用的坐标计算公式有:- 两点间距离计算公式:根据两点的经纬度计算其球面距离,公式如下:d = R * arccos(sinφ1*sinφ2 + cosφ1*cosφ2*cos(λ2-λ1))其中,R为地球半径,φ为纬度,λ为经度。

- 两点间方位角计算公式:根据两点经纬度计算其中一点相对于另一点的方位角,公式如下:α = arctan((sinΔλ * cosφ2) / (cosφ1*sinφ2 -sinφ1*cosφ2*cosΔλ))其中,φ为纬度,λ为经度,Δλ为两点经度差。

坐标计算公式范文

坐标计算公式范文

坐标计算公式范文坐标计算是一种在数学和几何学中广泛使用的方法,用于确定点在一个指定坐标系中的位置。

在平面坐标系中,点的位置通常由两个坐标值表示,即水平方向的x坐标和垂直方向的y坐标。

在三维坐标系中,点的位置由三个坐标值表示,即水平方向的x坐标、垂直方向的y坐标和垂直方向的z坐标。

下面将介绍几种常见的坐标计算公式。

1.距离公式:距离公式用于计算两个点之间的距离,可以根据点的坐标使用勾股定理计算:d=√[(x2-x1)²+(y2-y1)²](二维空间)d=√[(x2-x1)²+(y2-y1)²+(z2-z1)²](三维空间)2.中点公式:中点公式用于计算连接两个点的线段的中点的坐标,可以通过两个点的坐标值的平均值来计算:(x,y)=((x1+x2)/2,(y1+y2)/2)(二维空间)(x,y,z)=((x1+x2)/2,(y1+y2)/2,(z1+z2)/2)(三维空间)3.倾斜角度公式:倾斜角度公式用于计算连接两个点的线段与水平轴之间的夹角,可以使用反三角函数计算:θ = arctan[(y2 - y1) / (x2 - x1)] (二维空间)θ = arccos[(v1 · v2) / (,v1,· ,v2,)] (三维空间)其中,v1=(x2-x1,y2-y1,z2-z1),v2为水平向量4.坐标旋转公式:坐标旋转公式用于计算将一个点绕另一个点旋转后的新坐标,可以使用三角函数和矩阵运算计算:x' = x1 + (x - x1) * cos(θ) - (y - y1) * sin(θ)y' = y1 + (x - x1) * sin(θ) + (y - y1) * cos(θ)其中,(x,y)为旋转前的点的坐标,(x',y')为旋转后的点的坐标,(x1,y1)为旋转中心,θ为旋转角度。

5.坐标缩放公式:坐标缩放公式用于计算将一个点缩放到另一个点的比例后的新坐标,可以使用比例关系计算:x'=x1+(x-x1)*ry'=y1+(y-y1)*r其中,(x,y)为原始点的坐标,(x',y')为缩放后的点的坐标,(x1,y1)为参考点的坐标,r为缩放比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

坐标计算公式
本文介绍基本的坐标计算公式
1.坐标正算
根据直线起点的坐标、直线长度及其坐标方位角计算直线终点的坐标,称为坐标正算。

如图6-10所示,已知直线AB起点A的坐标为(xA,yA),AB边的边长及坐标方位角分别为DAB和αAB,需计算直线终点B的坐标。

附:导线的载流量对照表。

直线两端点A、B的坐标值之差,称为坐标增量,用ΔxAB、ΔyAB表示。

由图6-10可看出坐标增量的计算公式为:
根据式(6-1)计算坐标增量时,sin和cos函数值随着α角所在象限而有正负之分,因此算得的坐标增量同样具有正、负号。

坐标增量正、负号的规律如表6-5所示。

表6-5 坐标增量正、负号的规律
则B点坐标的计算公式为:
2.坐标反算
根据直线起点和终点的坐标,计算直线的边长和坐标方位角,称为坐标反算。

如图6-10所示,已知直线AB两端点的坐标分别为(xA,yA)和(xB,yB),则直线边长DAB和坐标方位角αAB的计算公式为:
应该注意的是坐标方位角的角值范围在0˚~360˚间,而arctan函数的角值范围在-90˚~+90˚间,两者是不一致的。

按式(6-4)计算坐标方位角时,计算出的是象限角,因此,应根据坐标增量Δx、Δy的正、负号,按表6-5决定其所在象限,再把象限角换算成相应的坐标方位角。

例6-2 已知A、B两点的坐标分别为
试计算AB的边长及坐标方位角。

解计算A、B两点的坐标增量。

相关文档
最新文档