地源热泵——供暖空调的绿色技术
地源热泵空调工作原理

地源热泵空调工作原理地源热泵供热空调系统是目前世界上先进的绿色空调系统。
热泵供热空调系统的工作原理是利用环境(空气、水和大地)中的低品味热量,经过热泵机组的工作而改变温度,进而实现对建筑物的供热和空调,同时还可以提供生活热水。
地源热泵系统通过循环液在封闭的地下埋管中流动,实现系统与大地之间的换热,利用大地岩土层中的可再生热能。
由于较深的底层中在未受干扰的情况下常年保持恒定的温度,与室外温度相比是冬暖夏凉,因此地源热泵可克服空气源热泵的技术障碍,且效率大大提高。
在热泵机组中消耗1KW的电能可以得到4KW以上的热量,即能效比大于4。
此外,它保持了地下水源热泵利用大地作为冷热源的优点,同时又不需要抽取地下水作为传热的介质,因此它是一种可持续发展的建筑节能新技术。
地源热泵空调工作流程地源热地下环路的(即地热换热器)埋管方式多种多样。
目前国外普遍采用的有垂直埋管和水平埋管地热器两种基本的配置形式。
垂直埋管地热换热器是在地层中垂直钻孔的地热换热器是在浅层土地中水平埋管。
地热换热器型式和结构的选取应根据实际工程以及给定的建筑场地条件来确定。
水平埋管占地面积大,而且水平埋管的地热换热器受地表气候变化的影响,效率较低,因此这种水平埋管的地源热泵空调系统在多数场合不适合中国人多地少的国情。
垂直环路地源热泵系统在工作中有三个必需的环路,有的还有第四个可供选择的预热生活热水的环路。
1、地下换热环路水或防冻剂溶液在地下循环的封闭加压环路。
冬季从周围土壤吸收热量,夏季向土壤释放热量,其循环由一台低功率的循环泵来实现。
2、制冷剂环路即在热泵机组内部的制冷循环,与空气源热泵相比,只是将空气—制冷剂换热器变成水—制冷剂热换器,其它结构基本相同。
3、空气环路把已调节好的空气分配到建筑物中去的环路。
送风机将空气送到空气分布系统,再根据各区域的热损失或得热,将它们分配到特定的区域去。
4、生活热水环路将水从生活热水箱送到过热蒸汽冷却器去进行循环的封闭加压环路,是一个可选的环路。
地源热泵原理

地源热泵是利用浅层地能进行供热制冷的新型能源利用技术,是热泵的一种,热泵是利用卡诺循环和逆卡诺循环原理转移冷量和热量的设备.地源热泵通常是指能转移地下土壤中热量或者冷量到所需要的地方.通常热泵都是用来做为空调制冷或者采暖用的.地源热泵还利用了地下土壤巨大的蓄热蓄冷能力,冬季地源把热量从地下土壤中转移到建筑物内,夏季再把地下的冷量转移到建筑物内,一个年度形成一个冷热循环.编辑本段地源热泵的由来地源一词是从英文“ground source”翻译而来,汉语的内涵则十分广泛,应包括所有地下资源的含义。
但在空调业内,目前仅指地壳表层(小于400米)范围内的低温热资源,它的热源主要来自太阳能,极少能量来自地球内部的地热能。
"地源热泵"的概念,最早于1912年由瑞士的专家提出,而该技术的提出始于英、美两国。
1946年美国在俄勒冈州的波兰特市中心区建成第一个地源热泵系统。
但是这种能源的利用方式没有引起当时社会各界的广泛注意,无论是在技术、理论上都没有太大的发展。
20世纪50年代,欧洲开始了研究地源热泵的第一次高潮,但由于当时的能源价格低,这种系统并不经济,因而未得到推广。
直到20世纪70年代初世界上出现了第一次能源危机,它才开始受到重视,许多公司开始了地源热泵的研究、生产和安装。
这一时期,欧洲建立了很多水平埋管式土壤源热泵,主要用于冬季供暖。
虽然欧洲是世界上发展地源热泵最成熟的地区,但是它也曾因为热泵专家不懂安装技术,安装工人又不懂热泵原理等因素,致使地源热泵的发展走了一段弯路。
随着科技的进步,关于能源消耗和环境污染的法律制订越来越严格,地源热泵的发展迎来了它的另一次高潮。
欧洲国家以瑞士、瑞典和奥地利等国家为代表,大力推广地源热泵供暖和制冷技术。
政府采取了相应的补贴政策和保护政策,使得地源热泵生产和使用范围迅速扩大。
上世纪80年代后期,地源热泵技术已经趋于成熟,更多的科学家致力于地下系统的研究,努力提高热吸收和热传导效率,同时越来越重视环境的影响问题。
绿色节能暖通空调技术在绿色建筑中的应用

绿色节能暖通空调技术在绿色建筑中的应用绿色节能暖通空调技术在绿色建筑中的应用是一种先进的环保技术,旨在减少能源消耗,降低排放,提高室内空气质量。
绿色建筑是指在设计、建造、运营和维护过程中,最大限度地减少对环境的影响,并为居住者提供健康、舒适的室内环境的建筑。
在绿色建筑中,暖通空调系统是一个重要的组成部分,占据能源消耗的很大比例。
采用绿色节能暖通空调技术对于实现绿色建筑的目标至关重要。
下面将介绍一些常见的绿色节能暖通空调技术及其在绿色建筑中的应用。
1. 高效节能暖通系统:采用高效节能的供暖、通风和空调设备可以显著降低能源消耗。
使用高效的空调机组、风机和泵,以及智能控制系统,可以根据室内外温度、湿度和人员活动情况来调节温度和湿度,实现能源的最优利用。
2. 热回收技术:热回收技术可以利用排出空气中的余热,为系统提供加热或制冷的能量。
常见的热回收技术包括换热器和热泵。
换热器可以用于将排出空气中的热量传递给进入新鲜空气,从而减少加热或制冷的能量消耗。
热泵则可以利用环境中的低温热量,通过压缩和膨胀过程,提供热量。
3. 地源热泵技术:地源热泵技术是一种利用地下或水体中的稳定温度作为热源或冷源的技术。
通过将热量从地下或水体中吸收或释放到建筑内部,可以实现供暖或制冷的效果。
地源热泵技术具有稳定、高效、环保的特点,适用于绿色建筑。
4. 自然通风和日光利用:绿色建筑通过合理布局和设计,提供良好的自然通风和充分利用自然光线的条件。
自然通风和日光利用可以减少电力消耗,降低能源费用,并提高室内舒适度。
5. 智能控制系统:智能控制系统可以通过传感器和智能算法,实时监测室内外温度、湿度、CO2浓度和人员活动情况,根据实际需求进行精确调节。
智能控制系统可以提高能源利用效率,减少人工干预,并提供舒适的室内环境。
地源热泵原理

地源热泵原理
地源热泵是一种利用地热能进行空调供暖的环保节能设备,它通过地下的热能
来进行换热,实现了冬暖夏凉的效果。
地源热泵原理主要包括地热能的获取、热泵循环系统和室内外热交换三个方面。
首先,地源热泵的原理是利用地下的恒定温度来进行换热。
地下深处的温度一
般都是保持在10-18摄氏度,而地表的温度则会受到季节和气候的影响而波动。
地
源热泵通过地下的地热能来进行换热,利用地下温度的恒定性来实现冬暖夏凉的效果。
其次,地源热泵通过热泵循环系统来实现地热能的获取和利用。
热泵循环系统
由蒸发器、压缩机、冷凝器和节流阀等组成。
地下的地热能通过蒸发器吸收,然后通过压缩机进行压缩,提高温度,再通过冷凝器释放热量,最后通过节流阀降低压力,形成循环往复。
最后,地源热泵原理还包括室内外热交换过程。
室内外热交换是通过地源热泵
系统内的循环水来实现的,循环水在地下和室内外之间进行热交换,实现了冬暖夏凉的效果。
总的来说,地源热泵原理是利用地下的恒定温度来进行换热,通过热泵循环系
统和室内外热交换来实现地热能的获取和利用。
地源热泵的原理虽然看似复杂,但实际上是一种非常环保、节能的供暖方式,对于节能减排和环境保护具有重要意义。
希望大家能够更加了解地源热泵原理,积极推广和应用这一环保节能的技术。
地源热泵系统工程技术规范实施细则

地源热泵系统工程技术规范实施细则1. 引言地源热泵系统是一种利用地下热能进行空调供热与制冷的绿色能源系统。
为了保证地源热泵系统的安全可靠运行,提高系统能效,本文档制定了地源热泵系统工程的技术规范实施细则。
本细则适用于地源热泵系统的设计、建设、运行和维护。
2. 设计要求2.1 系统能耗要求 - 地源热泵系统应设计高效节能,能耗应符合国家相关标准;- 系统能效比应满足相关规定要求。
2.2 系统安全要求 - 地源热泵系统应符合国家安全标准; - 设备选型应具备相关认证和检测报告。
2.3 系统稳定性要求 - 地源热泵系统应具备稳定的运行能力; - 设备选型应考虑系统所处环境条件。
2.4 系统舒适性要求 - 地源热泵系统应能满足舒适度要求; - 系统的声音、振动应满足国家相关标准。
3. 设计方案3.1 地源热泵系统的选型要求 - 根据建筑用途和条件,综合考虑系统的能效比、负荷特性等因素进行选型; - 设计方案应提供设备的型号、技术参数和性能。
3.2 系统管道设计 - 地源热泵系统的管道布置应合理,方便维护和管理; - 管道的材质应符合相关规定。
3.3 系统控制设计 - 地源热泵系统的控制方式应考虑运行稳定性和节能; - 控制设备的选用应可靠、先进。
3.4 系统运行参数与调试 - 设计方案应提供系统的运行参数和调试方法; - 系统的运行参数应符合相关规定。
4. 工程施工4.1 施工现场安全要求 - 施工现场应符合国家相关安全规定; - 施工人员应熟悉设备操作和施工流程。
4.2 施工材料和设备要求 - 施工材料和设备应符合相关标准和规定; - 施工材料和设备的运输、存放、安装等应符合设计要求。
4.3 施工工艺要求 - 施工应按照设计方案进行; - 管道安装应符合相关规范。
4.4 施工质量控制 - 施工过程应进行质量检查; - 施工结束后应进行工程验收。
5. 运行与维护5.1 系统运行要求 - 地源热泵系统应定期进行运行检查; - 运行记录应做好归档。
地源热泵供暖方案

地源热泵供暖方案近年来,环境保护和节能减排成为了全球关注的焦点。
其中,供暖领域的能源消耗占据了很大的比重。
地源热泵供暖方案作为一种环保、高效的供暖方式,日益受到人们的关注和推崇。
一、地源热泵供暖的基本原理和优势地源热泵供暖利用地下土壤中储存的地热能量,通过热泵系统将低温热能转换为高温热能。
这种供暖方式有以下几个优势:1. 高效节能:地热能量稳定可靠,地源热泵能够将1单位的地热能量转化为3-4单位的热能,相较于传统的电采暖和燃气采暖,节能效果显著。
2. 环保低碳:地源热泵供暖过程中无烟尘、废气和噪音的排放,减少了对环境的污染,对改善空气质量和保护生态环境起到了积极的作用。
3. 稳定舒适:地源热泵供暖具有温度稳定、室温均匀的特点,可以满足人们对舒适室内环境的需求。
4. 综合运行成本低:尽管地源热泵供暖的初投资较高,但其长期运行成本较低,尤其在能源政策日益严格、燃气价格不断上涨的背景下,具有更为显著的经济优势。
二、地源热泵供暖方案的技术配置和应用地源热泵供暖的技术配置主要包括地热井、换热器、热泵主机以及室内分布系统等。
根据不同的场所和需求,地源热泵供暖方案可以选择垂直地热井和水平地热井。
垂直地热井是利用孔深为100米以上的钢管或塑料管穿透地下可生产热量的地层至地下,形成一个地热回灌系统,以达到充分吸收、循环使用地热能量的目的。
垂直地热井主要适用于空间有限、地热资源丰富的地区。
水平地热井是利用U型沟槽或螺旋式管道将低温制冷剂埋设在地下,利用地下土壤的稳定温度进行供热或制冷。
水平地热井相比于垂直地热井来说,施工和维护成本较低,适用于房地产开发以及大规模工业园区等。
除了地热井,地源热泵供暖还需要配备换热器、热泵主机等设备。
换热器用于将地热井中的低温热能传递给热泵主机,而热泵主机则通过压缩机和膨胀阀等设备,将低温热能转换为高温热能,并通过室内分布系统传送到各个供暖区域。
三、地源热泵供暖方案的发展前景和应用推广随着全球对能源环境的重视和绿色低碳的兴起,地源热泵供暖技术在各个领域得到了广泛的应用和推广。
绿色能源——地源热泵技术

改 变传 统 垃圾 处理 方式 , 统 一 中央 吸尘 、 使垃 圾 不 在房 问 停 留 , 统 一 中 央 分类 , 不 给细 菌滋 生 条件 。
2 十 大建筑 科 技 系统
朗诗 国际街 区一 期 l T程 采用 国际领 先 的建 筑 科 技 ,改 变传 统 住 宅观 念 , 创造最舒适 的居住环境 , 采用十大建筑科技系统。
2 . 3健 康全 新 风 系统
采 暖 制 冷 系 统 采 用
D 2 5 mm聚 乙 烯 ( P E )
管 , 利 用 工 程 桩 ( P H C) 作 为支撑 。
3 1 2地 源 热泵技 术 特 点 :
经过 除尘 、 消毒 、 除湿 等 多级 处理 的 新鲜 空 气 , 以略低 于室 内 的温 度并 以 小于 0 . 2 米/ 秒 的速 度 , 从 地面 踢脚 或 窗下 送 出 , 无噪 声 , 无 吹 风感 。
衡 。朗 诗 国际 街 区一 期工 程 中 的地 源 热泵
通 过预 埋 在混凝 土 楼板 中的均 布水 管 , 依 靠 常 温水 为 冷 热媒 来 进行 制 冷 制热。 夏 季送水 温 度为 2 0  ̄ C 左有, 回水 温 度为 2 6 %左 右 ; 冬 季送 水 温度 2 8 ℃左 右, 回水 温度 为2 0 ' C左右 , 温 差 加热 或制 冷 混凝 土 楼板 , 再 通 过楼 板 以 辐射 方 式 进 行传 热 , 调节 室 内温 度 。 该 系 统 温度 分 布 均匀 , 室 内 没有 机 械 转 动部 件 , 辐 射温 度 与 空 气 温度 相 差小 . 没 有 吹风 感且 空气 洁 净 , 安 静无 噪声 且不 占用室 内空 间。
绿色节能技术在机电安装工程中的应用

绿色节能技术在机电安装工程中的应用在当今社会,随着环保意识的不断提高和能源资源的日益紧张,绿色节能技术在各个领域的应用受到了广泛关注。
机电安装工程作为建筑工程中的重要组成部分,也在积极引入和应用绿色节能技术,以实现节能减排、降低成本、提高效率和可持续发展的目标。
一、绿色节能技术概述绿色节能技术是指在满足人们生产生活需求的同时,能够最大限度地减少能源消耗、降低环境污染、提高资源利用效率的一系列技术手段和方法。
这些技术涵盖了能源管理、设备优化、可再生能源利用、智能化控制等多个方面,旨在实现经济发展与环境保护的良性互动。
在机电安装工程中,常见的绿色节能技术包括:节能照明系统、高效空调系统、变频调速技术、能源回收利用技术、智能控制系统等。
这些技术的应用不仅能够降低机电设备的运行能耗,还能提高设备的性能和可靠性,为用户创造更加舒适、健康的环境。
二、绿色节能技术在机电安装工程中的具体应用(一)节能照明系统照明系统在机电安装工程中占据着较大的能耗比例。
采用绿色节能照明技术,如 LED 照明灯具、智能照明控制系统等,可以显著降低照明能耗。
LED 灯具具有高效、长寿、低能耗等优点。
相比传统的白炽灯泡和荧光灯管,LED 灯具能够在提供相同亮度的情况下,节省大量的电能。
同时,LED 灯具的寿命通常可达数万小时,大大减少了灯具更换的频率和成本。
智能照明控制系统则可以根据环境光照度、人员活动情况等自动调节照明亮度和开关状态。
例如,在自然光充足的区域自动降低照明亮度,在无人活动的区域自动关闭灯光,从而避免不必要的能源浪费。
(二)高效空调系统空调系统是机电安装工程中的另一个能耗大户。
绿色节能的空调技术主要包括变频空调技术、地源热泵技术、热回收技术等。
变频空调技术可以根据室内负荷的变化自动调整压缩机的运行频率,从而实现节能运行。
与定频空调相比,变频空调能够在不同负荷下保持较高的能效比,有效降低空调系统的能耗。
地源热泵技术利用地下浅层地热资源进行供热和制冷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地源热泵——供暖空调的绿色技术出处:作者:张峰珠节能网2005年08月03日摘要:地源热泵系统是一种节能、环保、高效的能源利用技术,它充分发挥了浅层岩体的储冷储热作用,实现对建筑物的供暖和制冷,是一种典型的绿色技术。
本文对地源热泵技术进行了阐述,介绍了地源热泵的原理及发展历史,分析了其形式及优点,对其与常规空调技术的技术特点及投资和运行费用进行了比较,分析了制约其发展的主要问题,并提出了地源热泵技术在中国的发展前景和展望。
关键词:地源热泵供暖空调冷热源绿色技术近年来随着资源和环境的问题日益严重,在满足人们健康、舒适要求的前提下,合理利用自然资源,保护环境,减少常规能源消耗,已成为暖通空调行业需要面对的一个重要问题。
地源热泵空调系统通过吸收大地(包括土壤、井水、湖泊等)的冷热量,冬季从大地吸收热量,夏季从大地吸收冷量,再由热泵机组向建筑物供冷供热而实现节能,是一种利用可再生能源的高效节能、无污染的既可供暖又可制冷的新型空调系统。
在中国,煤作为主要能源, 煤炭在我国能源体系中占主导地位,长期以来,煤炭在我国能源生产结构、消费结构中一直占有绝对主导地位,尽管近年来,比例略有下降,但仍保持在65%以上,并再次呈现出上升的迹象。
2002年煤炭在我国能源生产结构、消费结构中的比例分别由2001年的68.6%和65.3%上升为70.7%和66.1%【1】。
特别在冬季,在国内的农村和部分城市几乎全部靠煤取暖。
煤是各种能源中污染环境最严重的能源,只有减少城市地区煤的使用,城市大气污染问题是才可能得到解决。
现在各地都在采取措施控制燃煤的数量,选用电采暖、燃油或者燃气采暖等措施,但都存在运行费用高、资源不足和排放CO2这些问题。
受能源、特别是一次性能源与环保条件的限制,传统的燃油、燃煤中央空调方式将逐步受到制约。
从降低运行费用、节省能源、减少排放CO2排放量来看,地源热泵技术是一个不错的选择。
地源热泵不需要人工的冷热源,可以取代锅炉或市政管网等传统的供暖方式和中央空调系统。
冬季它代替锅炉从土壤、地下水或者地表水中取热,向建筑物供暖;夏季它可以代替普通空调向土壤、地下水或者地表水放热给建筑物制冷。
同时,它还可供应生活用水,可谓一举三得,是一种有效地利用能源的方式。
地源热泵(ground source heat pumps, GSHP)系统包括三种不同的系统:以利用土壤作为冷热源的土壤源热泵,也有资料文献成为地下耦合热泵系统(ground-coupled heat pump systems, GCHPs)或者叫地下热交换器热泵系统(ground heat exchanger, GHPs);以利用地下水为冷热源的地下水热泵系统(ground water heat pumps, GWHPs);以利用地表水为冷热源的地表水热泵系统(surface-water heat pumps, SWHPs)。
1.地源热泵的工作原理系统通过地源热泵将环境中的热能提取出来对建筑物供暖或者将建筑物中的热能释放到环境中去而实现对建筑物的制冷,夏季可以将富余的热能存于地层中以备冬用;同样,冬季可以将富余的冷能贮存于地层以备夏用。
这样,通过利用地层自身的特点实现对建筑物、环境的能量交换。
在制冷状态下,地源热泵机组内的压缩机对冷媒做功,使其进行汽-液转化的循环。
通过蒸发器内冷媒的蒸发将由风机盘管循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷凝器内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环转移至地下水或土壤里。
在室内热量不断转移至地下的过程中,通过风机盘管,以13℃以下的冷风的形式为房间供冷。
在制热状态下,地源热泵机组内的压缩机对冷媒做功,并通过换向阀将冷媒流动方向换向。
由地下的水路循环吸收地下水或土壤里的热量,通过冷凝器内冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过蒸发器内冷媒的冷凝,由风机盘管循环将冷媒所携带的热量吸收。
在地下的热量不断转移至室内的过程中,以35℃以上热风的形式向室内供暖。
系统实际上是指通过将传统的空调器的冷凝器或蒸发器延伸至地下,使其与浅层岩土或地下水进行热交换,或是通过中间介质(如防冻液)作为热载体,并使中间介质在封闭环路中通过在浅层岩土中循环流动,从而实现利用低温位浅层地能对建筑物内供暖或制冷的一种节能、环保型的新能源利用技术。
该技术可以充分发挥浅层地表得储能储热作用,达到环保、节能双重功效,而被誉为“21世纪最有效的空调技术”。
2.地源热泵的发展历史地源热泵的概念最早出现在1912年瑞士的一份专利文献中。
开放式地下水热泵系统在20世纪30年代被成功应用。
20世纪50年代欧洲和美国掀起了研究地源热泵(GSHP)的第一次高潮,美国爱迪生电子学院最早研究闭式环路热泵系统,印地安纳洲的印地安纳波利斯是最早安装闭式环路地源热泵系统的。
直到20世纪70年代,世界石油危机使得人们关注节能、高效用能,地源热泵的研究进入了又一次高潮,这时瑞典的研究人员开始将塑料管应用在闭式环路地源热泵系统上,地源热泵的推广应用迅速展开。
经过近50年的发展地源热泵技术在北美和欧洲已非常成熟,是一种被广泛采用的热泵空调系统。
针对地源热泵机组、地热换热器,系统设计和安装有一整套标准、规范、计算方法和施工工艺。
在美国地源热泵系统占整个空调系统的20%,是美国政府极力推广的节能环保技术。
到1997年底,美国有超过3万台GSHP系统在家庭、学校和商业建筑中应用,每年约提供8000~11000GWh的终端能量,另据地源热泵协会统计,美国有600多所学校安装有GSHP。
目前美国地源热泵的销售数量以每年20%的速度递增,2000年全美销售数量达40万台【2】~【3】。
在实际工程应用中,北美对地源热泵应用偏重于全年冷热联供,采用闭式水环热泵系统(WLHP);欧洲国家偏重于冬季供暖,往往采用热泵站方式集中供热供冷。
我国气候条件与美国比较相似,所以北美的方式对我国更具借鉴意义。
在我国,地源热泵的研究起始于20世纪80年代,最近5年该项技术成了国内建筑节能及暖通界热门的研究课题,也开始应用于工程实践,与此相关的热泵产品应运而生,掀起了一股"地热空调"的热潮。
在研究领域,过去几年里国内许多大学先后建立了地源热泵实验台,进行了地下埋管换热器与地面热泵设备联合运行的实验。
研究工作主要集中在以下几个方面:(1)地下埋管换热器的传热模型和传热研究;(2)夏季瞬态工况数值模拟的研究;(3)热泵装置与部件的仿真模型的理论和实践研究;(4)地源热泵空调系统制冷工质替代研究;(5)其他能源如太阳能、水电等与地热源联合应用的研究;(6)地源热泵系统的设计和施工;(7)地源热泵系统的经济性能和运行特性的研究;(8)地源热泵系统与埋地换热器的技术经济性能匹配方面机组整体性能的研究;(9)土壤热物性及土壤导热系数的试验研究等等。
随着研究的深入,我们的地源热泵研究工作者在全国范围内举行了各种交流探讨会。
中国制冷学会第二专业委员会主办了“全国余热制冷与热泵技术学术会议”;1988年中科院广州能源研究所主办了“热泵在我国应用与发展问题专家研讨会”【4】;中国能源研究会地热专业委员会于1994年9月6日至8日在北京召开了第四次全国地热能开发利用研讨会;从90年代开始,每届全国暖通制冷学术年会上都有“热泵应用”的专题;2000年6月19~23日,中美地源热泵技术交流会在北京召开,会议介绍了地源热泵技术,国外的应用状况和在中国的推广;山东建筑工程学院地源热泵研究所与山东建筑学会热能动力专业委员会联合发起并承办“国际地源热泵新技术报告会”于2003年3月17日在山东建筑工程学院举行,加强了国内外地源热泵先进技术的交流。
在工程应用方面,1996年至2000年间在山东、河南、北京、辽宁、河北、江苏、上海等地建成了地源热泵工程,发展速度很快,地源热泵技术正被越来越多的人们所了解。
3.地源热泵系统形式3.1 土壤热交换器地源热泵土壤热交换器地源热泵(图2.(a),(b))是利用地下岩土中热量的闭路循环的地源热泵系统。
通常称之为“闭路地源热泵”,以区别于地下水热泵系统,或直接称为“地源热泵”。
它通过循环液(水或以水为主要成分的防冻液)在封闭地下埋管中的流动,实现系统与大地之间的传热。
地下耦合热泵系统在结构上的特点是有一个由地下埋管组成的地热换热器(geothermal heat exchanger, 或ground heat exchanger)。
地热换热器的设置形式主要有水平埋管和垂直埋管两种。
水平埋管形式是在地面开1~2米深的沟,每个沟中埋设2、4或6根塑料管。
垂直埋管的形式是在地层中钻直径为0.1~0.15 m的钻孔,在钻孔中设置1组(2根)或2组(4根)U型管并用灌井材料填实。
钻孔的深度通常为40~200m。
现场可用的地表面积是选择地热换热器形式的决定性因素。
竖直埋管的地热换热器可以比水平埋管节省很多土地面积,因此更适合中国地少人多的国情。
管沟或竖井中的热交换器成并联连接,再通过集管进入建筑中与建筑物内的水环路相连接。
在液体温度较低时,系统中需加入防冻液,北方地区应用时应特别注意。
3.2 地下水地源热泵地下水源热泵(图2.(c))的热源是从水井或废弃的矿井中抽取的地下水。
经过换热的地下水可以排入地表水系统,但对于较大的应用项目通常要求通过回灌井把地下水回灌到原来的地下水层。
水质良好的地下水可直接进入热泵换热,之后将井水回灌地下,这样的系统称为开式系统。
由于可能导致管路阻塞,更重要的是可能导致腐蚀发生,通常不建议在地源热泵系统中直接应用地下水。
开式系统在适当的地下水条件和建筑物参数下是一个有吸引力的选择方式,但必须谨慎的使用。
实际工程中更多采用闭式环路的热泵循环水系统,即采用板式换热器把地下水和通过热泵的循环水分隔开,以防止地下水中的泥沙和腐蚀性杂质对热泵的影响。
通常系统包括带潜水泵的取水井和回灌井。
板式热交换器采取小温差换热的方式运行,根据温度和地下水深度的不同,可以在很大程度上抵消开式系统在性能上的优势。
由于地下水温常年基本恒定,夏季比室外空气温度低,冬季比室外空气温度高,且具有较大的热容量,因此地下水热泵系统的效率比空气源热泵高,COP值一般在3~4.5,并且不存在结霜等问题。
最近几年地下水源热泵系统在我国得到了迅速发展。
无论是深井水,还是地下热水都是热泵的良好低位热源。
地下水位于较深的地方,由于地层的隔热作用,其温度随季节气温的波动很小,特别是深井水的水温常年基本不变,对热泵的运行十分有利。
3.3 地表水地源热泵地表水地源热泵系统(图2.(d))由潜在水面以下的、多重并联的塑料管组成的热交换器取代了土壤热交换器,与土壤热交换地源热泵一样,它们被连接到建筑物中,并且在北方地区需要进行防冻处理。