数值分析教学大纲

合集下载

数值分析 教学大纲

数值分析 教学大纲

数值分析教学大纲数值分析是计算数学的一个分支,主要研究如何用计算机来解决数学问题。

它涉及到数值计算、数值逼近、数值积分、数值微分方程等方面的内容。

数值分析的教学大纲应该包括以下几个方面的内容:一、数值计算方法数值计算方法是数值分析的基础,它主要包括数值计算的误差分析、数值计算的稳定性分析、数值计算的收敛性分析等内容。

在教学过程中,可以通过讲解数值计算方法的基本原理和算法,以及通过实例演示数值计算方法的应用,来帮助学生理解和掌握数值计算方法。

二、数值逼近数值逼近是数值分析的一个重要内容,它主要研究如何用简单的数学函数来逼近复杂的函数。

在教学中,可以通过讲解插值多项式、最小二乘逼近等方法的原理和应用,以及通过实例演示数值逼近方法的具体步骤和计算过程,来帮助学生理解和掌握数值逼近的方法和技巧。

三、数值积分数值积分是数值分析的一个重要内容,它主要研究如何用数值方法来计算定积分。

在教学中,可以通过讲解数值积分的基本原理和算法,以及通过实例演示数值积分方法的应用,来帮助学生理解和掌握数值积分的方法和技巧。

四、数值微分方程数值微分方程是数值分析的一个重要内容,它主要研究如何用数值方法来求解微分方程。

在教学中,可以通过讲解数值微分方程的基本原理和算法,以及通过实例演示数值微分方程的应用,来帮助学生理解和掌握数值微分方程的方法和技巧。

五、数值软件数值软件是数值分析的一个重要工具,它主要用于实现数值计算方法、数值逼近方法、数值积分方法和数值微分方程方法等的计算和模拟。

在教学中,可以通过讲解数值软件的基本功能和使用方法,以及通过实例演示数值软件的应用,来帮助学生掌握数值软件的使用技巧。

总之,数值分析的教学大纲应该包括数值计算方法、数值逼近、数值积分、数值微分方程和数值软件等方面的内容。

通过理论讲解和实例演示相结合的方式,可以帮助学生理解和掌握数值分析的基本原理和方法,从而提高他们的计算和模拟能力。

数值分析作为计算数学的一个重要分支,对于培养学生的计算思维和解决实际问题的能力具有重要意义。

数值分析 教学大纲

数值分析 教学大纲

数值分析教学大纲一、课程概述数值分析是一门应用数学的学科,研究如何使用数值方法解决实际问题。

本课程旨在介绍数值分析的基本概念、数值计算方法和数值算法的设计与实现,培养学生运用数值方法进行科学计算和工程设计的能力。

二、教学目标1. 掌握数值分析的基本概念和方法,了解数值计算与数学理论的关系;2. 熟悉常用的数值计算方法,如数值逼近、数值积分、数值求解方程等;3. 学会分析和评估数值计算方法的稳定性、精确性和效率;4. 培养解决实际问题的数值模拟和数值实验的能力;5. 培养数值计算软件的使用和程序设计的基本技能。

三、教学内容1. 数值计算的误差分析a. 绝对误差和相对误差b. 截断误差和舍入误差2. 数值逼近a. 插值与多项式逼近b. 最小二乘逼近c. 误差估计与收敛性分析3. 数值积分与数值微分a. 数值积分方法b. 数值微分方法c. 数值积分与微分的误差分析4. 数值解线性方程组a. 线性方程组的直接解法b. 线性方程组的迭代解法c. 收敛性与稳定性分析5. 非线性方程数值求解a. 方程求根的基本方法b. 非线性方程求根的迭代算法c. 收敛性分析和收敛速度6. 数值解常微分方程a. 初值问题的数值方法b. 边值问题的数值方法c. 稳定性和保结构性的分析7. 数值计算的软件工具a. 常用数值计算软件的介绍b. 数值计算问题的编程实现c. 数值计算软件的调试和优化技巧四、教学方法1. 理论授课与实践结合,讲解数值分析的基本理论和方法,注重实际问题的解决和计算算法的实现;2. 设计实验和案例分析,引导学生运用数值方法解决实际问题;3. 数值计算软件的使用,帮助学生熟悉常用的数值计算软件和编程语言;4. 课堂讨论和小组合作,培养学生的分析和解决问题的能力。

五、教材与参考书目教材:1. 《数值分析》- 王建明、杨肇明、刘妍编著,高等教育出版社2. 《数值分析与算法》- 吴良骥编著,清华大学出版社参考书目:1. 《科学计算导论》- Heath M. T 编著,电子工业出版社2. 《数值分析》- David Kincaid, E. Ward Cheney 编著,机械工业出版社3. 《数值分析与算法:MATLAB实现》- Michael T. Heath 编著,机械工业出版社六、课程评估与考核1. 平时成绩占比:30%包括作业、实验、课堂讨论等形式,对学生的实际动手能力和理论理解能力进行评估。

《数值分析》教学大纲

《数值分析》教学大纲

《数值分析》教学大纲
一、课程名称:数值分析
二、课程性质:专业选修课
三、授课学时:48学时(实验室32学时)
四、授课对象:计算机专业本科课程学生
五、课程目前:
1.数值分析的定义、内容及其在科学计算中的重要性;
2.数值积分的原理及其应用,包括高斯积分、拉格朗日积分、Lagrange插值法、梯形法等;
3.常微分方程的数值解法,包括隐式Euler方法、欧拉法、Runge-Kutta方法、Adams方法、Lorenz方法等;
4.最优化的原理和算法,包括一阶最优化方法、梯度方法、拟牛顿法、二阶最优化方法及其应用;
5.系统辨识的原理及其应用;
6.数值计算实践,使用MATLAB编程实现数值计算;
六、教学进度安排
第1讲:数值分析的定义、内容及其在科学计算中的重要性
第2讲:数值积分的原理及其应用:高斯积分、拉格朗日积分、Lagrange插值法
第3讲:隐式Euler方法
第4讲:欧拉法
第5讲:Runge-Kutta方法
第6讲:Adams方法
第7讲:Lorenz方法
第8讲:一阶最优化方法、梯度方法和拟牛顿法
第9讲:二阶最优化方法及其应用
第10讲:系统辨识原理及其应用
第11讲:MATLAB编程实现数值计算
七、教学要求
1.熟悉数值分析的定义、内容及其在科学计算中的重要性;。

数值分析本科教学大纲

数值分析本科教学大纲

数值分析本科教学大纲数值分析本科教学大纲数值分析是一门应用数学的学科,旨在研究用数值方法解决实际问题的理论和技术。

它涉及到数值计算、数值逼近、数值优化等方面的知识,广泛应用于科学计算、工程设计、金融分析等领域。

为了培养学生的数值计算能力和解决实际问题的能力,数值分析课程在本科教学中起着重要的作用。

一、课程目标数值分析课程的目标是使学生掌握数值计算的基本方法和技巧,理解数值算法的原理和应用,培养解决实际问题的能力。

具体目标包括:1. 理解数值计算的基本概念和原理,掌握数值计算的基本方法和技巧;2. 掌握数值逼近和插值的方法,能够利用数值方法对实际问题进行逼近和插值;3. 理解数值微积分和数值积分的原理和应用,能够利用数值方法求解实际问题的积分;4. 掌握数值代数和线性方程组的解法,能够利用数值方法求解实际问题的线性方程组;5. 理解数值优化的原理和方法,能够利用数值方法求解实际问题的优化;6. 能够利用计算机编程实现数值计算算法,分析和解决实际问题。

二、课程内容数值分析课程的内容包括:1. 数值计算基础:数值计算的概念和原理,数值计算误差和稳定性分析;2. 数值逼近和插值:插值多项式、最小二乘逼近、样条插值等方法;3. 数值微积分和数值积分:数值微分和数值积分的方法,数值微分方程的数值解法;4. 数值代数和线性方程组:矩阵运算、线性方程组的直接解法和迭代解法;5. 数值优化:单变量和多变量函数的最优化方法,约束优化问题的求解;6. 计算机编程:利用计算机编程实现数值计算算法,分析和解决实际问题。

三、教学方法数值分析课程采用理论教学与实践相结合的教学方法。

具体教学方法包括:1. 理论讲授:通过讲解数值计算的基本概念、原理和方法,帮助学生理解数值计算的基本原理和应用;2. 实例分析:通过实例分析,引导学生将数值计算方法应用于实际问题的解决;3. 计算机实验:通过计算机实验,让学生亲自实践数值计算算法,培养学生的计算机编程能力和问题解决能力;4. 课堂讨论:通过课堂讨论,激发学生的思考和创新能力,培养学生的团队合作能力;5. 课程设计:通过课程设计,让学生独立完成一个小型数值计算项目,提高学生的综合运用能力。

数值分析课程教学大纲

数值分析课程教学大纲

《数值分析》课程教学大纲一、课程基本信息
二、课程目标及对毕业要求指标点的支撑
注:“学生学习预期成果,,是描述学生在学完本课程后应具有的能力,可以用认知、理解、应用、分析、综合、判断等描述预期成果达到的程度。

四、课程考核
五、教材及参考资料
[1]李庆扬,王能超,易大义.数值分析(第5版)[M],北京:清华大学出版
社,2003.ISBN:9787302185659
[2]傅凯新,黄云清,舒适.数值计算方法[M],长沙:湖南科学技术出版
社,2002.ISBN:7535734847∕O∙198.
[3]王沫然.Mat1ab6.0与科学计算(第3版)[M],北京:电子工业出版社,2001.ISBN:
9787121180521.
六、教学条件
需要使用多媒体教室授课,授课电脑安装了WindOWS7、OffiCe2010、
1ingo1KMat1ab2015>Mathematica11>MathType6.9以上版本的正版软件:需要安装了授课系统及Windows7OffiCe2010、1ingo11、MaHab2015、Mathematica11MathTyPe6.9以上版本的电脑进行上机实训。

附录:各类考核评分标准表
小计
15。

数值分析 教学大纲

数值分析 教学大纲

数值分析教学大纲一、课程简介数值分析是一门研究数值计算方法和数值计算误差的学科,它旨在通过数学模型和算法,利用计算机对现实问题进行数值求解。

本课程主要介绍数值分析的基本原理、方法与应用,培养学生对数值计算的理论和实践能力。

二、教学目标1. 理解数值分析的基本概念和任务,了解数值计算的重要性和应用领域。

2. 熟练掌握数值计算中常用的数值方法和算法,能够灵活运用于实际问题的求解。

3. 培养学生的数学建模和问题求解能力,提高数值计算的准确性和效率。

4. 培养学生的团队合作和沟通能力,培养创新意识和实践能力。

三、教学内容1. 数值计算误差与有效数字:了解数值计算的误差来源和评估方法,掌握有效数字的概念和计算方法。

2. 插值与逼近:掌握插值和逼近的基本原理和方法,能够利用插值和逼近方法拟合实际数据。

3. 数值微积分:熟练掌握数值微积分的基本方法和算法,能够求解函数的数值积分和数值微分。

4. 非线性方程的数值解法:了解非线性方程的求根方法和算法,能够利用迭代法和牛顿法求解非线性方程。

5. 线性方程组的数值解法:掌握线性方程组的直接求解和迭代求解方法,能够解决大规模线性方程组的数值问题。

6. 数值积分与常微分方程数值解:熟练掌握数值积分和常微分方程数值解的基本原理和方法,能够求解实际问题的数值积分和数值解。

7. 特征值与特征向量的数值计算:了解特征值和特征向量的数值计算方法,能够求解实对称矩阵的特征值和特征向量。

8. 数值优化方法:掌握数值优化的基本原理和方法,能够利用优化算法求解实际问题的最优解。

四、教学方法1. 理论讲授:通过课堂讲解,系统介绍数值分析的基本理论和方法,让学生掌握知识框架。

2. 示例分析:通过实际问题的案例分析,演示数值分析方法的应用过程和解题技巧。

3. 课堂练习:安排课堂练习和小组讨论,加深学生对知识点的理解和应用。

4. 编程实践:要求学生通过编写程序,运用数值分析方法解决实际问题,提升实践能力和算法设计能力。

数值分析课程教学大纲

数值分析课程教学大纲

数值分析课程教学大纲一、课程简介数值分析是一门应用数学课程,研究如何利用计算机和数值方法来解决实际问题。

本课程将介绍数值计算的基本概念和数值算法,以及其在科学和工程领域中的应用。

主要内容包括:插值与逼近、数值积分与数值微分、非线性方程求解、线性方程组求解、特征值与特征向量计算、数值解常微分方程等。

二、教学目标1.掌握数值分析的基本概念,了解数值计算的背景和意义;2.熟悉常用的数值算法,能够正确选择和应用适当的数值方法;3.能够使用计算机编程语言实现数值分析中的算法,并利用计算机进行数值计算;4.培养独立思考和问题解决能力,能够通过数值分析方法解决实际问题。

三、教学内容与安排1.插值与逼近1.1 插值多项式1.2 插值余项与误差估计1.3 最小二乘逼近方法1.4 样条插值方法2.数值积分与数值微分2.1 数值积分的基本概念2.2 数值积分公式与误差估计 2.3 自适应积分方法2.4 数值微分的基本概念与方法3.非线性方程求解3.1 二分法与不动点迭代法3.2 牛顿法与割线法3.3 收敛性分析3.4 高级方法:弦截法、过程函数法等4.线性方程组求解4.1 线性方程组与矩阵运算的基本概念4.2 直接解法:高斯消元与LU分解4.3 迭代解法:雅可比迭代与高斯-赛德尔迭代4.4 收敛性与稳定性分析5.特征值与特征向量计算5.1 线性代数复习:特征值与特征向量的定义5.2 幂迭代法与反幂迭代法5.3 Jacobi方法与QR方法6.数值解常微分方程6.1 常微分方程数值解的基本概念与方法6.2 单步法:欧拉法、改进的欧拉法、Runge-Kutta法 6.3 多步法:Adams法、Milne法6.4 稳定性与刚性问题四、教学方法1.理论与实践相结合,以理论讲解为主,辅以相关数值计算实例;2.组织编程实践,利用计算机进行数值分析的算法实现与应用;3.课堂互动,鼓励学生提问和思考,培养独立解决问题的能力;4.课后作业辅导,及时解答学生的问题,帮助学生巩固所学知识。

数值分析实验教学大纲

数值分析实验教学大纲

数值分析实验教学大纲一、课程简介数值分析实验是计算数学的一个重要分支,通过计算机实验来研究数学问题的数值计算方法与算法。

本课程旨在帮助学生掌握数值分析实验的基本概念、原理和应用,培养他们的实践能力和创新意识,为他们今后的科研和工作奠定基础。

二、教学目标1. 理解数值分析实验的基本概念、方法和原理;2. 掌握数值分析实验的常用算法和技术;3. 能够独立设计并实现数值分析实验;4. 学会运用数值分析实验解决实际问题。

三、教学内容1. 数值计算的基本原理a. 数值计算的产生背景和意义b. 数值计算的误差与稳定性c. 数值计算的收敛性与有效性2. 插值与拟合实验a. 插值与拟合的基本概念b. 插值与拟合的常用方法:拉格朗日插值、牛顿插值、最小二乘拟合等c. 插值与拟合的应用场景与注意事项3. 数值微积分实验a. 数值积分与数值微分的基本概念b. 复合求积法与牛顿-科特斯公式c. 数值微分的前向、后向和中心差分法4. 数值方程求解实验a. 非线性方程求解方法:二分法、牛顿法、割线法等b. 线性方程组的求解方法:高斯消元法、LU分解法等c. 特征值与特征向量的计算方法:幂法、反幂法、QR方法等5. 数值优化实验a. 数值优化的概念与基本原理b. 单变量和多变量函数的最优化方法:割线法、黄金分割法、牛顿法等c. 优化问题的约束条件与处理方法四、实验设计与操作1. 实验设计a. 确定实验目标和内容b. 设计实验步骤和流程c. 确定实验数据和指标2. 实验操作a. 编写数值分析实验程序b. 进行实验数据的采集和处理c. 分析实验结果和进行误差评估五、实验报告1. 实验报告的基本结构a. 标题、摘要和关键词b. 引言和背景c. 实验方法和步骤d. 实验结果和分析e. 结论和展望2. 实验报告的书写要求a. 语言简洁明了,结构清晰完整b. 图表清晰,数字准确可靠c. 引用他人工作时需注明出处六、实验考核1. 实验报告:根据实验设计和实验操作的完成情况撰写实验报告,包括实验目的、过程、数据处理和分析等内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数值分析》教学大纲
(一)总则
数值分析主要研究计算机解题的基本理论和方法,介绍数值分析研究中的一些较新的成果。

其目的是根据问题的要求,提炼数学模型,通过算法设计和上机计算,快速准确得出工程需要的结果。

数值分析一直以来都是计算科学很重要的课程。

包含解线性代数方程组的直接法、解线性代数方程组的迭代法、解非线性方程的迭代法、矩阵特征值与特征向量的计算、代数插值、函数逼近、数值积分与数值微分、常微分方程初值问题的数值解法等基本内容。

通过教学使学生掌握各种常用数值算法的构造原理,提高算法设计能力,为能在计算机上解决科学计算问题打好基础。

数值分析课程已经成为计算机应用、应用数学、工科各专业的基础课程。

数值分析是高等学校信息与计算科学专业数学课程的专业必选课之一,地位十分重要。

一、英文名称:
Numerical Analysis
二、教学目的和要求:
使学生掌握插值法、曲线拟合、数值积分与数值微分、非线性方程求根、线性与非线性方程组的数值解法、常微分方程初值问题数值解法等近现代计算机常用的数值计算方法及其基础理论,提高算法设计和理论分析能力,为能在计算机上解决科学计算问题打好基础。

三、主要内容:
误差分析的重要性,误差的基本概念,数值运算中若干准则;拉格朗日插值,牛顿插值,分段插值,曲线拟合的最小二乘法;数值求积的基本思想,代数精度的概念,梯形、辛普生及其复化求积公式,高斯求积公式;数值微分;解一元方程的迭代法、二分法、牛顿法、弦截法;高斯消去法及高斯主元消
去法解解线性方程组;尤拉法与改进尤拉法、龙格—库塔法解常微分方程。

四、与相关课程的关系:
高等数学、线性代数、常微分方程课程的基础;数值分析课程又为后续“数学模型”、“软件工程”、“算法设计与分析”等课程奠定知识和方法论基础。

五、教材及参考书:
1.《数值分析》,李庆扬等编著,清华大学出版社.科学出版社。

2.《计算方法》,易大义、沈云宝、李有法编,浙江大学出版社1989年出版;
3.《数值分析》,同济大学计算数学教研室编,同济大学出版社1998年出版;
4.《数值计算方法》,关治、陈景良编,清华大学出版社1990年出版;
5.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编,高等教育出版社1999年出版。

六、考核方式及成绩评定方法:
结合平时作业、课堂提问和期末考试成绩综合评定成绩,平时成绩占30%,期末成绩占70%。

期末考试采取闭卷形式。

命题要求覆盖大纲,题型多样,难易适中,着重考查学生对基本理论的掌握程度以及理论联系实际,解决实际问题的能力。

(二)教学内容、要求与学时分配
本课程总学时为54学时(包括习题课),课程讲授一个学
四方程求根8
一、绪论
教学内容:
1.误差分析的重要性。

2.误差的基本概念。

3.数值运算中若干准则。

教学要求:
1.了解误差分析基本意义。

2.了解误差基本概念。

3.掌握数值运算中避免大误差产生的若干准则。

二、插值与逼近
教学内容:
1.插值概念。

2.拉格朗日插值(插值公式及余项)。

3.牛顿插值(均差,插值公式及余项)。

4.分段插值(分段线形,分段三次埃米特及三次样条插值)。

5.曲线拟合的最小二乘法。

教学要求:
1.理解插值概念和一致逼近和平方逼近两种度量标准。

2.熟练掌握拉格朗日插值公式,会用余项估计误差。

3.掌握牛顿插值公式。

4.掌握分段三次样条和其它低次插值的意义及方法。

5.掌握曲线拟合的最小二乘法。

三、数值积分与数值微分
教学内容:
1. 引言(数值求积的基本思想,代数精度的概念)。

2. 等距节点求积公式(梯形、辛普生及其复化求积公式)。

3. 高斯求积公式。

4. 数值微分。

教学要求:
1. 理解数值求积的基本思想,代数精度的概念。

2. 熟练掌握梯形,辛普生及其复化求积公式。

3. 掌握高斯求积公式的用法。

4. 掌握几个数值微分计算公式。

四、方程求根
教学内容:
1.二分法。

2.解一元方程的迭代法。

3.牛顿法。

4.弦截法。

教学要求:
1. 理解研究解非线性方程的数值计算方法的必要性和主要研究内容。

2. 了解求实根各个方法的优缺点。

3. 掌握二分法、牛顿法和弦截法求根公式。

五、线性方程组的解法
教学内容:
1. 高斯消去法及高斯主元消去法。

2. 高斯消去法的变形。

3. 迭代法。

教学要求:
1. 熟练掌握高斯主元消去法。

2. 知道高斯消去法的变形。

3. 掌握几种常用的简单迭代法。

六、矩阵特征值问题的计算
教学内容:
1. 计算实矩阵的按模最大的特征值及其相应的特征向量的乘幂法方法。

2. 雅可比方法。

3. QR变换法。

教学要求:
1. 理解矩阵特征值的基本概念;
2. 了解矩阵特征值的基本理论;
3. 掌握乘幂法、雅可比方法和QR变换法求特征值的方法。

七、常微分方程数值解法
教学内容:
1. 尤拉法与改进尤拉法。

2. 梯形方法。

3. 龙格—库塔法。

4. 二阶边值问题的数值解法。

教学要求:
1. 掌握数值求解一阶方程的尤拉法,改进尤拉法,梯形法及龙格----库塔法。

2. 了解局部截断误差,方法阶等基本概念。

3. 知道:二阶边值问题的基本解法。

相关文档
最新文档