2017届泸州市高三第一次教学质量诊断性考试理科数学试题及答案
2017-2018届泸州市高三第一次教学质量诊断性考试理科数学试题及答案

泸州市2017-2018届高三第一次教学教学质量诊断性考试数学(理工类)一、选择题:本大题共有10个小题,每小题5分,共50分.每小题给出的四个选项中,只有一项是符合要求的. 1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则()U M N ð=A .{5,7}B .{2,4}C .{1,3,5,6,7}D .{2,4,8}2. 下列命题中的假命题是A .x ∀∈R ,120x -> B .x *∀∈N ,2(1)0x -> C .x ∃∈R ,lg 1x < D .x ∃∈R ,tan 2x =3. 12lg 2lg25-的值为 A .1 B .2 C .3 D .44.函数()211sin f x x x ⎛⎫=- ⎪⎝⎭的图象大致为A .B .C .D .5.△ABC 中,若 2AD DB = ,13CD CA CB λ=+,则λ=A .13B .23C .23-D .13-6.将函数()()sin 2f x x θ=+(其中22ππθ-<<)的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若函数()(),f x g x 的图象都经过点P ⎛ ⎝⎭,则的值可以是A .53πB .6πC .2πD .56π7.设数列{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是递增数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 8. 若曲线()12f x x =在点()(),a f a 处的切线与两条坐标轴围成的三角形的面积为18,则a =A. 64B. 32C. 16D. 89.一支人数是5的倍数且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.则这只游行队伍的最少人数是 A .1025 B .1035 C .1045 D .105510.定义在R 上的函数()f x 满足()221,11(4)(),()log 22,1 3.x x f x f x f x x x ⎧-+-⎪+==⎨--+<⎪⎩≤≤≤,若关于x 的方程()0f x ax -=有5个不同实根,则正实数a 的取值范围是A .11(,)43B .11(,)64C.1(16)6-D.1(,86-二、填空题:本大题共5小题,每小题5分,共25分.11.复数22(56)(215)i m m m m +++--(i 是虚数单位)是纯虚数,则实数m 的值为 .12.等比数列{}n a 中,若公比4q =,且前3项之和等于21,则该数列的通项公式n a = . 13.函数()log a f x x=(其中01a <<),则使314f ⎛⎫< ⎪⎝⎭成立的a 的取值范围是 .14. 设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意[],2x a a ∈+,不等式()()31f x a f x +≥+恒成立,则实数a 的取值范围是 . 15.已知集合()()()()(){}22|,A f x fx f y f x y f x y x y R =-=+-∈,有下列命题;①若()1,01x f x x ≥⎧=⎨-<⎩,则()f x A ∈;②若()f x kx =,则()f x A ∈;③若()f x A ∈,则()y f x =可为奇函数;④若()f x A ∈,则对任意不等实数12,x x ,总有()()1212f x f x x x-<-成立。
四川省泸州市2016-2017学年高三数学一诊试卷(文科)Word版含解析

四川省泸州市2016-2017学年高三一诊试卷(文科数学)一、选择题(每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x|x2﹣x≤0},B={0,1,2},则A∩B=()A.∅B.{0} C.{0,1} D.{0,1,2}2.复数z=(i是虚数单位),则|z|=()A.1 B.C.D.23.函数f(x)=sin(x+)图象的一条对称轴方程为()A.x=﹣B.x=C.x=D.x=π4.某程序框图如图所示,若运行该程序后输出S=()A.B.C.D.5.某校高三年级共1500人,在某次数学测验后分析学生试卷情况,需从中抽取一个容量为500的样本,按分层抽样,120分以上抽取100人,90~120分抽取250人,则该次测验中90分以下的人数是()A.600 B.450 C.300 D.1506.若某四面体的三视图是全等的等腰直角三角形,且其直角边的长为6,则该四面体的体积是()A.108 B.72 C.36 D.97.,为单位向量,且|+2|=,则向量,夹角为()A.30° B.45° C.60° D.90°8.实数x、y满足,这Z=3x+4y,则Z的取值范围是()A .[1,25]B .[4,25]C .[1,4]D .[5,24]9.下列命题正确的是( )A .“b 2=ac”是“a,b ,c 成等比数列”的充要条件B .“∀x ∈R ,x 2>0”的否定是“∃x 0∈R ,x 02>0”C .“若a=﹣4,则函数f (x )=ax 2+4x ﹣1只有唯一一个零点”的逆命题为真命题D .“函数f (x )=lnx 2与函数g (x )=的图象相同”10.已知关于x 的方程x 2+(1+a )x+1+a+b=0(a ,b ∈R )的两根分别为x 1、x 2,且0<x 1<1<x 2,则的取值范围是( )A .B .C .D .二、填空题(共5小题,每小题5分,共25分)11.计算2lg2+lg25+()0=______.12.设a 、b 为实数,且a+b=1,则2a +2b 的最小值为______.13.在棱长为2的正方体A 1B 1C 1D 1﹣ABCD 中,则点B 到平面A 1B 1CD 的距离是______.14.设向量=(3cosx ,1),=(5sinx+1,cosx ),且∥,则cos2x=______.15.设数列{a n },{b n },{a n +b n }都是等比数列,且满足a 1=b 1=1,a 2=2,则数列{a n +b n }的前n 项和S n =______.三、解答题(共6个小题,共75分)16.信息时代,学生广泛使用手机,从某校学生中随机抽取200名,这200名学生中上课时间和不上时间(1)求上表中m 、n 的值;(2)求该校学生上课时间使用手机的概率.17.在三棱柱ABC ﹣A 1B 1C 1中,面BB 1C 1C 是边长为2的正方形,点A 1在平面BB 1C 1C 上的射影H 是BC 1的中点,且A 1H=,G 是CC 1的中点.(1)求证:BB 1⊥A 1G ;(2)求C 到平面A 1B 1C 1的距离.18.函数f (x )=x 3+ax 2+bx+c (a ,b ,c ∈R )的导函数的图象如图所示:(1)求a ,b 的值并写出f (x )的单调区间;(2)函数y=f (x )有三个零点,求c 的取值范围.19.在数列{a n }中,满足点P (a n ,a n+1)是函数f (x )=3x 图象上的点,且a 1=3.(1)求{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和S n .20.设函数f (x )=x 2+alnx+1(x >0).(1)若f (3)=5,求f ()的值;(2)若x >0时,f (x )≥1成立,求a 的取值范围.21.如图,有一段长为18米的屏风ABCD (其中AB=BC=CD=6米),靠墙l 围成一个四边形,设∠DAB=α.(1)当α=60°,且BC ⊥CD 时,求AD 的长;(2)当BC ∥l ,且AD >BC 时,求所围成的等腰梯形ABCD 面积的最大值.四川省泸州市2016-2017学年高三一诊试卷(文科数学)参考答案与试题解析一、选择题(每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x|x 2﹣x ≤0},B={0,1,2},则A∩B=( )A .∅B .{0}C .{0,1}D .{0,1,2}【考点】交集及其运算.【分析】先化简集合A ,再求A∩B.【解答】解:集合A={x|x 2﹣x ≤0}={x|x (x ﹣1)≤0}={x|0≤x ≤1}=[0,1]B={0,1,2},∴A∩B={0,1}.故选:C .2.复数z=(i 是虚数单位),则|z|=( )A .1B .C .D .2【考点】复数求模.【分析】分别求出分子、分母的模,即可得出结论.【解答】解:∵复数z=,∴|z|=||==, 故选:B .3.函数f (x )=sin (x+)图象的一条对称轴方程为( )A .x=﹣B .x=C .x=D .x=π 【考点】正弦函数的对称性.【分析】由条件利用余弦函数的图象的对称性,求得f (x )的图象的一条对称轴方程.【解答】解:对于函数f (x )=sin (x+),令x+=k π+,求得 x=k π+,k ∈Z ,可得它的图象的一条对称轴为 x=, 故选:B .4.某程序框图如图所示,若运行该程序后输出S=( )A.B.C.D.【考点】循环结构.【分析】模拟执行程序框图,依次写出每次循环得到的S,n的值,当n>5时退出循环,输出S的值.【解答】解:模拟执行程序框图,可得S=1,n=1不满足条件n>5,S=1+,n=2不满足条件n>5,S=1++,n=3不满足条件n>5,S=1+++,n=4不满足条件n>5,S=1++++,n=5不满足条件n>5,S=1+++++,n=6满足条件n>5,退出循环,输出S的值.由于S=1+++++=.故选:D.5.某校高三年级共1500人,在某次数学测验后分析学生试卷情况,需从中抽取一个容量为500的样本,按分层抽样,120分以上抽取100人,90~120分抽取250人,则该次测验中90分以下的人数是()A.600 B.450 C.300 D.150【考点】分层抽样方法.【分析】根据从中抽取一个容量为500的样本,按分层抽样,120分以上抽取100人,90~120分抽取250人,即可得出结论.【解答】解:∵从中抽取一个容量为500的样本,按分层抽样,120分以上抽取100人,90~120分抽取250人,∴该次测验中90分以下抽取的人数是500﹣100﹣250=150.∴该次测验中90分以下的人数是150.即抽样比k=,则该次测验中90分以下的人数是1500×=450.故选:B.6.若某四面体的三视图是全等的等腰直角三角形,且其直角边的长为6,则该四面体的体积是()A.108 B.72 C.36 D.9【考点】棱柱、棱锥、棱台的体积.【分析】四面体为边长为6的正方体沿着共点三面的对角线截出的三棱锥.【解答】解:四面体的底面为直角边为6的等腰直角三角形,高为6.∴四面体的体积V==36.故选C.7.,为单位向量,且|+2|=,则向量,夹角为()A.30° B.45° C.60° D.90°【考点】数量积表示两个向量的夹角.【分析】对|+2|=两边平方,计算出数量积,代入夹角公式计算.【解答】解:∵|+2|=,∴(+2)2=7,即+4+4=7,∵==1,∴=,∴cos<>==,∴向量,夹角为60°.故选:C.8.实数x、y满足,这Z=3x+4y,则Z的取值范围是()A.[1,25] B.[4,25] C.[1,4] D.[5,24]【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(3,﹣2),联立,解得B(3,4),化目标函数Z=3x+4y为y=.由图可知,当直线y=过A时,直线在y轴上的截距最小,Z有最小值为1;当直线y=过B时,直线在y轴上的截距最大,Z有最小值为25.故选:A.9.下列命题正确的是()A.“b2=ac”是“a,b,c成等比数列”的充要条件B.“∀x∈R,x2>0”的否定是“∃x0∈R,x2>0”C.“若a=﹣4,则函数f(x)=ax2+4x﹣1只有唯一一个零点”的逆命题为真命题D.“函数f(x)=lnx2与函数g(x)=的图象相同”【考点】命题的真假判断与应用.【分析】举例说明A错误;直接写出全称命题的否定判断B;举例说明C错误;写出分段函数说明D正确.【解答】解:A错误,如a=0,b=0,c=1满足b2=ac,但a,b,c不成等比数列;B错误,“∀x∈R,x2>0”的否定是“∃x0∈R,x2≤0”C错误,“若a=﹣4,则函数f(x)=ax2+4x﹣1只有唯一一个零点”的逆命题是:“若函数f(x)=ax2+4x ﹣1只有唯一一个零点,则a=﹣4”,为假命题,比如a=0,f(x)=0的根是;D 正确,函数f (x )=lnx 2是分段函数,分x >0和x <0分段可得函数g (x )=.故选:D .10.已知关于x 的方程x 2+(1+a )x+1+a+b=0(a ,b ∈R )的两根分别为x 1、x 2,且0<x 1<1<x 2,则的取值范围是( )A .B .C .D .【考点】简单线性规划的应用.【分析】由方程x 2+(1+a )x+1+a+b=0的两根满足0<x 1<1<x 2,结合对应二次函数性质得到,然后在平面直角坐标系中,做出满足条件的可行域,分析的几何意义,然后数形结合即可得到结论.【解答】解:由程x 2+(1+a )x+1+a+b=0的二次项系数为1>0故函数f (x )=x 2+(1+a )x+1+a+b 图象开口方向朝上又∵方程x 2+(1+a )x+1+a+b=0的两根满足0<x 1<1<x 2则即即其对应的平面区域如下图阴影示:∵=表示阴影区域上一点与原点边线的斜率由图可知∈故答案:二、填空题(共5小题,每小题5分,共25分)11.计算2lg2+lg25+()0= 3 .【考点】对数的运算性质.【分析】直接利用对数运算法则以及有理指数幂的运算法则化简求解即可.【解答】解:2lg2+lg25+()0=lg4+lg25+1=lg100+1=2+1=3.故答案为:3.12.设a 、b 为实数,且a+b=1,则2a +2b 的最小值为 2 .【考点】基本不等式.【分析】因为2a 与2b 均大于0,所以直接运用基本不等式求最小值.【解答】解:∵a+b=1,∴,当且仅当2a =2b ,即时“=”成立.所以2a +2b 的最小值为.故答案为.13.在棱长为2的正方体A 1B 1C 1D 1﹣ABCD 中,则点B 到平面A 1B 1CD 的距离是 .【考点】棱柱的结构特征.【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出点B 到平面A 1B 1CD 的距离.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则B (2,2,0),D (0,0,0),A 1(2,0,2),C (0,2,0),=(2,2,0),=(2,0,2),=(0,2,0),设平面A 1B 1CD 的法向量=(x ,y ,z ),则,取x=1,得,∴点B 到平面A 1B 1CD 的距离是:d===.∴点B 到平面A 1B 1CD 的距离是.故答案为:.14.设向量=(3cosx ,1),=(5sinx+1,cosx ),且∥,则cos2x= .【考点】二倍角的余弦;平面向量共线(平行)的坐标表示.【分析】由条件利用两个向量平行的条件求得sinx 的值,再利用二倍角的余弦公式求得cos2x 的值.【解答】解:∵向量=(3cosx ,1),=(5sinx+1,cosx ),且∥,∴3cos 2x ﹣5sinx ﹣1=0,即 3sin 2x+5sinx+2=0,求得sinx=﹣2(舍去),或 sinx=,则cos2x=1﹣2sin 2x=1﹣2×=,故答案为:.15.设数列{a n },{b n },{a n +b n }都是等比数列,且满足a 1=b 1=1,a 2=2,则数列{a n +b n }的前n 项和S n = 2n+1﹣2 .【考点】等比数列的性质.【分析】由题意,数列{a n +b n }的首项为2,公比为2,利用等比数列的求和公式,即可得出结论.【解答】解:由题意,数列{a n }a 1=1,a 2=2,公比为2,设数列{b n }的公比为q′,{a n +b n }的公比为q ,则2+q′=2q,4+q′2=2q 2,∴q 2﹣4q+4=0∴q=2,∴数列{a n +b n }的首项为2,公比为2,∴S n ==2n+1﹣2.故答案为:2n+1﹣2.三、解答题(共6个小题,共75分)16.信息时代,学生广泛使用手机,从某校学生中随机抽取200名,这200名学生中上课时间和不上时间(1)求上表中m 、n 的值;(2)求该校学生上课时间使用手机的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)根据表格的合计数据计算,(2)求出上课时间使用手机的学生人数,除以数据总数得出频率,利用频率代替概率.【解答】解:(1)m=98﹣23﹣55=20,n=m+17=37.(2)上课时间使用手机的人数为23+55=78.∴该校学生上课时间使用手机的概率P==0.39.17.在三棱柱ABC ﹣A 1B 1C 1中,面BB 1C 1C 是边长为2的正方形,点A 1在平面BB 1C 1C 上的射影H 是BC 1的中点,且A 1H=,G 是CC 1的中点.(1)求证:BB 1⊥A 1G ;(2)求C 到平面A 1B 1C 1的距离.【考点】直线与平面垂直的性质;点、线、面间的距离计算.【分析】(1)连接GH ,由已知得A 1H ⊥平面BB 1C 1C ,可得A 1H ⊥BB 1,由中位线和条件得BB 1⊥HG ,由线面垂直的判定定理可证结论成立;(2)取B 1C 1的中点E ,连接HE 、A 1E ,由题意和线面垂直的判定定理、定义得B 1C 1⊥A 1E ,求出△A 1B 1C 1的面积,由等体积法求出C 到平面A 1B 1C 1的距离.【解答】证明:(1)如图连接GH ,∵点A 1在平面BB 1C 1C 上的射影H ,∴A 1H ⊥平面BB 1C 1C ,∵BB 1BC ⊂平面BB 1C 1C ,∴A 1H ⊥BB 1,∵H 是BC 1的中点,G 是CC 1的中点,∴HG ∥BC ,由∠B 1BC =90°知,BB 1⊥B C ,∴BB 1⊥HG∵A 1H∩HG =H ,∴BB 1⊥平面A 1HG ,∴BB 1⊥A 1G ;解:(2)取B 1C 1的中点E ,连接HE 、A 1E ,由∠BB 1C 1=90°得,HE ⊥B 1C 1,∵A 1H ⊥平面BB 1C 1C ,∴A 1H ⊥B 1C 1,∵A 1H∩HE =H ,∴B 1C 1⊥平面A 1HE ,∴B 1C 1⊥A 1E ,∵H 是BC 1的中点,E 是B 1C 1的中点,∴HE ∥BB 1,且HE=1,在△A 1HE 中,A 1E==2,∴=•B 1C 1AB•A 1EBC==2,设C 到平面A 1B 1C 1的距离为h ,由=V A 得,×A 1E ×=×h ×,则2×2=h ×2,解得h=,∴C 到平面A 1B 1C 1的距离是.18.函数f (x )=x 3+ax 2+bx+c (a ,b ,c ∈R )的导函数的图象如图所示:(1)求a ,b 的值并写出f (x )的单调区间;(2)函数y=f (x )有三个零点,求c 的取值范围.【考点】利用导数研究函数的单调性.【分析】(1)求出原函数的图象可知,f'(x )=0的两个根为﹣1,2,根据根与系数的关系即可求出a ,b 的值,并由图象得到单调区间;(2)求出函数f (x )的极大值和极小值,由函数f (x )恰有三个零点,则函数的极大值大于0,且同时满足极小值小于0,联立可求c 的取值范围.【解答】解:(1)∵f (x )=x 3+ax 2+bx+c ,∴f′(x )=x 2+2ax+b ,∵f′(x )=0的两个根为﹣1,2,∴,解得a=﹣,b=﹣2,由导函数的图象可知,当﹣1<x <2时,f′(x )<0,函数单调递减,当x <﹣1或x >2时,f′(x )>0,函数单调递增,故函数f (x )在(﹣∞,﹣1)和(2,+∞)上单调递增,在(﹣1,2)上单调递减.(2)由(1)得f (x )=x 3﹣x 2﹣2x+c ,函数f (x )在(﹣∞,﹣1),(2,+∞)上是增函数,在(﹣1,2)上是减函数,∴函数f (x )的极大值为f (﹣1)=+c ,极小值为f (2)=c ﹣.而函数f (x )恰有三个零点,故必有,解得:﹣<c <.∴使函数f (x )恰有三个零点的实数c 的取值范围是(﹣,)19.在数列{a n }中,满足点P (a n ,a n+1)是函数f (x )=3x 图象上的点,且a 1=3.(1)求{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和S n .【考点】数列的求和;数列递推式.【分析】(1)通过将点P (a n ,a n+1)代入函数方程f (x )=3x 化简可知a n+1=3a n ,进而可知数列{a n }是首项为3、公比为3的等比数列,进而计算可得结论;(2)通过(1)可知b n =n3n ,进而利用错位相减法计算即得结论.【解答】解:(1)∵点P (a n ,a n+1)是函数f (x )=3x 图象上的点,∴a n+1=3a n ,又∵a 1=3,∴数列{a n }是首项为3、公比为3的等比数列,∴其通项公式a n =3n ;(2)由(1)可知b n =na n =n3n ,∴S n =1×3+2×32+…+n3n ,3S n =1×32+2×33+…+(n ﹣1)3n +n ×3n+1,错位相减得:﹣2S n =3+32+…+3n ﹣n ×3n+1=3×﹣n ×3n+1=×3n+1﹣,∴S n =×3n+1+.20.设函数f (x )=x 2+alnx+1(x >0).(1)若f (3)=5,求f ()的值;(2)若x >0时,f (x )≥1成立,求a 的取值范围.【考点】函数的值;函数恒成立问题.【分析】(1)由f (3)=5得出aln3=﹣5,再求出f ()的值.(2)alnx≥﹣x2.然后讨论lnx的符号分离参数,转化为求﹣得最大值或最小值问题.【解答】解:(1)∵f(3)=10+aln3=5,∴aln3=﹣5.∴f()=+aln=﹣aln3==.(2)∵x2+alnx+1≥1,∴alnx≥﹣x2.①若lnx=0,即x=1时,显然上式恒成立.②若lnx>0,即x>1时,a≥﹣.令g(x)=﹣.则g′(x)=,∴当1<x时,g′(x)>0,当x时,g′(x)<0,∴当x=时,g(x)取得最大值g()=﹣2e.∴a≥﹣2e.③若lnx<0,即0<x<1时,a≤﹣,由②讨论可知g(x)在(0,1)上是增函数,且g(x)>0,∴a≤0.综上,a的取值范围是[﹣2e,0].21.如图,有一段长为18米的屏风ABCD(其中AB=BC=CD=6米),靠墙l围成一个四边形,设∠DAB=α.(1)当α=60°,且BC⊥CD时,求AD的长;(2)当BC∥l,且AD>BC时,求所围成的等腰梯形ABCD面积的最大值.【考点】基本不等式在最值问题中的应用.【分析】(1)连接BD,作BO⊥AD,垂足为O,利用三角函数,结合勾股定理,求AD的长;(2)由题意,梯形的高为6sinα,AD=6+12cosα,所围成的等腰梯形ABCD面积S==36sinα(1+cosα),利用导数确定单调性,即可求出所围成的等腰梯形ABCD 面积的最大值.【解答】解:(1)连接BD,作BO⊥AD,垂足为O,则AO=3,BO=3,BD=6,∴OD==3,∴AD=AO+OD=3+3;(2)由题意,梯形的高为6sinα,AD=6+12cosα,∴所围成的等腰梯形ABCD面积S==36sinα(1+cosα),S′=36(2cosα﹣1)(cosα+1),∴0<α<,S′>0,,<α<π,S′<0,∴α=,S取得最大值27.。
四川省泸州市高三上学期教学质量诊断性考试数学(理)---精校解析.doc

泸州市高高三第一次教学质量诊断性考试数学(理科)第I卷(选择题共60分)一、选择题:本大题共有12个小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合要求的.1.已知集合A={(x,y)|y = -x + 2}, B = {(x,y)|y = 2X},则A Cl B元素的个数为()A.0B. 1C. 2D. 3【答案】B【解析】【分析】(y =・ x + 2AAB={ (x, y) |i Y=2X },由此能求出集合AAB的元素个数.【详解】•・•集合A ={(x,y)|y=・x+2}, B = {(x,y)|y = 2X},iy = -x + 2・・・AQB={ (x, y) |l y = 2X } = { (1, 1) }.・・・集合AAB的元素个数是1个.故选:B.【点睛】本题考查两个集合的交集中元索个数的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.2.命题“WMR, e x>x+l (e是自然对数的底数)”的否定是()A.不存在xWR,使e x>x+ 1B. y xGR,使e x<x+ 1C. bxGR,使etx+lD. mxGR,使e x<x + 1【答案】D【解析】【分析】根据全称命题的否定为特称命题写出结果即可.【详解】命题““WxWR, e">x+l”的否定是3X GR,使e x<x+l,故选:D.【点睛】本题考查的知识点是全称命题,命题的否定,难度不大,属于基础题.tanx3.已知函数21-tan x,则函数f(x)的最小正周期为7C冗Tt冗A. 6B. 3C. 2D. 4【答案】C【解析】【分析】利用同角三角函数之间的关系,结合二倍角的正弦公式与二倍角的余弦公式,将f(x)化为1—tan。
v2,从而可得结果.sinxtanx cosx sinxcosx1 -tan2x•乍? ・乍siiTx cos~x ・ sin x1 -------cos"x【详解】1~sin2x2 cos2x1= -tan2x2 ,兀・・・f(x)的最小正周期为2,故选c.【点睛】本题主要考查二倍角的正弦公式、二倍角的余弦公式的应用,以及正切函数的周期性,属于屮档题.三角函数式的化简,应熟悉公式的逆用和变形应用,公式的正用是常见的,但逆用和变形应用则往往容易被忽视,公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.1 11亍】3 3a = (-)b = (-)**c = ln(-)4.设2 , 3 , 兀,则下列关系正确的是()A. a> b >cB. b >a >c c. a> c> b D. c > b>a【答案】A【解析】【分析】利用指对函数、幕函数的单调性求解.=lx I【详解】利用旷口)与yf2的单调性可知:c = l又 • a> b>c 故选:A【点睛】本题考查三个数的大小的求法,是基础题,解题时耍认真审题,注意幕函数、对数 函数和指数函数的性质的合理运用.5. 函数f (x ) = xcosx-sinx 的图象大致为【解析】【详解】分析:用排除法,根据奇偶性可排除选项BC ;由彳自一・ 而可得结果.详解: 因为K - x) = - xcosx + sinx = - (xcosx - sinx) = - f(x)9所以函数f (x ) = XCOSX - Sinx 是奇函数,函数图象关于原点对称,可排除选项BC, 由伊亠°,可排除选项A,故选D.点睛:函数图彖的辨识可从以下方面入手:(1)从函数的定义域,判断图彖的左右位置;从函 数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的 奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象. 6. 若In 是两条不同的直线,m 垂直于平面ct,则“1丄m”是的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不D.1 <0,可排除选项A,从= b>0nl =0 【答案】D必要条件【答案】B【解析】若1丄叫因为m垂直于平面a,则l//ct或luct;若l//a,又m垂直于平面(X,贝|J1丄m,所以“1丄m” 是“l〃a 的必要不充分条件,故选B.考点:空间直线和平血、直线和直线的位置关系.视频口7.正数d b, c满足3a = 4b = 6c,则下列关系正确的是()1 1 1 —| __2 2 1 __ sx _ | __1 2 2 __ sx _ | _ 2 1 2 __ sx _ |_A. c 3 bB. c 3 bC. c 3 bD. c a b【答案】B【解析】因为d,b,c>0,且3a = 4b = 6C = k a = log3k,b = log4k,c = lo&k2 2 1••. — = — + —cab,则可知选B71乙ABC = _&在梯形ABCD中,2, AD II BC, BC = 2AD = 2AB = 2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲而所禺成的几何体的表而积为()A. (5 + Q)兀B. (4 + 血)兀c. (5 + 2血加D. G + 為兀【答案】A【解析】【分析】将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体是:一个底面半径为AB=1,高为BC 二2的圆柱减去一个底面半径为AB二1,高为BC・AD二2・1二1的圆锥,由此能求出该儿何体的表而积.【详解】•・•在梯形ABCD 中,ZABC=2,AD〃BC, BC=2AD=2AB=2,・・・将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是: 一个底面半径为AB=1,高为BC 二2的圆柱减去一个底面半径为AB=1, 高为BC - AD=2 - 1=1的圆锥,・・・儿何体的表面积为:S= H X r+2 H X 1 X2+兀'1 :< JF+ 1,=(5+血)兀.故选:A. 【点睛】本题考查旋转体的表面积的求法,考查圆柱、圆锥性质等基础知识,考查运算求解 能力、考查空I'可想象能力,是基础题.【答案】A【解析】【分析】【详解】由最大值为2的,得A = 2启,T 4 7T2 兀得到的函数图彖关于直线 6 6对称,贝阻的最小值为A. 8B. 6C. 4D. 3 由图象求得函数的的解析式 经过周期变换与相位变换可得2可得结果.由2 3 3 ,得 «的横坐标缩短为原来的4,纵坐标不变,再将所得图象上所有点向右平移e (e>0)个单位长度,4x ・ 40 Q 3/,由 6 3—=-7C - ~ = 7C T = 2?C =——,0) = 1兀=0,・肓+…71 兀 v |©| < ― (0 =-— 2屮3f(x) = 2^/3sin(x1将函数y = f(x)的图彖上所有点的横坐标缩短为原来的4,纵坐标不变, 再将所得图象上所有点向右平移e (e > °)个单位长度,2丽sin (4x - 49 - -j5 5 兀 兀 x = - 4 x -ye ■一 = kz + - •••g (x)图象关于 6对称,6 3 2 5兀 40 = -k7c + —— 2 ■兀k = 2时,°最小为故选A. 【点睛】本题考查了三角函数的图彖与性质,重点考查学生对三角函数图彖变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学牛对所学 知识理解的深度. 10.《周髀算经》中给出了弦图,所谓弦图是由四个全等的直角三角形和中间一个小正方形拼 成一个大的正方形,若图中直角三角形两锐角分别为%卩,且小正方形与大正方形面积之比为 9:25,则cos(a-p)的值为() A. 9 B. 9 c. 16 D. 25【答案】D【解析】【分析】3设大的正方形的边长为1,由已知可求小正方形的边长,可求cos a ・sina=5, sinB -3cos 3 =5,且cos a 二sin 0, sina=C osP ,进而利用两角差的余弦函数公式,同角三角函数基 本关系式即可计算得解.7T1 g(x) = 2p5sin 4(x ・ 0) ■- 得到 丫 [3【详解】设大的正方形的边长为1,由于小正方形与大正方形面积之比为9: 25,3可得:小正方形的边长为5,3 3可得:cos a ・ sin a 二5,①s j n p ・ cos 0 二5,②由图可得:cos a =sin0, sin a 二cos B,9① X ②可得:25 二cos a sin 3 +sin a cos B - cos a cos B - sina sinP=sin'P +cos2 B - cos ( a-S ) =1 - cos ( a - B ),16解得:cos ( a - B ) =25.故选:D.【点睛】本题主要考查了两角差的余弦函数公式,同角三角函数基本关系式的综合应用,考查了数形结合思想和转化思想,属于中档题.11•某几何体的三视图如图所示,则该几何体的体积是()循a16 + 24 兀16 + 16兀8 + 8兀16 + 8兀A. 3B. 3C. 3D. 3【答案】D【解析】1由三视图可知该几何体为一个四棱锥和一个4球体的组合体,其中四棱锥的是以侧视图为底血,1 16 1 14 ,8-X4x2x2 =——・- -X -7T X (2) = -7U其体积为3 3而4球体的体积为4 3 3 .16 + 8 兀故组合体的体积为3故选D12.已知函数f(x) = e x_1-alnx + (a-l)x + a(a>0)的值域与函数f(f(x))的值域相同,则啲取值范围【答案】C【解析】【分析】求出f (x)的单调区间和值域,从而得出f (x)的最大值与单调区间端点的关系,从而得出a的范围.【详解】f (x)的定义域为(0, +8).f(x)=e x_1 -- + a- 1x,在(0, +8)递增.而f' (1) =e° - a+a - 1=0,则f (x)在(0, 1)上单减,在(1, +8)上单增,f (1) =2a.・・.f (x)的值域为[2a, +8).1V —要使y=f[f (x)]与y=f (x)的值域相同,只需2aWl,又a>0,解得02.故选:C.【点睛】木题考查了利用导数研究函数的单调性极值与最值、等价转化方法、方程与不等式的解法,考査了推理能力与计算能力,属于难题.第II卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分•把答案填在答题纸上)log^x-2) > 013•使不等式2 成立的x的取值范围是________ .【答案】23)【解析】【分析】利用对数函数的单调性即可得到结杲.log1(x-2)>0 = log1l【详解】•・• 2 2;.0<x-2<l,即2<x<3故答案为:Q,3)【点睛】本题考查了对数不等式的解法,解题关键利用好对数函数的单调性,勿忘真数的限制.14.在△ ABC屮,角A, B, C所对的边分别为%b, c,若asinA = csmC + (a-b)sinB,则角C的大小为_______ .7U【答案】3【解析】【分析】7 2 2由asinA = csinC + (a ・b)sinB,利用正弦定理可得才+ b-c = ab,再根据余弦定理可得结果.[详解]•••跆匚皿=csinC + (a - b)sinB,a c ba x — = c x — + (a-b) x —•••由正弦定理可得2a 2R 2R,化为a2 + b2-c2 = ab,a2 + b2-c2 1cosC = ----------- =-2ab 2,71 71c =——3,故答案为3.【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子屮含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子屮含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.f(x) = f27U7°15.已知函数______________________________________ 1 -很x>0 ,则f(x+l)-9<0的解集为.【答案】[-4, + s)【解析】【分析】I X<-1 i X>-1原不等式等价于|2_(x + 1)-8<0或(-小?匚1-9三° ,分别求解不等式组,再求并集即可.f(x)fl,x 宇【详解】•••I・&,x>0 ,(X<-1•••当x+l<o时,(2_(x + 1)-8<0 ,解得-4SX—1;( x> -1当x+l> 0时,(-&T1-9S0 ,解得X>—1,综上,x>-4,即f(x+l)-9<0的解集为+ 00),故答案为[-4, + oo).【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定耍层次清塑,思路清晰.16.长方体ABCD-A1B1C1D1中,AB=AA1=2AD, E是DR的中点,坯=C】K =,设过点已、F、K的平面与平面AC的交线为1,则直线1与直线A】Di所成角的正切值为__________ .【答案】4【解析】【分析】延长KE, KF找到交线为MN,又CN平行于A i D i,故MN与CN所成角为所求.DE 2【详解】延长KE, CD交于M点,又CK 3MD_2・・・疋亍BF _ 1同样延长KF, CB交于N点,又CK 3NB _ 1•NC 3••即为过点E、F、K的平面与平面AC的交线为1,又CN平行于"Di即MN与CN所成角为所求,记所成角为&MC 3CDtan0 = ----- = ------ = 4NC 3—BC则 2故答案为:4【点睛】本题主要考查异面直线所成的角问题,难度一般.求异面直线所成角的步骤:1平移,将两条异而直线平移成相交直线.2定角,根据异面直线所成角的定义找出所成角.3求角,在三角形中用余弦定理或正弦定理或三角函数求角.4结论.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.1 COS A L=—17.在A ABC 中,角A, B, C 所对的边分别是a, b, c,已知a = 6,* 8.(1)若b = 5,求smC 的值;150⑵AABC 的面积为〒,求b + c 的值.—【答案】(1) 4; (2) b + c=9【解析】 【分析】13^7 5^7 cosA = 一sinA = ---- sinB = ---------------------------- (1) rh 6可得8 ,由正弦定理可得 16, s 哎(2)由zc °,可得be = 20,再利用余弦定理,配方后化 简可得b + c = 9.b . 5帀 sinB = -sinA = -----由正弦定理 a 16,71 0<B <A<-因为所以2,所以=sinAcosB + cosAsinB =— sinC = sin(A + B) 41 1 3^7 15^7S AARP = —besinA = —be x -- = ------ (2) 2 2 8 4, Abe = 20, .7 7 1999 = b + c - 2 x 20 x - = 36犷=・ 2bccosA 8 ,,\b 2+ c 2 = 41, (b + c)2 = b 2 + c 2 + 2bc =41+40 = 81, • b + c =9• •【点睛】本题主要考查正弦定理、余弦定理在解三角形屮的应用,属于屮档题.正弦定理是解1cosA = 一由 6 9 cosB =—求得 16,利用诱导公式及两角和的正眩公式可得结果; 【详解】(1) 7C0 VA V —则 2sxnA 卫89 cosB =—16,三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.18.已知函数f(x) = ax-2sinx + xcosx.(1)求曲线y = f(x)在x =兀处的切线在y轴上的截距;兀[0厂](2)若函数Kx)在区间2上是增函数,求实数a的取值范围.71[一,+ 00)【答案】(1) 一2叫(2) 2【解析】【分析】(1)因为f(x) = a - cosx . xsinx^f(7U)= a + 1,又f@) =耐兀求出切线方程即可得到结果;(2)因为兀兀[0-] [0-]f(x)在区间2上是增函数,所以f(x)20在区间2上恒成立.通过分离变量,构造函数,把问题转化为函数的最值问题.【详解】(]) 因为f (x) = a ・ 2cosx + cosx - xsinx = 3 ・ cosx - xsinx, 当x =冗时,f(7t) = a?c ■兀,f(兀)=a+ 1, 所以曲线y = f(x)在x =兀处的切线方程为:y - (a7t - 7c) = (a + l)(x -兀),所以曲线y = f(x)在x=兀处的切线在y轴上的截距为・2疋7C[0厂] (2)因为f(x)在区间2上是增函数,71[0-]所以Hx)nO在区间2上恒成立,贝爬・cosx ・ xsinx > 0, 即a n cosx + xsinx,令g(x) = cosx + xsinx贝ijg r(x) = - sinx + sinx + xcosx = xcosx > 0,7C[0-]所以g(x)在区间2上单调递增,兀71 所严"护,71[-+ °°)故实数&的取值范围是2 .【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量, 构造函数,直接把问题转化为函数的最值问题.兀兀19.如图,在平面直角坐标系xOy中,点八区⑷严為血都在单位圆O上,厶xOA = a,且3‘2 .7C 兀Xi = cosa = cos[(a +-)--] “y° = sin(a+-)66 ,结合两角差的余弦公式可得结果;(2)由题知勺-cosa, - 37C乙AOB = — 1 9(2)若 3,求y=x : + y3的取值范围._ 1 1【答案】(1)勺7; (2)(4,0【解析】 【分析】(1)由三角函数的定义可得X 1=cosa. 兀 13兀sin(a + —)=——cos(a + —)=6 14,可得 6丿利用710 C 0 兀 y = x ; + = cos^a + sin^(a + -) 则’ ■ 3 ,利用降幕公式以及辅助角公式化简为2帀 in(2a + -)+l3,利用三角函数的有界性可得结果.【详解】(1)由三角函数的定义有X 1=cosa兀 sin(a + -) 因为 6丿13~R 7171a G (--)3 2 ,7C7C5兀 兀一va+一v —— cos(a + -)所以26 6,6冗 7CX] = cosa =cos[(a+ -) - -1 所以6 67U 71 兀 71 =cos(a + -)cos - + sin(a + -)sin-6 6 6 6 3$ $ 13 1■ -- • -- + --- •— 14 2 14 2 17. ♦7C(2)由题知『沁,y2 = Sm(a+?3$7C1 ・ cos2(a + -)1+ cos2a 3----------- +------------------- 2 2 3 书. & . 7C=1 + -cos2a + ―in2a =——sin(2a + -) + 144 237所以y 的収值范围是【点睛】以平面图形为载体,三角恒等变换为手段,对三角函数及解三角形进行考查是近几 年高考考查的一类热点问题,i 般难度不大,但综合性较强.解答这类问题,两角和与差的正 余弦公式、诱导公式以及二倍角公式,一定要熟练学握并灵活应用,特别是二倍角公式的各 种变化形式要熟记于心.兀 乙 BCD= _20.如图,在四棱锥P-ABCD 中,平面PBC 丄平面ABCD,底面ABCD 是平行四边形,且 4,(2)若底面ABCD 是菱形,PA 与平面ABCD 所成角为6,求平面PAD 与平面PBC 所成锐二面角 的余弦值.【答案】(1)证明见解析;(2) 2. 【解析】 【分析】(1)过P 作PE 丄BC,垂足为E,连接DE,只需证明DE = EC 即可;⑵厶DPE 是平面PAD 与平 面PBC所成锐二面角的平而角,在三角形屮求解即可.y=x ; + y ; r . r 兀 =cos^a + sirT(a + -)3 HitaG (?2}兀 4兀 2七珂兀,亍),sin(2a+-)G(-^,0)PD 丄 BC【详解】(1)过P作PE丄BC,垂足为E,连接DE, 因为平而PBC丄平而ABCD,所以PE丄平而ABCD, 因为PD1BC,所以BC丄平面PDE,所以DE1BC,71乙BCD =-因为%所以DE = EC,因为APED三APEC,所以PD = PC.解法一:(2)因为BC II AD, BCC平面ADP, AD u 平面ADP, 所以BCII平面ADP,设平面PBCA平面PAD =直线1,所以1IIBC,因为BC丄平而PDE,所以1丄PE, 1丄PD,所以乙DPE是平面PAD与平面PBC所成锐二面角的平面角,因为PE丄平面ABCD,兀乙P AE = _故乙PAE是直线PA与平面ABCD所成角,即6,设PE = a,则AE = ^a, PA = 2a,设DE = m,则EC = m, DC=Qm,所以(^a)2 = m2 +(72m)2,所以兀^2乙DPE = - cos 乙DPE =—故4,所以2,即平面PAD与平面PBC所成锐二面角的余弦值为2 .解法二:(2)因为BC丄平面PDE, PE丄平面ABCD,7C乙P AE =-故乙PAE是直线PA与平面ABCD所成角,即6,且DE 丄BC, DE 丄PE,设PE = a,则AE = j3m, PA = 2a t在ADEC 中,设DE = m,则EC = m, DC = Qm, 在AEDA 中,所以(伍)2 = iJ +(Qm )2,所以m =a>以E 为坐标原点,分别以ED 、DB 、EP 所在直线为x 、y 、z 轴建立空间直角坐标系, 则 13(X0,0), A(a,血0), P(0,0,a),则平面PBC 的法向量a = (1,0,0), 设平面PAD 的法向量b =(x,y,z), 因为心=AD = (0, - V2m,0),设平血PBD 与平血PAC 的夹角为平面PAD 与平面PBC 所成锐二面角的余弦值为2 .计算。
(正)泸州市高2017级高三第一次教学质量诊断性考试

泸州市高2017级高三第一次教学质量诊断性考试文科综合试题注意事项:1.本试卷分选择题和非选择题两部分。
答题前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
2。
回答选择题时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3。
回答非选择题时,将答案写在答题卡上,写在试卷上无效.4.考试结束后,将答题卡交回,试卷自己保存.一、选择题:本题共35小题,每小题4分,共140分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
“雪龙2号”是我国自行设计、自主建造的全球第一艘采用船首、船尾双向破冰技术的极地科考破冰船,具有极强的破冰性能和灵活性,能够满足无限航区要求、具备全球航行能力,甚至可以在极区大洋安全航行。
北京时间2019年10月15日,“雪龙2号”从深圳启航,与“雪龙号”首次双船出海,执行中国第36次南极科考任务,预计2020年4月中旬返回。
阅读材料回答1~3题。
1.我国“雪龙号”在南极科考遇到的自然困难主要是①冰山浮冰②淡水匮乏③猛兽伤害④恶劣天气A.①②B。
①④ C。
②③ D.③④2。
我国第36次南极科考明显不同于以往科考的是①缩短了科考航行时间②提高了科考的舒适度③延长了科考时间④拓展了科考区域A.①②B.①④C.②③D。
③④3。
10月24日16时51分科考船穿越赤道,这一天,科考队员观察到的现象可信是A。
日出东北,日落西南 B。
赤道正午太阳高度达一年最大C。
乌云密布,狂风暴雨D。
昼夜由昼短夜长变为昼长夜短图1为受西风季节性影响下的某水库各月水量盈余率统计图。
据此4~6题.图14.推断该水库水位A 。
3月最高 B。
6月最低C。
9月和3月一样高 D。
10月最高5。
该水库补给河流最明显的季节为A.冬季 B。
春季 C。
夏季 D。
秋季6.该水库所在地区地带性植被具有的典型特点是A。
喜冷喜湿 B。
四川省泸州市高考数学一诊试卷(理科)解析版

高考数学一诊试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.已知集合A={0,1,2,3},集合B={x||x|≤2},则A∩B=()A. {03}B. {0,1,2}C. {1,2}D. {0,1,2,3}2.下列函数f(x)中,满足“对任意x1,x2∈(0,+∞),且x1<x2都有f(x1)>f(x2)”的是()A. f(x)=B. f(x)=2-xC. f(x)=ln xD. f(x)=x33.“sinα=0”是“sin2α=0”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知函数y=f(x)+x是偶函数,且f(2)=1,则f(-2)=()A. 2B. 3C. 4D. 55.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是()A. 异面B. 相交C. 平行D. 不能确定6.如图所示的图象对应的函数解析式可能是()A. y=(x2-2x)e xB. y=C. y=D. y=2x-x2-17.己知p:∀α∈(0,),sinα<α,q:∃x0∈N,x02-2x0-1=0,则下列选项中是假命题的为()A. p∨qB. p∧(¬q)C. p∧qD. p∨(¬q)8.我国古代数学名著《九章算术》中,割圆术有,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”其体现的是一种无限与有限的转化过程,如在中,“…”即代表无限次重复,但原式却是个定值x,这可以通过方程=x确定x的值,类似地的值为()A. 3B.C. 6D. 29.己知函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,下列关于f(x)的描述中,正确的是()A. tanB. 最小正周期为2πC. 对任意x∈R都有D. 函数f(x)的图象向右平移个单位长度后图象关于坐标原点对称10.将甲桶中的aL水缓慢注入空桶乙中,t min后甲桶中剩余的水量符合指数衰减曲线y=ae nt.假设过5 min后甲桶和乙桶的水量相等,若再过m min甲桶中的水只有L,则m的值为( )A. 5B. 8C. 9D. 1011.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,且ABCD为矩形,∠DPA=,AD=2,AB=2,则四棱锥P-ABCD的外接球的体积为()A. πB. πC. πD. 16π12.已知函数f(x)=log3x的图象与函数g(x)的图象关于直线y=x对称,函数h(x)是最小正周期为2的偶函数,且当x∈[0,1]时,h(x)=g(x)-1,若函数y=k•f(x)+h(x)有3个零点,则实数k的取值范围是()A. (1,2log73)B. (-2,-2log53)C. (-2log53,-1)D. (-log73,-)二、填空题(本大题共4小题,共20.0分)13.函数f(x)=的定义域为______.14.设函数f(x)=,那么f(18)的值______.15.当x=x0时,函数f(x)=cos2x+2sin(+x)有最小值,则sin x0的值为______16.己知正方体有8个不同顶点,现任意选择其中4个不同顶点,然后将它们两两相连,可组成平面图形或空间几何体.在组成的空间几何体中,可以是下列空间几何体中的______.(写出所有正确结论的编号)①每个面都是直角三角形的四面体;②每个面都是等边三角形的四面体;③每个面都是全等的直角三角形的四面体:④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.三、解答题(本大题共7小题,共82.0分)17.已知函数f(x)=x3-x2+ax(其中a为常数).(Ⅰ)若x=-1是f(x)的极值点,求函数f(x)的减区间;(Ⅱ)若f(x)在(-2,+∞)上是增函数,求a的取值范围.18.在△ABC中,内角A,B,C的对边分别为a,b,c,己知b sin C=c sin.(Ⅰ)求B;(Ⅱ)已知c=2,AC边上的高BD=,求a的值.19.如图,己知BD为圆锥AO底面的直径,若AB=BD=4,C是圆锥底面所在平面内一点,CD=,且AC与圆锥底面所成角的正弦值为(Ⅰ)求证:平面AOC⊥平面ACD;(Ⅱ)求二面角B-AD-C的平面角的余弦值.20.己知函数f(x)=2cos x(sin x+cos x)(x∈R).(Ⅰ)求函数f(x)的最小值及取最小值时x取值的集合;(Ⅱ)若将函数f(x)的图象上所有点的横坐标扩大为原来的4倍,纵坐标不变,得到函数g(x)的图象,且g(α)=,α∈(,),求g(α-)的值.21.己知函数f(x)=ln x,g(x)=(其中a是常数),(Ⅰ)求过点P(0,-1)与曲线f(x)相切的直线方程;(Ⅱ)是否存在k≠1的实数,使得只有唯一的正数a,当x>0时,不等式f(x+)g(x)≤k(x+)恒成立,若这样的实数k存在,试求k,a的值;若不存在,请说明理由.22.如图,在极坐标系Ox中,过极点的直线l与以点A(2,0)为圆心、半径为2的圆的一个交点为B(2,),曲线M1是劣弧,曲线M2是优弧.(Ⅰ)求曲线M1的极坐标方程;(Ⅱ)设点P(ρ1,θ)为曲线M1上任意一点,点Q(ρ2,θ-)在曲线M2上,若|OP|+|OQ|=6,求θ的值.23.设f(x)=|x-3|+|x-4|.(Ⅰ)解不等式f(x)≤2;(Ⅱ)已知x,y实数满足2x2+3y2=a(a>0),且x+y的最大值为1,求a的值.答案和解析1.【答案】B【解析】解:A={0,1,2,3},B={x|-2≤x≤2},∴A∩B={0,1,2}.故选:B.可以求出集合B,然后进行交集的运算即可.本题考查了描述法、列举法的定义,绝对值不等式的解法,考查了计算能力,属于基础题.2.【答案】B【解析】解:“对任意x1,x2∈(0,+∞),且x1<x2都有f(x1)>f(x2)”,∴函数f(x)在(0,+∞)上单调递减,结合选项可知,f(x)=在(0,+∞)单调递增,不符合题意,f(x)=2-x=在(0,+∞)单调递减,符合题意,f(x)=ln x在(0,+∞)单调递增,不符合题意,f(x)=x3在(0,+∞)单调递增,不符合题意,故选:B.对任意x1,x2∈(0,+∞),且x1<x2都有f(x1)>f(x2)”,可知函数f(x)在(0,+∞)上单调递减,结合选项即可判断.本题主要考查了基本初等函数的单调性的判断,属于基础试题.3.【答案】A【解析】解:sin2α=0,则A={α|α=,k∈Z},sinα=0,则B={α|α=kπ=•2kπ,k∈Z},B是A的真子集,所以前者是后者的充分不必要条件,故选:A.解出关于α的集合,结合充分必要条件的定义,从而求出答案.本题考查了充分必要条件,基础题.4.【答案】D【解析】【分析】本题考查了函数的奇偶性的应用,属于基础题.由函数y=f(x)+x是偶函数,得f(-2)-2=f(2)+2,得f(-2)=f(2)+2+2=5.【解答】解:∵函数y=f(x)+x是偶函数,∴f(-2)-2=f(2)+2,∴f(-2)=f(2)+2+2=5.故选:D.5.【答案】C【解析】解:设α∩β=l,a∥α,a∥β,过直线a作与α、β都相交的平面γ,记α∩γ=b,β∩γ=c,则a∥b且a∥c,∴b∥c.又b⊂α,α∩β=l,∴b∥l.∴a∥l.故选:C.由题意设α∩β=l,a∥α,a∥β,然后过直线a作与α、β都相交的平面γ,利用平面与平面平行的性质进行求解.此题考查平面与平面平行的性质及其应用,解题的关键的画出图形,此题是道基础题.6.【答案】A【解析】解:由图知定义域为R,故B,C错,由特殊值f(-1)>0,但D选项中f(-1)=-<0,故D错;故选:A.由函数定义域,特殊点的值可以排除法做.本题考查由图象找解析式,属于基础题.7.【答案】C【解析】解:命题p:由三角函数的定义,角α终边与单位圆交于点P,过P作PM⊥x轴,垂足是M,单位圆交x轴于点A,则sinα=MP,弧长PA即为角α;显然MP<弧长PA;∴p:∀α∈(0,),sinα<α是真命题;命题q:解方程x02-2x0-1=0,则x=1±,因此q:∃x0∈N,x02-2x0-1=0,是假命题.则下列选项中是假命题的为p∧q.而A,B,D都是真命题.故选:C.命题p:由三角函数定义,即可判断出真假;命题q:由求根公式,即可判断出真假.根据复合命题真值表判断结果即可.本题考查了三角函数的定义,方程的求根公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.8.【答案】A【解析】解:由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的式子.令=m(m>0),则两边平方得,则=m2,即3+2m=m2,解得,m=3,m=-1舍去.故选:A.通过已知得到求值方法:先换元,再列方程,解方程,求解(舍去负根),再运用该方法,注意两边平方,得到方程,解出方程舍去负的即可.本题考查类比推理的思想方法,考查从方法上类比,是一道中档题.9.【答案】D【解析】解:有图知:A=1,=-∴T=π,而T=,∴ω=2,x=时,f()=0又是递减,∴2•+φ=π+kπ,k∈Z,而0<φ<π,∴φ=,所以f(x)=sin(2x+).tanφ=tan=,所以A不正确,最小正周期T=,所以B不正确,f(-x)=sin[2(-x)+]=sin(π-2x)=-sin2x≠f(x),所以C不正确;函数f(x)的图象向右平移个单位长度后得sin[2(x-)+]=sin2x,关于原点对称,所以④正确.故选:D.由三角函数图象得,A,ω,φ的值,得到f(x)的解析式,进而在判断每个命题的真假.考查三角函数的图象得函数解析式,及三角函数的性质,属于简单题.10.【答案】A【解析】解:∵5min后甲桶和乙桶的水量相等,∴函数y=f(t)=ae nt,满足f(5)=ae5n=a可得n=ln,因此,当k min后甲桶中的水只有升,即f(k)=a,即ln•k=ln,即为ln•k=2ln,解之得k=10,经过了k-5=5分钟,即m=5.故选:A.由题意,函数y=f(t)=ae nt满足f(5)=a,解出n=ln.再根据f(k)=a,建立关于k的指数方程,由对数恒成立化简整理,即可解出k的值,由m=k-5即可得到.本题给出实际应用问题,求经过几分钟后桶内的水量剩余四分之一.着重考查了指数函数的性质、指数恒等式化简,指数方程和对数的运算性质等知识,属于中档题.11.【答案】B【解析】解:因为△APD是直角三角形,∠DPA=90°,所以△APD外接圆的圆心在AD中点处,设为O',又因为平面PAD⊥平面ABCD,所以矩形ABCD经过球心O,所以对角线AC即为球的直径,设球的半径为R,则AC=2R=,所以R=2,所以球的体积为.故选:B.根据其中一个侧面为直角三角形确定外接圆圆心的位置,再根据面面垂直确定球心的问题,即可求解.本题考查球的体积,考查棱锥外接球时球心的找法,属于中档题.12.【答案】B【解析】解:由函数f(x)=log3x的图象与函数g(x)的图象关于直线y=x对称,得g (x)=3x,函数h(x)是最小正周期为2的偶函数,当x∈[0,1]时,h(x)=g(x)-1=3x-1,函数y=k•f(x)+h(x)有3个零点,即k log3x=-h(x)有3个不同根,画出函数y=k log3x与y=-h(x)的图象如图:要使函数y=k log3x与y=-h(x)的图象有3个交点,则k<0,且,即-2<k<-2log53.∴实数k的取值范围是(-2,-2log53).故选:B.把函数y=k•f(x)+h(x)有3个零点,转化为k log3x=-h(x)有3个不同根,画出函数y=k log3x与y=-h(x)的图象,转化为关于k的不等式组求解.本题考查函数零点与方程根的关系,考查数形结合的解题思想方法与数学转化思想方法,是中档题.13.【答案】(0,4]【解析】解:由2-log2x≥0,得log2x≤2,解得0<x≤4.∴函数f(x)=的定义域为(0,4].故答案为:(0,4].由根式内部的代数式大于等于0,然后求解对数不等式得答案.本题考查函数的定义域及其求法,考查了对数不等式的解法,是基础题.14.【答案】9【解析】解:∵函数f(x)=,∴f(18)=f(3×5+3)=f(3)=32=9.故答案为:9.推导出f(18)=f(3×5+3)=f(3),由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.15.【答案】±【解析】解:函数f(x)=cos2x+2sin(+x)=cos2x+2cos x=2cos2x+2cos x-1,根据二次函数的性质可知,当cos x°=时,函数取得最小值,则sin x0=故答案为:.利用诱导公式对已知函数进行化简,然后结合二次函数的性质即可求解.本题主要考查了同角基本关系及二次函数的想性质的简单应用,属于基础试题.16.【答案】①②④【解析】解:①每个面都是直角三角形的四面体;如:E-ABC,所以①正确;②每个面都是等边三角形的四面体;如E-BGD,所以②正确;③每个面都是全等的直角三角形的四面体:这是不可能的,③错误;④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.如:A-BDE,所以④正确;故答案为:①②④.画出正方体的图形,在几何体中找出满足结论的图形即可.本题考查命题的真假的判断,空间几何体的与三棱锥的关系,是基本知识的考查,易错题.17.【答案】解:(I)∵f(x)=x3-x2+ax,∴f′(x)=x2-2x+a,∵x=-1是f(x)的极值点,∴f′(-1)=3+a=0,∴a=-3,f′(x)=x2-2x-3,当x<-1或x>3时,f′(x)>0,当-1<x<3时,f′(x)<0,即a=-3时符合题意,即f(x)的单调单调递减区间(-1,3),(II)f(x)在(-2,+∞)上是增函数,∴f′(x)=x2-2x+a≥0在(-2,+∞)上恒成立,∴a≥-x2+2x在(-2,+∞)上恒成立,令g(x)=2x-x2,则g(x)在(-2,1)上单调递增,在(1,+∞)上单调递减,故g(x)max=g(1)=1,∴a≥1,即a的范围为[1,+∞).【解析】(I)先对函数求导,然后结合已知可知f′(-1)=0,代入即可求解,(II)由题意可得,f′(x)=x2-2x+a≥0在(-2,+∞)恒成立,分离得a≥-x2+2x在(-2,+∞)上恒成立,结合恒成立与最值的相互转化及二次函数的单调性即可求解.本题考查函数的导数应用,函数的单调性以及转化思想的应用,考查计算能力.18.【答案】解:(Ⅰ)在△ABC中,内角A,B,C的对边分别为a,b,c,己知b sin C=c sin.所以b sin C=c sin(),即b sin C=c cos,由正弦定理得:sin B sin C=sin C cos.所以sin B=cos,即,由于B为三角形的内角,所以,所以,由于0<B<π,所以B=.(Ⅱ)由于,代入c=2,,所以sin B=,解得b=.由余弦定理得b2=a2+c2-2ac cos B,代入b=,得到a2-9a+18=0,解得a=3或6.【解析】(Ⅰ)直接利用三角函数关系式的恒等变换和正弦定理的应用求出结果.(Ⅱ)利用(Ⅰ)的结论和余弦定理及三角形的面积的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.【答案】解:(Ⅰ)证明:由AB=BD=4及圆锥的性质,所以△ABD为等边三角形,AO⊥圆O所在平面,所以AO=2,∠ACO是AC与底面所成的角,又AC与底面所成的角的正弦值为,在Rt△AOC中,AC==,OC==,由CD=,OD=2,在△OCD中,OC2+CD2=OD2,所以CD⊥OC,圆锥的性质可知:AO⊥圆O所在平面,因为CD⊂圆O所在平面,所以AO⊥CD,又AO,OC⊂平面AOC,所以CD⊥平面AOC,又DC⊂平面ACD,故平面AOC⊥平面ACD(Ⅱ)过点O作OF⊥AD交于F,过F作FH⊥AD交DC于H,连接HO,所以∠OFH为二面角B-AD-C的平面角,在Rt△OFD中,因为AD=4,∠FOD=,所以FD=1,OF=,因为Rt△HFD∽Rt△ACD,所以,即HF=,则HD=2故C是HD的中点,所以OH=2,在△OFH中,OH2=OF2+FH2-2OF•FH cos∠OFH,即4=()2+()2-cos∠OFH,所以cos∠OFH=.【解析】(Ⅰ)求出OC=,由CD=,OD=2,在△OCD中,OC2+CD2=OD2,进而求解;(Ⅱ)过点O作OF⊥AD交于F,过F作FH⊥AD交DC于H,连接HO,所以∠OFH为二面角B-AD-C的平面角,在△OFH中,OH2=OF2+FH2-2OF•FH cos∠OFH,即4=()2+()2-cos∠OFH,进而求解;考查圆锥体的理解,勾股定理的逆定理的应用,线线垂直证明面面垂直的应用,二面角余弦值的求解,余弦定理的应用,属于中档题;20.【答案】解:(Ⅰ)∵函数f(x)=2cos x(sin x+cos x)=2sin x cosx+2cos2x=sin2x+cos2x+1=sin(2x+)+1;当2x+=-+2kπ,即x=kπ-(k∈Z)时;sin(2x+)取得最小值-1;所以函数f(x)的最小值是1-.此时x取值的集合:{x|x=kπ-(k∈Z)};(Ⅱ)函数f(x)的图象上所有点的横坐标扩大为原来的4倍,纵坐标不变,得到函数g(x)的图象;所以g(x)的最小正周期为4π;∴g(x)=sin(x+)+1,故g(α)=sin(α+)+1=⇒sin(α+)=;∵α∈(,),∴α+∈(,π),∴cos(α+)=-=-;∴g(α-)=sinα+1=sin[(α+)-]-1=[sin(α+)cos-cos(α+)sin]+1=[×-(-)×]+1=.【解析】(Ⅰ)由题意利用三角恒等变换化简函数f(x)得解析式,再根据正弦函数的最值求得函数f(x)的最小值及取最小值时x取值的集合.(Ⅱ)由题意利用函数y=A sin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用两角和的正弦公式求得g(α-)的值.本题主要考查三角恒等变换,正弦函数的最值,函数y=A sin(ωx+φ)的图象变换规律,两角和的正弦公式,属于中档题.21.【答案】解:(Ⅰ)设过点P(0,-1)的直线与曲线f(x)相切于点(x0,ln x0),因为f(x)=ln x,则f′(x)=,所以在(x0,ln x0)处的切线方程为y-ln x0=(x-x0),将p(0,-1)代入切线方程得ln x0=0,所以x0=1,所以切线方程为y=x-1.(Ⅱ)假设存在实数k≠1,使得只有唯一的正数a,当x>0时,不等式f(x+)g(x)≤k(x+)恒成立,即(a+)ln(x+))≤k(x+)恒成立,取x=1,可知k>0,因为x>0,a>0,所以,令m(x)=(x>0),则m′(x)=由m′(x0)=0,得x0=(1°)当0<k<a2时,x∈(0,x0)时,m′(x0)<0,则m(x)在(,x0)上为减函数,x∈(x0,+∞)时,m′(x0)>0,则m(x)在(x0,+∞)上为增函数,则m(x)min=m(x0)=1--ln≥0,即,令h(a)=(a),则h′(a)=,由h′(a0)=0,得a0=(a),a∈(,a0)时,h′(a)<0,则h(a)在区间(,a0)上为减函数,a∈(a0,+∞)时,h′(a)>0,则h(a)在区间(a0,+∞)上为增函数,因此存在唯一的正数a>,使得h(a)≤1,故只能h(a)min=1,所以h(a)min=h(a0)=,所以k=,此时a只有唯一值.(2°)当k≥a2时,m′(x0)>0,所以m(x)在(0,+∞)上为增函数,所以=ln a≥0,则a≥1,故k>1,所以满足1≤a≤的a不唯一,综上,存在实数k=,a只有唯一值,当x>0时,恒有原式成立.【解析】(Ⅰ)设过点P(0,-1)的直线与曲线f(x)相切于点(x0,ln x0),利用导数的几何意义写出切线的斜率,得到切线的方程,再把点P坐标代入即可求出x0,进而得到切线方程.(Ⅱ)假设存在实数k≠1,使得只有唯一的正数a,当x>0时,不等式f(x+)g(x)≤k(x+)恒成立,即(a+)ln(x+))≤k(x+)恒成立,取x=1,可知k>0,接着在k>0的基础上因为x>0,a>0,所以,令m(x)=(x >0),则m′(x)=由m′(x0)=0,得x0=,分两种情况(1°)当0<k<a2时,(2°)当k≥a2时,去分析m(x)最小值,即可求出a,k的值.本题属于导数的综合应用,属于难题.22.【答案】解:(Ⅰ)过极点的直线l与以点A(2,0)为圆心、半径为2的圆上任意一点(ρ,θ),整理得ρ=4cosθ.由于的圆的一个交点为B(2,),曲线M1是劣弧,所以M1的方程为.(Ⅱ)点P(ρ1,θ)为曲线M1上任意一点,所以,点Q(ρ2,θ-)在曲线M2上,所以().整理得.由于|OP|+|OQ|=6,所以ρ1+ρ2=6,整理得=6,即:,由于且,所以.解得.【解析】(Ⅰ)利用参数方程极坐标方程和直角坐标方程之间的转换,求出结果.(Ⅱ)利用极径和三角函数关系式的变换的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.【答案】解:(Ⅰ)由函数f(x)=|x-3|+|x-4|,当x<3时,不等式f(x)≤2化为-x+3-x+4≤2,解得2.5≤x<3;当3≤x≤4时,不等式f(x)≤2化为x-3-x+4≤2,即1≤2恒成立,此时3≤x≤4;当x>4时,不等式f(x)≤2化为x-3+x-4≤2,解得4<x≤4.5;综上知,不等式f(x)≤2的解集为{x|2.4≤x≤4.5};(Ⅱ)由柯西不等式得[+][+]≥(x+y)2,又2x2+3y2=a(a>0),所以(x+y)2≤a,当且仅当2x=3y时取等号;又因为x+y的最大值为1,所以a=1,解得a的值为.【解析】(Ⅰ)讨论x的取值范围,去掉绝对值求出不等式f(x)≤2的解集;(Ⅱ)结合题意,利用柯西不等式求得(x+y)2的最大值,列方程求出a的值.本题考查了含有绝对值的不等式解法与应用问题,也考查了柯西不等式的应用问题,是中档题.。
四川省泸州市高三上学期第一次教学质量诊断性考试数学(理)试题附答案

泸州市高2016级第一次教学质量诊断性考试数学(理科)第Ⅰ卷(选择题共60分)―、选择题:本大题共有12个小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合要求的.1.已知集合{(,)|2}A x y y x ==-+,{(,)|2}xB x y y ==,则AB 元素的个数为A. 0B. 1C. 2D. 32.命题“x R ∀∈,1xe x >+(e 是自然对数的底数)”的否定是 A.不存在x R ∈,使1xe x >+ B.x R ∀∈,使1xe x <+ C.x R ∀∈,使1xe x ≤+ D.x R ∃∈,使1xe x ≤+3.已知函数2tan ()1tan xf x x=-,则函数()f x 的最小正周期为A.6π B.3π C.2π D.4π 4.设131()2a =,121()3b =,3ln()c π=,则下列关系正确的是A. a b c >>B. b a c >>C. a c b >>D. c b a >>5.函数()cos sin f x x x x =-的图象大致为A. B. C. D.6.若l ,m 是两条不同的直线,m ⊥平面α,则“l m ⊥”是“l α∥”的 A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.正数a ,b ,c 满足346abc==,则下列关系正确的是 A.111c a b=+ B.221c a b=+ C.122c a b=+ D.212c a b=+ 8.在梯形ABCD 中,2ABC π∠=,AD BC ∥,222BC AD AB ===.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的表面积为A.(5πB.(4πC.(5π+D.(3π9.已知函数()sin()(0,||)2f x A x A πωϕϕ=+><的部分图象如图所示,将函数()y f x =的图象上所有点的横坐标缩短为原来的14,纵坐标不变,再将所得图象上所有点向右平移(0)θθ>个单位长度,得到的函数图象关于直线56x π=对称,则θ的最小值为A.8π B.6π C.4π D.3π 10.《周髀算经》中给出了弦图,所谓弦图是由四个全等的直角三角形和中间一个小正方形拼成一个大的正方形,若图中直角三角形两锐角分别为α,β,且小正方形与大正方形面积之比为9:25,则co s ()αβ-的值为A.59B.49C.916D.162511.某几何体的三视图如图所示,则该几何体的体积是A.16243π+ B.8163π+ C.1683π+ D.843π+ 12.已知函数1()ln (1)(0)x f x e a x a x a a -=-+-+>的值域与函数(())f f x 的值域相同,则a 的取值范围为 A.(0,1]B.[1,)+∞C.1(0,]2D.1[,)2+∞第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题纸上)13.使不等式12log (2)0x ->成立的x 的取值范围是______.14.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin sin ()sin a A c C a b B =+-,则角C 的大小为______.15.已知函数21,0()0x x f x x -⎧+≤⎪=⎨>⎪⎩,则(1)90f x +-≤的解集为______.16.长方体1111ABCD A BC D -中,12AB AA AD ==,E 是1DD 的中点,114BF C K AB ==,设过点E 、F 、K 的平面与平面AC 的交线为l ,则直线l 与直线11A D 所成角的正切值为______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17〜21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,已知6a =,1cos 8A =. (1)若5b =,求sin C 的值;(2)ABC ∆的面积为4,求b c +的值. 18.已知函数()2sin cos f x ax x x x =-+.(1)求曲线()y f x =在x π=处的切线在y 轴上的截距; (2)若函数()f x 在区间[0,]2π上是增函数,求实数a 的取值范围.19.如图,在平面直角坐标系xOy 中,点11(,)A x y 、22(,)B x y 都在单位圆O 上,xOA α∠=,且(,)32ππα∈.(1)若13sin()614πα+=,求1x 的值; (2)若3AOB π∠=,求2212y x y =+的取值范围.20.如图,在四棱锥P ABCD -中,平面PBC ⊥平面ABCD ,底面ABCD 是平行四边形,且4BCD π∠=,PD BC ⊥.(1)求证:PC PD =;(2)若底面ABCD 是菱形,PA 与平面ABCD 所成角为6π,求平面PAD 与平面PBC 所成锐二面角的余弦值.21.已知函数1()()ln ()2f x x a x x a R =-+∈. (1)若'()f x 是()f x 的导函数,讨论()'()ln g x f x x a x =--的单调性;(2)若1(2a e∈(e 是自然对数的底数),求证:()0f x >. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin2cos (0)a a ρθθ=>,过点(2,4)P --的直线l 的参数方程为2545x ty t=-+⎧⎨=-+⎩(t 为参数),直线l 与曲线C 相交于A ,B 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)若2||||||PA PB AB =,求a 的值. 23.选修4-5:不等式选讲已知定义在R 上的函数()||||f x x m x =-+,*m N ∈,若存在实数x 使()2f x <成立. (1)求实数m 的值;(2)若1a >,1b >,()()4f a f b +=,求证:413a b+>. 试卷答案一、选择题1-5:BDCAD6-10:BBAAD11、12:CC二、填空题13. (2,3)14.3π 15.[4,)-+∞16.4三、解答题17.解:(1)由1cos 8A =,则02A π<<,且 sin A =由正弦定理sin sin 16b B A a ==, 因为b a <,所以02B A π<<<,所以9cos 16B =,sin sin()C A B =+sin cos cos sin 4A B A B =+=(2)11sin 22ABC S bc A bc ∆===,∴20bc =, 2222cos a b c bc A =+-221220368b c =+-⨯⨯=,∴2241b c +=,222()2b c b c bc +=++414081=+=,∴9b c +=.18.解:(1)因为'()2cos cos sin f x a x x x x =-+-cos sin a x x x =--,当x π=时,()f a πππ=-,'()1f a π=+, 所以曲线()y f x =在x π=处的切线方程为:()(1)()y a a x πππ--=+-,令0x =得:2y π=-,所以曲线()y f x =在x π=处的切线在y 轴上的截距为2π-; (2)因为()f x 在区间[0,]2π上是增函数,所以'()0f x ≥在区间[0,]2π上恒成立,则cos sin 0a x x x --≥,即 cos sin a x x x ≥+, 令()cos sin g x x x x =+,则'()sin sin cos g x x x x x =-++cos 0x x =≥, 所以()g x 在区间[0,]2π上单调递增,所以max ()()22g x g ππ==,故实数a 的取值范围是[,)2π+∞.19.解:(1)由三角函数的定义有1cos x α=, 因为13sin()614πα+=,(,)32ππα∈,所以5266πππα<+<,cos()614πα+=-, 所以1cos cos[()]66x ππαα==+-cos()cos sin()sin 6666ππππαα=+++131142=+⋅ 17=; (2)由题知1cos x α=,2sin()3y πα=+222212cos sin ()3y x y a πα=+=++1cos 2()1cos 2322παα-++=+,31cos 2244αα=++sin(2)123πα=++,(,)32ππα∈,42(,)33ππαπ+∈,sin(2)(3πα+∈1)1(,1)34πα++∈.所以y 的取值范围是1(,1)4.20.证明:(1)过P 作PE BC ⊥,垂足为E ,连接DE , 因为平面PBC ⊥平面ABCD ,所以PE ⊥平面ABCD , 因为PD BC ⊥,所以BC ⊥平面PDE ,所以DE BC ⊥, 因为4BCD π∠=,所以DE EC =,因为PED PEC ∆∆≌,所以PD PC =;解法一:(2)因为BC AD ∥,BC ⊄平面ADP ,AD ⊂平面ADP ,所以BC ∥平面ADP ,设平面PBC ⋂平面PAD =直线l ,所以l BC ∥, 因为BC ⊥平面PDE ,所以l PE ⊥,l PD ⊥,所以DPE ∠是平面PAD 与平面PBC 所成锐二面角的平面角, 因为PE ⊥平面ABCD ,故PAE ∠是直线PA 与平面ABCD 所成角,即6PAE π∠=,设PE a =,则AE =,2PA a =,设DE m =,则EC m =,DC ,所以222))m =+,所以m a =,故4DPE π∠=,所以cos 2DPE ∠=,即平面PAD 与平面PBC . 解法二:(2)因为BC ⊥平面PDE ,PE ⊥平面ABCD , 故PAE ∠是直线PA 与平面ABCD 所成角,即6PAE π∠=,且DE BC ⊥,DE PE ⊥,设PE a =,则AE =,2PA a =,在DEC ∆中,设DE m =,则EC m =,DC =,在EDA ∆中,所以222))m =+,所以m a =,以E 为坐标原点,分别以ED 、DB 、EP 所在直线为x 、y 、z 轴建立空间直角坐标系,则(,0,0)D a ,(,0)A a ,(0,0,)P a , 则平面PBC 的法向量(1,0,0)a →=, 设平面PAD 的法向量(,,)b x y z →=,因为(,,)AP m m =-,(0,,0)AD =,所以0mx mz ⎧=⎪⎨-+=⎪⎩,故(1,0,1)b →=,设平面PBD 与平面PAC 的夹角为θ,则cos 2||||b ab a θ→→→→⋅===, 平面PAD 与平面PBC所成锐二面角的余弦值为2.21.解:(1)因为3'()ln 2a f x x x =-+,所以3()(1)ln 2a g x a x x x =---+, 21'()1a a g x x x -=+-(1)()(0)x x a x x-+=->, (ⅰ)当0a -≤即0a ≥时,所以0x a +>,且方程'()0g x =在(0,)+∞上有一根, 故()g x 在(0,1)上为增函数,(1,)+∞上为减函数, (ⅱ)当0a ->即0a <时,所以方程'()0g x =在(0,)+∞上有两个不同根或两相等根,(ⅰ)当1a =-时2(1)'()0x f x x-=≤,()f x 在(0,)+∞上是减函数; (ⅱ)当1a <-时,由'()0f x >得1x a <<-,所以()f x 在(1,)a -上是增函数;在(0,1),(,)a -+∞上是减函数;(ⅲ)当10a -<<时,由'()0f x >得1a x -<<,所以()f x 在(,1)a -是增函数;在(0,)a -,(1,)+∞上是减函数;(2)因为3'()ln 2a f x x x =-+,令3()ln 2a h x x x =-+,则21'()a h x x x =+,因为1(,2a e ∈,所以21'()0a h x x x=+>, 即()h x 在(0,)+∞是增函数,下面证明()h x 在区间(,2)2aa 上有唯一零点0x , 因为1()ln 222aa h =-,(2)ln 21h a a =+,又因为1(,2a e ∈,所以1()022a h <-=,1(2)ln(2)102h a e >⋅+=, 由零点存在定理可知,()h x 在区间(,2)2aa 上有唯一零点0x ,在区间0(0,)x 上,()'()0h x f x =<,'()f x 是减函数,在区间0(,)x +∞上,()'()0h x f x =>,'()f x 是增函数,故当0x x =时,()f x 取得最小值00001()()ln 2f x x a x x =-+, 因为0003()ln 02a h x x x =-+=,所以003ln 2a x x =-, 所以000031()()()22a f x x a x x =--+0001()(2)2a x a x x =--, 因为0(,2)2ax a ∈,所以()0f x >,所以1(,2a e∈,()0f x >. 22.解:(1)由2sin 2cos (0)a a ρθθ=>得22sin 2cos (0)a a ρθρθ=>,所以曲线C 的直角坐标方程22y ax =,因为2545x t y t =-+⎧⎨=-+⎩,所以214x y +=+, 直线l 的普通方程为2y x =-;(2)直线l的参数方程为2242x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数), 代入22y ax =得:2)3280t a t a -+++=,设A ,B 对应的参数分别为1t ,2t ,则12)t t a +=+,12328t t a =+,10t >,20t >由参数1t ,2t 的几何意义得1||||t PA =,2||||t PB =,12||||t t AB -=, 由2||||||PA PB AB =得21212||t t t t -=,所以21212||5t t t t +=,所以2))5(328)a a +=+,即2340a a +-=,故1a =,或4a =-(舍去),所以1a =.23.解(1)因为()||||||||f x x m x x m x m =-+≥--=,因存在实数x 使()2f x <成立,所以||2m <,解之得22m -<<,因为*m N ∈,所以1m =;(2)因1a >,1b >,所以()()2121f a f b a b +=-+-222a b =+-, 因为()()4f a f b +=,所以2224a b +-=,所以3a b +=, 因为41141()()3a b a b a b +=++14(5)3b a a b=++1(53≥+, 3≥,又1a >,1b >,所以413a b +>.。
四川省泸州市2017年高考数学一诊试卷(理科)Word版含解析
四川省泸州市2017年高考一诊试卷(理科数学)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={x|x≤9,x∈N+},集合A={1,2,3},B={3,4,5,6},则∁U(A∪B)=()A.{3} B.{7,8} C.{7,8,9} D.{1,2,3,4,5,6}2.已知i是虚数单位,若z(1+i)=1+3i,则z=()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.若,则=()A. B. C.D.4.已知命题p,q是简单命题,则“p∨q是真命题”是“¬p是假命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分有不必要条件5.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD,若点P为CD的中点,且,则λ+μ=()A.3 B.C.2 D.16.如图,是某算法的程序框图,当输出T>29时,正整数n的最小值是()A.2 B.3 C.4 D.57.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,则组成的五位数是偶数的概率是()A.B.C.D.8.已知数列{an }满足an=若对于任意的n∈N*都有an>an+1,则实数a的取值范围是()A.(0,)B.(,)C.(,1)D.(,1)9.已知不等式sin cos+cos2﹣﹣m≥0对于x∈[﹣,]恒成立,则实数m的取值范围是()A.(﹣∞,﹣] B.(﹣∞,﹣] C.[,] D.[,+∞)10.如图,在三棱锥A﹣BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD=,则直线AD与平面BCD所成角的大小是()A.B.C.D.11.椭圆的一个焦点为F,该椭圆上有一点A,满足△OAF是等边三角形(O为坐标原点),则椭圆的离心率是()A.B.C.D.12.已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则实数t的取值范围是()A.(0,2] B.[,+∞)C.[,2] D.[,2]∪[4,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.二项式的展开式中常数项为.14.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.15.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球面的表面积为.16.若直线与圆x2+y2﹣2x﹣4y+a=0和函数的图象相切于同一点,则a的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.(Ⅰ)求角C的大小;(Ⅱ)求sinAcosB的取值范围.18.张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如表:年龄(岁)78910111213身高(cm)121128135141148154160(Ⅰ)求身高y关于年龄x的线性回归方程;(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=, =﹣.19.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+ax(a∈R),且曲线f(x)在x=处的切线与直线y=﹣x﹣1平行.(Ⅰ)求a的值及函数f(x)的解析式;(Ⅱ)若函数y=f(x)﹣m在区间[﹣3,]上有三个零点,求实数m的取值范围.20.设各项均为正数的数列{an }的前n项和为Sn,且满足2=an+1(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn =(an+1)•2,求数列{bn}的前n项和Tn.21.已知函数f(x)=ae x﹣x(a∈R),其中e为自然对数的底数,e=2.71828…(Ⅰ)判断函数f(x)的单调性,并说明理由(Ⅱ)若x∈[1,2],不等式f(x)≥e﹣x恒成立,求a的取值范围.请考生在第22、23题中任选一题作答,如果多做则按所做第一题计分,作答时用2B铅笔在答题卡上把所选题目题号涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线C1:(a为参数)经过伸缩变换后的曲线为C2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+b2|﹣|﹣x+1|,g(x)=|x+a2+c2|+|x﹣2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.(Ⅰ)当b=1时,求不等式f(x)≥1的解集;(Ⅱ)当x∈R时,求证f(x)≤g(x).四川省泸州市2017年高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(A∪B)=()1.已知全集U={x|x≤9,x∈N+},集合A={1,2,3},B={3,4,5,6},则∁UA.{3} B.{7,8} C.{7,8,9} D.{1,2,3,4,5,6}【考点】交、并、补集的混合运算.【分析】化简全集U,根据并集与补集的定义,写出运算结果即可.【解答】解:全集U={x|x≤9,x∈N+}={1,2,3,4,5,6,7,8,9},集合A={1,2,3},B={3,4,5,6},A∪B={1,2,3,4,5,6};(A∪B)={7,8,9}.∴∁U故选:C.2.已知i是虚数单位,若z(1+i)=1+3i,则z=()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:由z(1+i)=1+3i,得,故选:A.3.若,则=()A. B. C.D.【考点】运用诱导公式化简求值.【分析】利用同角三角函数的基本关系求得cosα的值,再利用两角和的正弦公式求得要求式子的值.【解答】解:若,则cosα==,则=sinαcos+cosαsin=+=,故选:B.4.已知命题p,q是简单命题,则“p∨q是真命题”是“¬p是假命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分有不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由“¬p是假命题”可得:p是真命题,可得“p∨q是真命题”.反之不成立.【解答】解:由“¬p是假命题”可得:p是真命题,可得“p∨q是真命题”.反之不成立,例如p是假命题,q是真命题.∴“p∨q是真命题”是“¬p是假命题”的必要不充分条件.故选:B.5.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD,若点P为CD的中点,且,则λ+μ=()A.3 B.C.2 D.1【考点】平面向量的基本定理及其意义.【分析】建立如图所示的直角坐标系,设正方形的边长为1,可以得到的坐标表示,进而得到答案.【解答】解:由题意,设正方形的边长为1,建立坐标系如图,则B(1,0),E(﹣1,1),∴=(1,0),=(﹣1,1),∵=(λ﹣μ,μ),又∵P是BC的中点时,∴=(1,),∴,∴λ=,μ=,∴λ+μ=2,故选:C6.如图,是某算法的程序框图,当输出T>29时,正整数n的最小值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据框图的流程模拟程序运行的结果,直到输出T的值大于29,确定最小的n值.【解答】解:由程序框图知:第一次循环k=1,T=2第二次循环k=2,T=6;第三次循环k=3,T=14;第四次循环k=4,T=30;由题意,此时,不满足条件4<n,跳出循环的T值为30,可得:3<n≤4.故正整数n的最小值是4.故选:C.7.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,则组成的五位数是偶数的概率是()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n=,再求出组成的五位数是偶数包含的基本事件个数m=,由此能求出组成的五位数是偶数的概率.【解答】解:从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,基本事件总数n=,组成的五位数是偶数包含的基本事件个数m=,∴组成的五位数是偶数的概率是p===.故选:D.8.已知数列{an }满足an=若对于任意的n∈N*都有an>an+1,则实数a的取值范围是()A.(0,)B.(,)C.(,1)D.(,1)【考点】数列递推式.【分析】,若对于任意的n∈N*都有an >an+1,可得<0,a5>a6,0<a<1.解出即可得出.【解答】解:∵满足an =,若对于任意的n∈N*都有an>an+1,∴<0,a5>a6,0<a<1.∴a<0, +1>a,0<a<1,解得.故选:B.9.已知不等式sin cos+cos2﹣﹣m≥0对于x∈[﹣,]恒成立,则实数m的取值范围是()A.(﹣∞,﹣] B.(﹣∞,﹣] C.[,] D.[,+∞)【考点】三角函数中的恒等变换应用.【分析】不等式sin cos+cos2﹣﹣m≥0对于x∈[﹣,]恒成立,等价于不等式(sin cos+cos2﹣)min≥m对于x∈[﹣,]恒成立,令f(x)=sin cos+cos2﹣,求x∈[﹣,]的最小值即可.【解答】解:由题意,令f(x)=sin cos+cos2﹣,化简可得:f(x)=+(cos)==sin()∵x∈[﹣,]∴∈[,]当=时,函数f(x)取得最小值为.∴实数m的取值范围是(﹣∞,].故选B.10.如图,在三棱锥A﹣BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD=,则直线AD与平面BCD所成角的大小是()A.B.C.D.【考点】直线与平面所成的角.【分析】如图所示,过点A在平面ABC内作AO⊥BC,垂足为点O,连接OD.根据三角形ABC 和三角形DBC所在平面互相垂直,可得AO⊥平面BCD,AO⊥OD.因此∠ADO是直线AD与平面BCD所成的角.通过证明△OBA≌△OBD,即可得出.【解答】解:如图所示,过点A在平面ABC内作AO⊥BC,垂足为点O,连接OD.∵三角形ABC和三角形DBC所在平面互相垂直,∴AO⊥平面BCD,∴AO⊥OD.∴∠ADO是直线AD与平面BCD所成的角.∵AB=BD,∠CBA=∠CBD=,∴∠ABO=∠DBO,又OB公用,∴△OBA≌△OBD,∴∠BOD=∠AOB=.OA=OD.∴∠.故选:B.11.椭圆的一个焦点为F,该椭圆上有一点A,满足△OAF是等边三角形(O为坐标原点),则椭圆的离心率是()A.B.C.D.【考点】椭圆的简单性质.【分析】根据题意,作出椭圆的图象,分析可得A的坐标,将A的坐标代入椭圆方程可得+=1,①;结合椭圆的几何性质a2=b2+c2,②;联立两个式子,解可得c=(﹣1)a,由离心率公式计算可得答案.【解答】解:根据题意,如图,设F(0,c),又由△OAF是等边三角形,则A(,),A在椭圆上,则有+=1,①;a2=b2+c2,②;联立①②,解可得c=(﹣1)a,则其离心率e==﹣1;故选:A.12.已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则实数t的取值范围是()A.(0,2] B.[,+∞)C.[,2] D.[,2]∪[4,+∞)【考点】分段函数的应用.【分析】若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,则(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,进而得到答案.【解答】解:∵函数y=f(x)与y=F(x)的图象关于y轴对称,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,∴函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,∵y=2x﹣t和函数y=2﹣x﹣t的单调性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.二项式的展开式中常数项为24 .【考点】二项式系数的性质.【分析】根据二项式展开式的通项公式,令x的指数为0求出r的值,从而求出展开式中常数项.【解答】解:二项式展开式的通项公式为:T=••x r=24﹣r••x2r﹣4,r+1令2r﹣4=0,解得r=2,∴展开式中常数项为T=22•=24.3故答案为:24.14.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是 B .【考点】进行简单的合情推理.【分析】根据学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,故假设A,B,C,D分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断.【解答】解:若A为一等奖,则甲,丙,丁的说法均错误,故不满足题意,若B为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意,若C为一等奖,则甲,丙,丁的说法均正确,故不满足题意,若D为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B故答案为:B15.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球面的表面积为48π.【考点】球内接多面体;简单空间图形的三视图.【分析】判断几何体的特征,正方体中的三棱锥,利用正方体的体对角线得出外接球的半径求解即可.【解答】解:三棱锥补成正方体,棱长为4,三棱锥与正方体的外接球是同一球,半径为R==2,∴该球的表面积为4π×12=48π,故答案为:48π.16.若直线与圆x2+y2﹣2x﹣4y+a=0和函数的图象相切于同一点,则a的值为 3 .【考点】直线与圆的位置关系.【分析】设切点为(t,),求出切线方程,利用直线与圆x2+y2﹣2x﹣4y+a=0和函数y=的图象相切于同一点,建立方程,求出t,即可得出结论.【解答】解:设切点为(t,),y′=,x=t时,y′=t,∴切线方程为y﹣=(x﹣t),即y=tx﹣,∵一直线与圆x2+y2﹣2x﹣4y+a=0和函数y=的图象相切于同一点,∴=,∴t=2,∴切点为(2,1),代入圆x2+y2﹣2x﹣4y+a=0,可得a=3,故答案为3.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.(Ⅰ)求角C的大小;(Ⅱ)求sinAcosB的取值范围.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由正弦定理、两角和的正弦公式、诱导公式化简已知的式子,由内角的范围和特殊角的三角函数值求出角C的大小;(Ⅱ)由(I)和内角和定理表示出B,并求出A的范围,代入sinAcosB后,由两角差的余弦公式、正弦公式化简后,由A的范围和正弦函数的性质求出答案.【解答】解:(Ⅰ)由题意知,(2a+b)cosC+ccosB=0,∴由正弦定理得,(2sinA+sinB)cosC+sinCcosB=0,则2sinAcosC+sinBcosC+sinCcosB=0,即sin(B+C)=﹣2sinAcosC,∵△ABC中,sin(B+C)=sin(π﹣A)=sinA>0,∴1=﹣2cosC,得cosC=,又0<C<π,∴C=;(Ⅱ)由(I)得C=,则A+B=π﹣C=,即B=﹣A,所以,∴sinAcosB=sinAcos(﹣A)=sinA(cos cosA+sin sinA)=sinA(cosA+sinA)=sin2A+=()=∵,∴,则,即,∴sinAcosB的取值范围是.18.张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如表:年龄(岁)78910111213身高(cm)121128135141148154160(Ⅰ)求身高y关于年龄x的线性回归方程;(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=, =﹣.【考点】线性回归方程.【分析】(Ⅰ)首先根据表格与公式求得相关数据,然后代入线性回归方程求得,由此求得线性回归方程;(Ⅱ)将先15代入(Ⅰ)中的回归方程即可求得张三同学15岁时的身高.【解答】解:(Ⅰ)由题意得=(7+8+9+10+11+12+13)=10,==141,(=9+4+1+0+1+4+9=28,(xi ﹣)(yi﹣)=(﹣3)×(﹣20)+(﹣2)×(﹣13)+(﹣1)×(﹣6)+0×0+1×7+2×13+3×19=182,所以==, =﹣=141﹣×10=76,所求回归方程为=x+76.(Ⅱ)由(Ⅰ)知, =>0,故张三同学7岁至13岁的身高每年都在增高,平均每年增高6.5cm.将x=15代入(Ⅰ)中的回归方程,得=×15+76=173.5,故预测张三同学15岁的身高为173.5cm.19.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+ax(a∈R),且曲线f(x)在x=处的切线与直线y=﹣x﹣1平行.(Ⅰ)求a的值及函数f(x)的解析式;(Ⅱ)若函数y=f(x)﹣m在区间[﹣3,]上有三个零点,求实数m的取值范围.【考点】利用导数研究曲线上某点切线方程;导数的运算.【分析】(Ⅰ)首先求得导函数,然后利用导数的几何意义结合两直线平行的关系求得a的值,由此求得函数f(x)的解析式;(Ⅱ)将问题转化为函数f(x)的图象与y=m有三个公共点,由此结合图象求得m的取值范围.【解答】解:(Ⅰ)当x>0时,f′(x)=x2+a,因为曲线f(x)在x=处的切线与直线y=﹣x﹣1平行,所以f′()=+a=﹣,解得a=﹣1,所以f(x)=x3﹣x,设x<0则f(x)=﹣f(﹣x)=x3﹣x,又f(0)=0,所以f(x)=x3﹣x.(Ⅱ)由(Ⅰ)知f(﹣3)=﹣6,f(﹣1)=,f(1)=﹣,f()=0,所以函数y=f(x)﹣m在区间[﹣3,]上有三个零点,等价于函数f(x)在[﹣3,]上的图象与y=m有三个公共点.结合函数f(x)在区间[﹣3,]上大致图象可知,实数m的取值范围是(﹣,0).20.设各项均为正数的数列{an }的前n项和为Sn,且满足2=an+1(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn =(an+1)•2,求数列{bn}的前n项和Tn.【考点】数列的求和;数列递推式.【分析】(Ⅰ)首先利用Sn 与an的关系:当n=1时,a1=S1,当n≥2时,an=Sn﹣Sn﹣1;结合已知条件等式推出数列{an }是等差数列,由此求得数列{an}的通项公式;(Ⅱ)首先结合(Ⅰ)求得bn的表达式,然后利用错位相减法,结合等比数列的求和公式求解即可.【解答】解:(Ⅰ)当n=1时,a1=S1,有2=a1+1,解得a1=1;当n≥2时,由2=an +1得4Sn=an2+2an+1,4Sn﹣1=an﹣12+2an﹣1+1,两式相减得4an =an2﹣an﹣12+2(an﹣an﹣1),所以(an +an﹣1)(an﹣an﹣1﹣2)=0,因为数列{an }的各项为正,所以an﹣an﹣1﹣2=0,所以数列{an}是以1为首项,2为公差的等差数列,所以数列{an }的通项公式为an=2n﹣1.(Ⅱ)由(Ⅰ)知bn =(an+1)•2=2n•22n﹣1=n•4n.所以前n项和Tn=1•4+2•42+3•43+…+n•4n,4Tn=1•42+2•43+3•44+…+n•4n+1,两式相减得﹣3Tn=4+42+43+…+4n﹣n•4n+1=﹣n•4n+1,化简可得Tn=+•4n+1.21.已知函数f(x)=ae x﹣x(a∈R),其中e为自然对数的底数,e=2.71828…(Ⅰ)判断函数f(x)的单调性,并说明理由(Ⅱ)若x∈[1,2],不等式f(x)≥e﹣x恒成立,求a的取值范围.【考点】函数恒成立问题;函数单调性的判断与证明.【分析】(Ⅰ)求出原函数的导函数,然后对a分类,当a≤0时,f′(x)<0,f(x)=ae x ﹣x为R上的减函数;当a>0时,由导函数为0求得导函数的零点,再由导函数的零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;(Ⅱ)x∈[1,2],不等式f(x)≥e﹣x恒成立,等价于ae x﹣x≥e﹣x恒成立,分离参数a,可得恒成立.令g(x)=,则问题等价于a不小于函数g(x)在[1,2]上的最大值,然后利用导数求得函数g(x)在[1,2]上的最大值得答案.【解答】解:(Ⅰ)由f(x)=ae x﹣x,得f′(x)=ae x﹣1,当a≤0时,f′(x)<0,f(x)=ae x﹣x为R上的减函数;当a>0时,令ae x﹣1=0,得x=lna,若x∈(﹣∞,﹣lna),则f′(x)<0,此时f(x)为的单调减函数;若x∈(﹣lna,+∞),则f′(x)>0,此时f(x)为的单调增函数.综上所述,当a≤0时,f(x)=ae x﹣x为R上的减函数;当a>0时,若x∈(﹣∞,﹣lna),f(x)为的单调减函数;若x∈(﹣lna,+∞),f(x)为的单调增函数.(Ⅱ)由题意,x∈[1,2],不等式f(x)≥e﹣x恒成立,等价于ae x﹣x≥e﹣x恒成立,即x∈[1,2],恒成立.令g(x)=,则问题等价于a不小于函数g(x)在[1,2]上的最大值.由g(x)==,函数y=在[1,2]上单调递减,令h(x)=,x∈[1,2],h′(x)=.∴h(x)=在x∈[1,2]上也是减函数,∴g(x)在x∈[1,2]上也是减函数,∴g(x)在[1,2]上的最大值为g(1)=.故x∈[1,2],不等式f(x)≥e﹣x恒成立的实数a的取值范围是[,+∞).请考生在第22、23题中任选一题作答,如果多做则按所做第一题计分,作答时用2B铅笔在答题卡上把所选题目题号涂黑.[选修4-4:坐标系与参数方程]:(a为参数)经过伸缩变换后的曲线22.在平面直角坐标系中,曲线C1为C,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.2(Ⅰ)求C的极坐标方程;2(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.【考点】参数方程化成普通方程.【分析】(Ⅰ)求出C2的参数方程,即可求C2的极坐标方程;(Ⅱ)C2是以(1,0)为圆心,2为半径的圆,曲线C3的极坐标方程为ρsin(﹣θ)=1,直角坐标方程为x﹣y﹣2=0,求出圆心到直线的距离,即可求|PQ|的值.【解答】解:(Ⅰ)C2的参数方程为(α为参数),普通方程为(x′﹣1)2+y′2=1,∴C2的极坐标方程为ρ=2cosθ;(Ⅱ)C2是以(1,0)为圆心,2为半径的圆,曲线C3的极坐标方程为ρsin(﹣θ)=1,直角坐标方程为x﹣y﹣2=0,∴圆心到直线的距离d==,∴|PQ|=2=.[选修4-5:不等式选讲]23.已知函数f(x)=|x+b2|﹣|﹣x+1|,g(x)=|x+a2+c2|+|x﹣2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.(Ⅰ)当b=1时,求不等式f(x)≥1的解集;(Ⅱ)当x∈R时,求证f(x)≤g(x).【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)当b=1时,把f(x)用分段函数来表示,分类讨论,求得f(x)≥1的解集.(Ⅱ)当x∈R时,先求得f(x)的最大值为b2+1,再求得g(x)的最小值,根据g(x)的最小值减去f(x)的最大值大于或等于零,可得f(x)≤g(x)成立.【解答】解:(Ⅰ)由题意,当b=1时,f(x)=|x+b2|﹣|﹣x+1|=,当x≤﹣1时,f(x)=﹣2<1,不等式f(x)≥1无解,不等式f(x)≥1的解集为∅;当﹣1<x<1时,f(x)=2x,由不等式f(x)≥1,解得x≥,所以≤x<1;当x≥1时,f(x)=2≥1恒成立,所以不等式f(x)≥1的解集为[,+∞).(Ⅱ)(Ⅱ)当x∈R时,f(x)=|x+b2|﹣|﹣x+1|≤|x+b2 +(﹣x+1)|=|b2+1|=b2+1;g(x)=|x+a2+c2|+|x﹣2b2|=≥|x+a2+c2﹣(x﹣2b2)|=|a2+c2+2b2|=a2+c2+2b2.而 a2+c2+2b2﹣(b2+1)=a2+c2+b2﹣1=( a2+c2+b2+a2+c2+b2)﹣1≥ab+bc+ac﹣1=0,当且仅当a=b=c=时,等号成立,即 a2+c2+2b2≥b2+1,即f(x)≤g(x).。
四川省泸州市高考数学一模试卷(理科)
四川省泸州市高考数学一模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2015高三上·日喀则期末) 若集合A={x|2x<5},集合B={﹣1,0,1,3},则A∩B等于()A . {0,1}B . {﹣1,0,1}C . {0,1,3}D . {﹣1,0,1,3}2. (2分)(2017·武汉模拟) 设实数x、y满足约束条件,则2x+ 的最小值为()A . 2B .C .D .3. (2分) (2016高二下·宜春期中) 已知点P的极坐标为(2,),那么过点P且平行于极轴的直线的极坐标方程是()A . ρsinθ=B . ρsinθ=2C . ρcosθ=D . ρcosθ=24. (2分) (2016高三上·巨野期中) 若“0≤x≤4”是“(x﹣a)[x﹣(a+2)]≤0”的必要不充分条件,则实数a的取值范围是()A . (0,2)B . [0,2]C . [﹣2,0]D . (﹣2,0)5. (2分)执行如图所示的程序框图,若输入n的值为22,则输出的s的值为()A . 232B . 211C . 210D . 1916. (2分)一个几何体的三视图如图所示,其中俯视图为正三角形,则侧视图的面积为()A . 8B .C .D . 47. (2分) (2016高一下·岳阳期中) 在△ABC中,D是BC的中点,| |=3,点P在AD上,且满足 =,则•( + )=()A . 4B . 2C . ﹣2D . ﹣48. (2分)(2017·浙江模拟) 在△ABC中,a,b,c分别是角A,B,C的对边,若(b﹣ c)sinB+csinC=asinA,则sinA=()A .B .C .D .二、填空题 (共6题;共6分)9. (1分)设(,是虚数单位),满足,则 ________.10. (1分)(2017·盐城模拟) 设数列{an}的首项a1=1,且满足a2n+1=2a2n﹣1与a2n=a2n﹣1+1,则S20=________.11. (1分) (2017高二下·淄川开学考) 设抛物线y2=4x上一点P到直线x+2=0的距离是6,则点P到抛物线焦点F的距离为________.12. (1分)将函数y=sinx的图象向右平移个单位后得到的图象对应的函数解析式是________13. (1分)(2017·河北模拟) 已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A,B,C,D,E这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有________种.14. (1分) (2018高一上·江津月考) 已知函数,,则满足的的取值范围是________.三、解答题 (共6题;共60分)15. (5分)(2017·九江模拟) △ABC中,内角A,B,C的对边分别为a,b,c,且cos2A=3cos(B+C)+1.(Ⅰ)求角A的大小;(Ⅱ)若cosBcosC=﹣,且△ABC的面积为2 ,求a.16. (10分) (2017高一下·伊春期末) 从5名男生和3名女生中任选3人参加奥数训练,设随机变量X表示所选3人中女生的人数(1)求“所选3人中女生人数X>1”的概率.(2)求X的分布列及数学期望.17. (15分) (2015高一上·银川期末) 如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC.(2)求证:平面MOC⊥平面VAB.(3)求二面角C﹣VB﹣A的平面角的余弦值.18. (10分)已知函数与(其中)在上的单调性正好相反,回答下列问题:(1)对于,,不等式恒成立,求实数的取值范围;(2)令,两正实数、满足,求证: .19. (5分) (2017高二下·嘉兴期末) 如图,已知椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 ,焦距为2,过点F2作直线l交椭圆于M、N两点,△F1MN的周长为8.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l分别交直线y= x,y=﹣ x于P,Q两点,求的取值范围.20. (15分)(2020·海安模拟) 已知函数 f(x)=a(|sinx|+|cosx|)﹣sin2x﹣1,a∈R.(1)写出函数 f(x)的最小正周期(不必写出过程);(2)求函数 f(x)的最大值;(3)当a=1时,若函数 f(x)在区间(0,kπ)(k∈N*)上恰有2015个零点,求k的值.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共6题;共60分)15-1、16-1、16-2、17-1、17-2、17-3、18-1、第11 页共14 页18-2、第12 页共14 页第13 页共14 页19-1、20-1、20-2、20-3、第14 页共14 页。
四川省泸州市2017届高三第一次诊断考试试题(数学理)(含答案)word版
四川省泸州市2017届高三第一次诊断考试数 学 试 题(理)本试卷分第一部分(选择题)和第二部分(非选择题)两部分。
共150分。
考试时间120分钟。
第一部分的答案涂在机读卡上,第二部分的答案写在答题卡上。
参考公式:如果事件A 、B 互斥,那么 P (A +B )=P (A )+P (B )如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n k k n n P P C k P --=)1()(第一部分(选择题 共60分)注意事项:1.答第一部分前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂、写在机读卡上。
2.每小题选出答案后,用2B 铅笔把机题卡上对应题的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在草稿子、试题卷上。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{1,2,3,4},{1,2,3},{2,3,4},()U U M N M N === 则C =( ) A .{1,2} B .{2,3} C .{2,4}D .{1,4} 2.23(1)lim 6!x n n n →∞++的值为 ( ) A .0 B .1C .16D .不存在 3.复数52i +的值为( ) A .2i - B .2i + C .12i - D .12i +4.若函数2log (1), 1.()2, 1.x a x x f x x -+>⎧=⎨≤⎩在定义域内连续,则a 的值为( )A .0B .1C .2D .-15.已知函数()x f x e =(e 是自然对数的底数),则函数()f x 的导函数'()f x 的大致图象为( )6.设函数()tan()3f x x π=+,则下列结论中正确的是 ( )A .函数()f x 的图象关于点(,0)3π对称B .函数()f x 的图象关于直线3x π=对称C .把函数()f x 的图象向右平移3π个单位,得到一个奇函数的图象D .函数()f x 的最小正周期为2π7.设p ,q 是两个命题,121:log (||3)0,:112p x q x -><-,则p 是q 的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.经全国人大常委会批准,自2011年9月1日起我国实行新的《中华人民共和国所得税法》,新法规定:个人工资、薪金所得,以每月收入额减除费用3500元后的余额,为全月应纳税所得额,且税率也作了调整,调整后的部分税率见《中华人民共和国个人所得税税率表》。
四川省泸州市2017年高考数学一模试卷(理科)Word版含解析
四川省泸州市2017年高考一模试卷(理科数学)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(a,b∈R),其中i为虚数单位,则a+b=()A.0 B.1 C.﹣1 D.22.已知集合A={x|x2+3x≤0},集合B={n|n=2k+1,k∈Z},则A∩B=()A.{﹣1,1} B.{1,3} C.{﹣3,﹣1} D.{﹣3,﹣1,1,3}3.“x<2”是“ln(x﹣1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如果a<b<0,那么下列不等式成立的是()A.B.ab<b2C.﹣ab<﹣a2D.5.一算法的程序框图如图所示,若输出的,则输入的x可能为()A.﹣1 B.1 C.1或5 D.﹣1或16.已知向量,向量,则△ABC的形状为()A.等腰直角三角形B.等边三角形C.直角非等腰三角形D.等腰非直角三角形7.已知a>0,x,y满足约束条件,z=x+2y的最小值为﹣2,则a=()A.B.C.1 D.28.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织()尺布.A.B.C.D.9.函数的图象与x轴交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位10.已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.11.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A.B.C.D.12.已知函数f(x)=,若存在实数x1,x2,x3,x4,当x1<x2<x3<x4时满足f (x 1)=f (x 2)=f (x 3)=f (x 4),则x 1•x 2•x 3•x 4的取值范围是( )A .(7,)B .(21,) C .[27,30) D .(27,)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.设函数f (x )=(x+1)(2x+3a )为偶函数,则a= .14.在三角形ABC 中,点E ,F 满足,,若,则x+y= .15.小王同学骑电动自行车以24km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,20min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是 km .16.已知f (x )=x+alnx (a >0)对于区间[1,3]内的任意两个相异实数x 1,x 2,恒有成立,则实数a 的取值范围是 .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知2sin α•tan α=3,且0<α<π. (1)求α的值;(2)求函数f (x )=4sinxsin (x ﹣α)在上的值域.18.如图,在四棱锥S ﹣ABCD 中,底面ABCD 是菱形,SA ⊥平面ABCD ,M ,N 分别为SA ,CD 的中点.(I )证明:直线MN ∥平面SBC ; (Ⅱ)证明:平面SBD ⊥平面SAC .19.某企业拟用10万元投资甲、乙两种商品.已知各投入x 万元,甲、乙两种商品分别可获得y 1,y 2万元的利润,利润曲线,P 2:y 2=bx+c ,如图所示.(1)求函数y 1,y 2的解析式;(2)应怎样分配投资资金,才能使投资获得的利润最大?20.已知数列{a n }的前n 项和s n ,点(n ,s n )(n ∈N *)在函数y=x 2+x 的图象上 (1)求{a n }的通项公式;(2)设数列{}的前n 项和为T n ,不等式T n >log a (1﹣a )对任意的正整数恒成立,求实数a 的取值范围.21.已知f (x )=2ln (x+2)﹣(x+1)2,g (x )=k (x+1). (Ⅰ)求f (x )的单调区间;(Ⅱ)当k=2时,求证:对于∀x >﹣1,f (x )<g (x )恒成立;(Ⅲ)若存在x 0>﹣1,使得当x ∈(﹣1,x 0)时,恒有f (x )>g (x )成立,试求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.已知直线l 的参数方程是(t 是参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρ=4cos (θ+).(1)判断直线l 与曲线C 的位置关系;(2)过直线l 上的点作曲线C 的切线,求切线长的最小值. 23.已知函数f (x )=|2x ﹣1|﹣|x+2|. (1)求不等式f (x )>0的解集;(2)若存在x 0∈R ,使得f (x 0)+2a 2<4a ,求实数a 的取值范围.四川省泸州市2017年高考一模试卷(理科数学)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(a,b∈R),其中i为虚数单位,则a+b=()A.0 B.1 C.﹣1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简,再由复数相等的充要条件列出方程组,求解即可得a,b的值,则答案可求.【解答】解:∵=,∴,解得,则a+b=1.故选:B.2.已知集合A={x|x2+3x≤0},集合B={n|n=2k+1,k∈Z},则A∩B=()A.{﹣1,1} B.{1,3} C.{﹣3,﹣1} D.{﹣3,﹣1,1,3}【考点】交集及其运算.【分析】求出集合A中的一元二次不等式的解集确定出集合A,观察发现集合B为所有的奇数集,所以找出集合A解集中的奇数解即为两集合的交集.【解答】解:由集合A中的不等式x2+3x≤0,因式分解得:x(x+3)<0,解得:﹣3<x<0,所以集合A=(﹣3,0);根据集合B中的关系式n=2k+1,k∈Z,得到集合B为所有的奇数集,则集合A∩B={﹣3,﹣1}.故选:C3.“x<2”是“ln(x﹣1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据对数函数的性质结合集合的包含关系判断即可.【解答】解:由ln(x﹣1)<0,得:0<x﹣1<1,解得:1<x<2,故x<2是1<x<2的必要不充分条件,故选:B.4.如果a<b<0,那么下列不等式成立的是()A.B.ab<b2C.﹣ab<﹣a2D.【考点】不等关系与不等式.【分析】由于a<b<0,不妨令a=﹣2,b=﹣1,代入各个选项检验,只有D正确,从而得出结论.【解答】解:由于a<b<0,不妨令a=﹣2,b=﹣1,可得=﹣1,∴,故A不正确.可得ab=2,b2=1,∴ab>b2,故B不正确.可得﹣ab=﹣2,﹣a2=﹣4,∴﹣ab>﹣a2,故C不正确.故选D.5.一算法的程序框图如图所示,若输出的,则输入的x可能为()A.﹣1 B.1 C.1或5 D.﹣1或1【考点】选择结构;程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是求分段函数的函数值.利用输出的值,求出输入的x的值即可.【解答】解:这是一个用条件分支结构设计的算法,该程序框图所表示的算法的作用是求分段函数y=的函数值,输出的结果为,当x≤2时,sin=,解得x=1+12k,或x=5+12k,k∈Z,即x=1,﹣7,﹣11,…当x>2时,2x=,解得x=﹣1(不合,舍去),则输入的x可能为1.故选B.6.已知向量,向量,则△ABC的形状为()A.等腰直角三角形B.等边三角形C.直角非等腰三角形D.等腰非直角三角形【考点】平面向量的坐标运算.【分析】由已知向量的坐标求得的坐标,可得,结合得答案.【解答】解:∵,,∴=(3,1),∴.又.∴△ABC的形状为等腰直角三角形.故选A.7.已知a>0,x,y满足约束条件,z=x+2y的最小值为﹣2,则a=()A.B.C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,数形结合得到最优解,联立方程组求得最优解的坐标,代入ax﹣y﹣2a=0得答案.【解答】解:由约束条件,作出可行域如图,联立,解得A(1,﹣),z=x+2y的最小值为﹣2,由图形可知A是目标函数的最优解,A在ax﹣y﹣2a=0上,可得:a+﹣2a=0解得a=.故选:B.8.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织()尺布.A.B.C.D.【考点】数列的应用.【分析】利用等差数列的求和公式即可得出.}的公差为d,【解答】解:设此等差数列{an则30×5+d=390,解得d=,故选:D.9.函数的图象与x轴交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】函数的图象与x轴交点的横坐标构成一个公差为的等差数列,可知周期T=,可得ω的值,根据三角函数的平移变换规律可得结论.【解答】解:由题意,函数的图象与x轴交点的横坐标构成一个公差为的等差数列,可知周期T=,那么:ω=.则f(x)=Asin(3x+)=Asin3(x+)要得到g(x)=Acos3x,即Acos3x=Asin(3x+)=Asin3(x+)由题意:可得:f(x)向左平移可得g(x)故选A10.已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【考点】利用导数研究函数的单调性;函数的图象.【分析】利用函数的定义域与函数的值域排除B,D,通过函数的单调性排除C,推出结果即可.【解答】解:令g(x)=x﹣lnx﹣1,则,由g'(x)>0,得x>1,即函数g(x)在(1,+∞)上单调递增,由g'(x)<0得0<x<1,即函数g(x)在(0,1)上单调递减,=g(0)=0,所以当x=1时,函数g(x)有最小值,g(x)min于是对任意的x∈(0,1)∪(1,+∞),有g(x)≥0,故排除B、D,因函数g(x)在(0,1)上单调递减,则函数f(x)在(0,1)上递增,故排除C,故选A.11.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A.B.C.D.【考点】球的体积和表面积.【分析】由条件利用球的截面的性质求得球心到截面圆的距离,再求出垂直折起的4个小直角三角形的高,再与球的半径相加即得答案.【解答】解:由题意可得,蛋巢的底面是边长为1的正方形,故经过4个顶点截鸡蛋所得的截面圆的直径为1,由于鸡蛋的体积为π,故鸡蛋(球)的半径为1,故球心到截面圆的距离为=,而垂直折起的4个小直角三角形的高为,故鸡蛋最低点与蛋巢底面的距离为,故选:D.12.已知函数f(x)=,若存在实数x1,x2,x3,x4,当x1<x2<x3<x4时满足f(x1)=f(x2)=f(x3)=f(x4),则x1•x2•x3•x4的取值范围是()A.(7,)B.(21,)C.[27,30)D.(27,)【考点】函数的值.【分析】画出分段函数的图象,求得(3,1),(9,1),令f(xl )=f(x2)=f(x3)=f(x4)=a,作出直线y=a,通过图象观察,可得a的范围,运用对数的运算性质和余弦函数的对称性,可得x1x2=1,x3+x4=12,再由二次函数在(3,4.5)递增,即可得到所求范围.【解答】解:画出函数f(x)的图象,令f(xl )=f(x2)=f(x3)=f(x4)=a,作出直线y=a,由x=3时,f(3)=﹣cosπ=1;x=9时,f(9)=﹣cos3π=1.由图象可得,当0<a<1时,直线和曲线y=f(x)有四个交点.由图象可得0<x1<1<x2<3<x3<4.5,7.5<x4<9,则|log3x1|=|log3x2|,即为﹣log3x1=log3x2,可得x1x2=1,由y=﹣cos(x)的图象关于直线x=6对称,可得x3+x4=12,则x1•x2•x3•x4=x3(12﹣x3)=﹣(x3﹣6)2+36在(3,4.5)递增,即有x1•x2•x3•x4∈(27,).故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数f(x)=(x+1)(2x+3a)为偶函数,则a= ﹣.【考点】函数奇偶性的性质.【分析】根据偶函数的定义,可得一次项系数为0,从而可得结论.【解答】解:函数f(x)=(x+1)(2x+3a)=2x2+(3a+2)x+3a∵函数f(x)=(x+1)(2x+3a)为偶函数,∴2x2﹣(3a+2)x+3a=2x2+(3a+2)x+3a∴3a+2=0∴a=﹣,故答案为:14.在三角形ABC中,点E,F满足,,若,则x+y= .【考点】平面向量的基本定理及其意义.【分析】首先利用平面向量的三角形法则得到,然后用表示,结合平面向量基本定理得到x,y.【解答】解:在三角形ABC中,点E,F满足,,若==,所以x=﹣,y=,则x+y=;故答案为:15.小王同学骑电动自行车以24km/h的速度沿着正北方向的公路行驶,在点A处望见电视塔S 在电动车的北偏东30°方向上,20min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是 km .【考点】解三角形的实际应用.【分析】在△ABS 中,可得∠BAS=30°,AB=8,∠ABS=180°﹣75°=105°则∠ASB=45°,由正弦定理可得BS=.【解答】解:如图,由已知可得,AB=24×=8. 在△ABS 中,∠BAS=30°,AB=8,∠ABS=180°﹣75°=105° ∠ASB=45°由正弦定理可得BS==4,故答案为16.已知f (x )=x+alnx (a >0)对于区间[1,3]内的任意两个相异实数x 1,x 2,恒有成立,则实数a 的取值范围是 (0,) .【考点】利用导数求闭区间上函数的最值.【分析】问题等价于|1+|<,(1),由x 1,x 2→时(1)变为|1+3a|<9,由x 1,x 2→1时(1)变为|1+a|<1,得到关于a 的不等式,解出即可. 【解答】解:已知a >0,f (x )=x+alnx ,对区间[1,3]内的任意两个相异的实数x 1,x 2,恒有|f (x 1)﹣f (x 2)|<|﹣|,∴|x 1﹣x 2+a (lnx 1﹣lnx 2)|<||,两边都除以|x 1﹣x 2|,∵|1+|<,(1)(lnx )′=∈[,1],∴∈[,1],x 1,x 2→时(1)变为|1+3a|<9,解得:﹣<a <,x 1,x 2→1时(1)变为|1+a|<1, 解得:﹣2<a <0, 又∵a >0,∴0<a <,故答案为(0,).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知2sin α•tan α=3,且0<α<π. (1)求α的值;(2)求函数f (x )=4sinxsin (x ﹣α)在上的值域.【考点】同角三角函数基本关系的运用;三角函数中的恒等变换应用. 【分析】(1)利用同角三角函数的基本关系,求得sin α的值,可得α的值.(2)利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域求得函数f (x )=4sinxsin (x ﹣α)在上的值域.【解答】解:(1)∵2sin α•tan α=3,且0<α<π.∴2sin 2α=3cos α,∴2﹣2cos 2α=3cos α,∴2cos 2α+3cos α﹣2=0,解得cos α=,或cos α=﹣2(舍),∴α=.(2)∵α=,∴函数f(x)=4sinxsin(x﹣)=4sinx(sinxcos﹣cosxsin)==,∵,∴,∴,则,∴f(x)∈[﹣1,0].18.如图,在四棱锥S﹣ABCD中,底面ABCD是菱形,SA⊥平面ABCD,M,N分别为SA,CD的中点.(I)证明:直线MN∥平面SBC;(Ⅱ)证明:平面SBD⊥平面SAC.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)取SB中点E,连接ME、CE,由三角形中位线定理、菱形性质得四边形MECN是平行四边形,由此能证明直线MN∥平面SBC.(Ⅱ)连接AC、BD,交于点O,由线面垂直得SA⊥BD,由菱形性质得AC⊥BD,由此能证明平面SBD⊥平面SAC.【解答】(Ⅰ)证明:如图,取SB中点E,连接ME、CE,因为M为SA的中点,所以ME∥AB,且ME=,…因为N为菱形ABCD边CD的中点,所以CN∥AB,且CN=,…所以ME∥CN,ME=CN,所以四边形MECN是平行四边形,所以MN∥EC,…又因为EC⊂平面SBC,MN⊄平面SBC,所以直线MN ∥平面SBC .…(Ⅱ)证明:如图,连接AC 、BD ,交于点O , 因为SA ⊥底面ABCD ,所以SA ⊥BD .… 因为四边形ABCD 是菱形,所以AC ⊥BD .… 又SA ∩AC=A ,所以BD ⊥平面SAC .…又BD ⊂平面SBD ,所以平面SBD ⊥平面SAC .…19.某企业拟用10万元投资甲、乙两种商品.已知各投入x 万元,甲、乙两种商品分别可获得y 1,y 2万元的利润,利润曲线,P 2:y 2=bx+c ,如图所示.(1)求函数y 1,y 2的解析式;(2)应怎样分配投资资金,才能使投资获得的利润最大?【考点】函数的最值及其几何意义;函数解析式的求解及常用方法.【分析】(1)将(1,1.25),(4,2.5)代入曲线,解方程可得;由P 2:y 2=bx+c过原点,可得c=0,将(4,1)代入,可得b ,即可得到P 2的方程;(2)设甲投资x 万元,则乙投资为(10﹣x )万元,投资获得的利润为y 万元,则=,令,转化为二次函数的最值求法,即可得到所求最大值.【解答】解:(1)由题知(1,1.25),(4,2.5)在曲线P 1上,则,解得,即.又(4,1)在曲线P 2上,且c=0,则1=4b ,则,所以.(2)设甲投资x 万元,则乙投资为(10﹣x )万元,投资获得的利润为y 万元,则=,令,则.当,即(万元)时,利润最大为万元,此时10﹣x=3.75(万元),答:当投资甲商品6.25万元,乙商品3.75万元时,所获得的利润最大值为万元.20.已知数列{a n }的前n 项和s n ,点(n ,s n )(n ∈N *)在函数y=x 2+x 的图象上 (1)求{a n }的通项公式;(2)设数列{}的前n 项和为T n ,不等式T n >log a (1﹣a )对任意的正整数恒成立,求实数a 的取值范围.【考点】等差数列与等比数列的综合.【分析】(1),再写一式,即可求{a n }的通项公式;(2)由(1)知a n =n ,利用裂项法可求=(﹣),从而可求得T n ═ [(1﹣)+(﹣)+(﹣)+…+(﹣)],由T n+1﹣T n =>0,可判断数列{T n }单调递增,从而可求得a 的取值范围.【解答】解:(1)∵,∴①当②①﹣②得a n =n当,∴a n =n ;(2)由(1)知a n =n ,则=(﹣).∴T n ═ [(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1+﹣﹣)=﹣(+).∵T n+1﹣T n =>0,∴数列{T n }单调递增,∴(T n )min =T 1=.要使不等式T n >log a (1﹣a )对任意正整数n 恒成立,只要>log a (1﹣a ). ∵1﹣a >0, ∴0<a <1.∴1﹣a >a ,即0<a <.21.已知f (x )=2ln (x+2)﹣(x+1)2,g (x )=k (x+1). (Ⅰ)求f (x )的单调区间;(Ⅱ)当k=2时,求证:对于∀x >﹣1,f (x )<g (x )恒成立;(Ⅲ)若存在x 0>﹣1,使得当x ∈(﹣1,x 0)时,恒有f (x )>g (x )成立,试求k 的取值范围.【考点】利用导数研究函数的单调性;函数恒成立问题.【分析】(Ⅰ)求出定义域和导数f′(x ),令f′(x )>0,解出增区间,令f′(x )<0,解出减区间;(Ⅱ)令H (x )=f (x )﹣g (x ),利用导数判断出H (x )的单调性和单调区间,得出H (x )的最大值,证明H max (x )<0即可.【解答】解:(Ⅰ),当f′(x )>0 时,所以 x 2+3x+1<0,解得﹣2<x ,当f′(x)<0时,解得,所以 f(x)单调增区间为,递减区间是(,+∞);(Ⅱ)当k=2时,g(x)=2(x+1).令H(x)=f(x)﹣g(x)=2ln(x+2)﹣(x+1)2﹣2(x+1).H′(x)=,令H′(x)=0,即﹣2x2﹣8x﹣6=0,解得x=﹣1或x=﹣3(舍).∴当x>﹣1时,H′(x)<0,H(x)在(﹣1,+∞)上单调递减.(x)=H(﹣1)=0,∴Hmax∴对于∀x>﹣1,H(x)<0,即f(x)<g(x).(Ⅲ)由(II)知,当k=2时,f (x)<g (x)恒成立,即对于“x>﹣1,2 ln (x+2)﹣(x+1)2<2 (x+1),不存在满足条件的x;当k>2时,对于“x>﹣1,x+1>0,此时2 (x+1)<k (x+1).∴2 ln (x+2)﹣(x+1)2<2 (x+1)<k (x+1),即f (x)<g (x)恒成立,不存在满足条件的x;令h(x)=f(x)﹣g(x)=2ln(x+2)﹣(x+1)2﹣k(x+1),h′(x)=,当k<2时,令t (x)=﹣2x2﹣(k+6)x﹣(2k+2),可知t (x)与h′(x)符号相同,,+∞)时,t (x)<0,h′(x)<0,h (x)单调递减,当x∈(x当x∈(﹣1,x)时,h (x)>h (﹣1)=0,即f (x)﹣g (x)>0恒成立,综上,k的取值范围为(﹣∞,2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.已知直线l的参数方程是(t是参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.曲线C的极坐标方程为ρ=4cos(θ+).(1)判断直线l与曲线C的位置关系;(2)过直线l上的点作曲线C的切线,求切线长的最小值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)分别求出直线和曲线的普通方程,根据点到直线的距离,求出直线l与曲线C 的位置关系;(2)根据点到直线的距离求出直线l上的点向圆C引的切线长的最小值即可.【解答】解:(1)直线l方程:y=x+4,ρ=4cos(θ+)=2cosθ﹣2sinθ,∴ρ2=2ρcosθ﹣2sinθ,∴圆C的直角坐标方程为x2+y2﹣2x+2y=0,即+=4,∴圆心(,﹣)到直线l的距离为d=6>2,故直线与圆相离.(2)直线l的参数方程化为普通方程为x﹣y+4=0,则圆心C到直线l的距离为=6,∴直线l上的点向圆C引的切线长的最小值为=4.23.已知函数f(x)=|2x﹣1|﹣|x+2|.(1)求不等式f(x)>0的解集;(2)若存在x0∈R,使得f(x)+2a2<4a,求实数a的取值范围.【考点】绝对值三角不等式.【分析】(1)把f(x)用分段函数来表示,令f(x)=0,求得x的值,可得不等式f(x)>0的解集.(2)由(1)可得f(x)的最小值为f(),再根据f()<4a﹣2a2 ,求得a的范围.【解答】解:(1)函数f(x)=|2x﹣1|﹣|x+2|=,令f(x)=0,求得x=﹣,或 x=3,故不等式f(x)>0的解集为{x|x<﹣,或x>3}.(2)若存在x0∈R,使得f(x)+2a2<4a,即f(x)<4a﹣2a2 有解,由(1)可得f (x )的最小值为f ()=﹣3•﹣1=﹣,故﹣<4a ﹣2a 2 ,求得﹣<a <.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泸州市2017届高三第一次教学教学质量诊断性考试
数学(理工类)
一、选择题:本大题共有10个小题,每小题5分,共50分.每小题
给出的四个选项中,只有一项是符合要求的. 1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则()U M N ð=
A .{5,7}
B .{2,4}
C .{1,3,5,6,7}
D .{2,4,8}
2. 下列命题中的假命题是
A .x ∀∈R ,1
20x -> B .x *
∀∈N ,2(1)0x -> C .x ∃∈R ,lg 1x < D .x ∃∈R ,tan 2x =
3. 1
2lg 2lg
25
-的值为 A .1 B .2 C .3 D .4
4.函数()2
11sin f x x x ⎛⎫
=- ⎪⎝
⎭的图象大致为
A .
B .
C .
D .
5.△ABC 中,若 2AD DB = ,13
CD CA CB λ=+
,则λ=
A .13
B .23
C .23-
D .13
-
6.将函数()()sin 2f x x θ=+(其中22
ππ
θ-<<)的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若函数()(),f x g x 的图象都经过点P ⎛ ⎝
⎭
,则的
值可以是
A .53π
B .6π
C .2
π
D .56π
7.设数列{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是
递增数列”的
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件 8. 若曲线()1
2
f x x =在点()(),a f a 处的切线与两条坐标轴围成的三角形的面积为18,则a =
A. 64
B. 32
C. 16
D. 8
9.一支人数是5的倍数且不少于1000人的游行队伍,若按每横排4
人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.则这只游行队伍的最少人数是 A .1025 B .1035 C .1045 D .1055
10.定义在R 上的函数()f x 满
足
()22
1,
11(4)(),()log 22,1 3.x x f x f x f x x x ⎧-+-⎪+==⎨
--+<⎪⎩≤≤≤,若关于x 的方程()0f x ax -=有5个不同实根,则正实数a 的取值范围是
A .11(,)43
B .11(,)64
C
.1
(16)6
-
D
.1(,86
-
二、填空题:本大题共5小题,每小题5分,共25分.
11.复数22(56)(215)i m m m m +++--(i 是虚数单位)是纯虚数,则实数m 的值为 .
12.等比数列{}n a 中,若公比4q =,且前3项之和等于21,则该数列的通项公式n a = . 13.函数
()log a f x x
=(其中01a <<),则使
314f ⎛⎫
< ⎪⎝⎭
成立的a 的取值范围
是 .
14. 设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意
[],2x a a ∈+,不等式()()31f x a f x +≥+恒成立,则实数a 的取值范围是 . 15.已知集合()()()()(){}2
2|,A f x f
x f y f x y f x y x y R =-=+-∈,有下列命题;①若
()1,01
x f x x ≥⎧=⎨
-<⎩,则()f x A ∈;②若()f x kx =,则()f x A ∈;③若()f x A ∈,则()
y f x =可为奇函数;④若()f x A ∈,则对任意不等实数1
2
,x x ,总有()()
1
2
1
2
f x f x x x
-<-成立。
其中所有正确命题的序号是 (填上所有正确命
题的序号)
三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证
明过程或演算步骤. 16.(本小满分12分)
在一次数学统考后,某班随机抽取10名同学
的成绩进行样本分析,获得成绩数据的茎叶图如下.
(Ⅰ)计算样本的平均成绩及方差;
(Ⅱ)现从80分以上的样本中随机抽出2名
同学的成绩,设选出同学的分数为90分以上的人数为ξ,求随机变量ξ的分布列和均值。
17.(本小满分12分)(本小题满分12分)
在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,,设S 为ABC V 的面积,满足:)
2
224S a
b c +-。
(Ⅰ)求角C 的大小。
(Ⅱ)若tan 21tan A c
B b
+=,且8AB BC =-uu u r uu u r
g ,求c 的值。
18. 设等差数列{}n a 的前n 项和为n S ,且36a =,10110S =. (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设数列{}n b 前n 项和为n T ,且1n
a n T =-, 令()n n n c a
b n N +=∈,求数列{}n
c 的前n 项和n
R
19.(本小满分12分) 已知函数321
()43sin 32
f x x x θ=-+
,其中x ∈R ,(0,)θπ∈.
(Ⅰ)若函数()f x 的导函数()f x '的最小值为34
-,试判断函数()f x 的
零点个数,并说明理由;
(Ⅱ)若函数()f x 的极小值大于零,求θ的取值范围.
20.(本小满分12分)
设平面向量
),2cos )x x =a ,
(2sin ,cos )
2x x π⎛⎫
=- ⎪⎝⎭
b ,已知函数
()f x m =⋅+a b 在[0,]2
π
上的最大值为
6.
(Ⅰ)求实数m 的值;
(Ⅱ)若0014(),,2
5
42f x x πππ⎡⎤
+=∈⎢⎥⎣⎦
,求0cos 2x 的值.
21. (本小满分14分)
已知函数()(1)ln 15a f x x a x a x
=++-+,322()23(2)664F x x a x x a a =--++--,
其中0a <且1a ≠-.
(Ⅰ) 当2a =-,求函数()f x 的单调递增区间;
(Ⅱ) 若1x =-时,函数()F x 有极值,求函数()F x 图象的对称中心坐标;
(Ⅲ)设函数()()()661,1,
()(),
1.x
F x x a x e x g x e f x x ⎧-+-⎪=⎨>⎪⎩≤g g (e 是自然对数的底数),
是否存在a 使()g x 在[,]a a -上为减函数,若存在,求实数a 的范围;若不存在,请说明理由。