高一数学函数综合试题答案及解析

合集下载

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用3.关于函数,有以下命题:①函数的图像关于轴对称;②当时是增函数,当时,是减函数;③函数的最小值为;④当或时,是增函数;⑤无最大值,也无最小值。

其中正确的命题是:__________.【答案】①③④【解析】函数的定义域为,且,∴该函数为偶函数,故①正确;当时,,在上单调递减,在单调递增,故函数在单调递减,在单调递增,故②错误;因为在单调递减,在单调递增,∴在时,函数取最小值,故③正确;∵在单调递减,故在内单调递增,故④正确;有最小值,故⑤错误.【考点】1.命题的真假判断;2.函数的性质.4.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.5.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.6.函数.满足,则的值为()A.B.C.D.【答案】B【解析】因为,函数.满足,所以,解得,,故选B。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用2.在R上定义运算,若不等式成立,则实数a的取值范围是().A.{a|}B.{a|}C.{a|}D.{a|}【答案】C【解析】由题知∴不等式对任意实数x都成立转化为对任意实数x都成立,即恒成立,解可得.故选A.【考点】本题考查了在新定义下对函数恒成立问题的应用.关于新定义型的题,关键是理解定义,并会用定义来解题.3.已知点是直线上的任意一点,则的最小值为()A.B.C.D.【答案】A【解析】点是直线上的任意一点,则有,即,所以有,显然当时,有最小值.【考点】消元法,二次函数中配方法求最值.4.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.函数的最小值是【答案】【解析】,则函数的最小值为。

【考点】函数的性质点评:本题通过构造形式用基本不等式求最值,训练答题都观察、化归的能力.7.已知f(x)是实数集上的偶函数,且在区间上是增函数,则的大小关系是()A.B.C.D.【答案】D【解析】因为,f(x)是实数集上的偶函数,且在区间上是增函数,所以,函数的图象关于y 轴对称,在区间是减函数。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.【答案】(1)6;(2);(3).【解析】(1)利用奇函数的性质进行转化计算即可;(2)因为当时,,利用奇函数的性质先求出时的解析式,最后写出函数的解析式即可;(3)根据函数的单调性,求解不等式即分别求解不等式组与,最后取并集即可.试题解析:(1)∵是奇函数∴ 3分(2)设,则,∴∵为奇函数,∴ 5分∴ 6分(3)根据函数图像可得在上单调递增 7分当时,解得 9分当时,解得 11分∴区间为 12分.【考点】1.函数的奇偶性;2.函数的解析式;3.指数函数的性质.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.7.已知定义在R上的奇函数满足=(x≥0),若,则实数的取值范围是________.【答案】(-3,1)【解析】∵函数f(x)=x2+2x(x≥0),是增函数,且f(0)=0,f(x)是奇函数,f(x)是R上的增函数.由f(3-a2)>f(2a),,于是3-a2>2a,因此,解得-3<a<1.【考点】奇函数;函数单调性的性质.点评:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力.8.关于函数,有下面四个结论:(1)是奇函数;(2)恒成立;(3)的最大值是; (4) 的最小值是.其中正确结论的是_______________________________________.【答案】(2)(4)【解析】根据题意,由于函数,,那么利用奇偶性定义可知,函数为偶函数因此(1)错误。

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析1.已知函数是R上的增函数,则的取值范围是A.≤<0B.≤≤C.≤D.<0【答案】B【解析】若递增,则,若递增,则,若函数是R上的增函数,还需,综上可得的取值范围是≤≤。

【考点】函数的单调性2.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图(1);投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图(2).(注:收益与投资额单位:万元)(1)分别写出两种产品的一年收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?【答案】(1),(2)投资债券类产品万元,则股票类投资为万元,收益最大,为万元.【解析】(1)根据题意设,,然后把分别代入,可求出两种产品的一年收益与投资额的函数关系;(2)该家庭的收益等于债卷收益+股票收益,设投资债券类产品万元,则股票类投资为万元,由(1)知债卷收益,股票收益,则总收益为,利用换元法求其最大值。

试题解析:(1)设,,所以,,即,; 5分(2)设投资债券类产品万元,则股票类投资为万元,依题意得:,令,则,所以当,即万元时,收益最大,万元. 13分【考点】(1)待定系数法求函数的解析式;(2)数形结合思想的应用;(3)换元法的应用。

3.定义在上的函数,如果对于任意给定的等比数列,有仍是等比数列,则称为“保等比数列函数”.现有定义在上的如下函数:①=;②=;③;④=||,则其中是“保等比数列函数”的的序号为【答案】①③【解析】设等比数列的公比为,对于函数得为常数,因此得为保等比数列函数;对于函数得不是常数,因此不是保等比数列函数;对于函数得为常数,因此是保等比数列函数;对于函数得不是常数,因此不是保等比数列函数.【考点】判断是否为等比数列.4.函数y=-xcosx的部分图象是().【答案】D.【解析】选判断函数的奇偶性,此时,有,可知此函数为奇函数,排除A,C;又当x>0时,取时,可知此时,易知图像与x轴交于,而当时,,故选D.【考点】函数图像的辨析与识别,奇偶函数的定义与性质,排除法,特殊角的三角函数值.5.已知函数定义在上,对任意的,,且.(1)求,并证明:;(2)若单调,且.设向量,对任意,恒成立,求实数的取值范围.【答案】(1)(2)【解析】(1)借助于特殊值得,然后把变形= 即可,(2)首先判断出函数是增函数,然后找出,代入整理的,最后用分类讨论的思想方法求出即可.(1)令得,又∵,, 2分由得=,∵,∴. 5分(2)∵,且是单调函数,∴是增函数. 6分而,∴由,得,又∵因为是增函数,∴恒成立,.即. 8分令,得 (﹡).∵,∴,即.令, 10分①当,即时,只需,(﹡)成立,∴,解得; 11分②当,即时,只需,(﹡)成立,∴,解得,∴. 12分③当,即时,只需,(﹡)成立,∴,∴, 13分综上,. 14分【考点】抽象函数;函数的单调性;向量的数量积公式;不等式恒成立的问题;分类讨论的思想方法.6.已知函数,则______.【答案】【解析】若,则,,故【考点】分段函数,特殊角的三角函数值.7.设关于x函数其中0将f(x)的最小值m表示成a的函数m=g(a);是否存在实数a,使f(x)>0在上恒成立?是否存在实数a,使函数f(x) 在上单调递增?若存在,写出所有的a组成的集合;若不存在,说明理由.【答案】(1)(2)不存在a;(3).【解析】(1)先利用二倍角公式将化简,将其看成的二次函数,从而转化成求二次函数的最值问题.因为含参数,要注意定义域的范围,对参数进行讨论.(2)恒成立,即求的最大值大于0即可.而的最大值为,所以无解.故不存在a,使得恒成立.(3)本题可看成二次函数在上递增,只需在上单调递减,故.(1)设, 由知,恒成立由于的最大值为,所以无解.故不存在a,使得恒成立.(3)上的减函数,故在上递增,只需在上单调递减,故所以存在,使函数为增函数.【考点】二倍角公式,二次函数的性质,最值,恒成立问题,等价转化的方法,函数的单调性.8.已知函数.(1)若在上存在零点,求实数的取值范围;(2)当时,若对任意的,总存在使成立,求实数的取值范围.【答案】(1);(2).【解析】(1)在上存在零点,只需即可;(2)本问是存在性问题,只需函数的值域为函数的值域的子集即可.试题解析:(1)的对称轴为,所以在上单调递减,且函数在存在零点,所以即解得.故实数的取值范围为.(2)由题可知函数的值域为函数的值域的子集,以下求函数的值域:①时,为常函数,不符合题意;②,,∴解得;③,,∴解得.综上所述,的取值范围为.【考点】1.函数的零点;2.恒成立问题.9.设函数,用二分法求方程的近似根过程中,计算得到,则方程的根落在区间A.B.C.D.【答案】A【解析】解:取,因为,所以方程近似根取,因为,所以方程近似根所以应选A.【考点】二分法.10.已知函数,为偶函数,且当时,.记.给出下列关于函数的说法:①当时,;②函数为奇函数;③函数在上为增函数;④函数的最小值为,无最大值.其中正确的是A.①②④B.①③④C.①③D.②④【答案】B【解析】解:根所题意,函数的图象如下图所示为分段函数,其解析式为由此可知①③④正确,故选B.【考点】函数图象和性质.11.若定义在区间上的函数满足:对于任意的,都有,且时,有,的最大值、最小值分别为,则的值为( )A.2012B.2013C.4024D.4026【答案】C【解析】令,所以.即.再令.代入可得.设.所以.又因为.所以可得.所以可得函数是递增.所以.又因为.故选C.【考点】1.函数的单调性.2.函数的特殊值法寻找等量关系.3.等式与不等式间的互化.4.归纳化归的能力.12.已知为偶函数,当时,,满足的实数的个数为()A.2B.4C.6D.8【答案】D【解析】因为为偶函数,当时,.所以函数的解析式为作出图像如图所示. .由于函数是关于y轴对称,考虑研究x>0部分的图像.当时.或.因为.所以有四个不同的值.因为,所以不存在.所以有四个值.有对称性可得在x<0部分也有一个x的值符合.所以对应有四个值.故选D.【考点】1.分段函数的性质.2.复合函数的运算.3.数形结合的思想.13.定义函数,若存在常数C,对于任意的,存在唯一的,使得,则称函数在D上的“均值”为,已知,则函数上的均值为()A.B.C.D.10【答案】A【解析】因为过点的中点的纵坐标为,所以对于任意的,存在唯一的,使得.所以均值.故选A.本小题的关键是考查函数的对称性问题.【考点】1.新定义的函数问题.2.函数的对称性.14.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必在所在区间是 ( )A.[-2,1]B.[,4]C.[1,]D.[,]【答案】D【解析】因为,,又,由二分法知函数在区间必有零点.故正确答案为D.【考点】二分法15.设函数.(Ⅰ)画出的图象;(Ⅱ)设A=求集合A;(Ⅲ)方程有两解,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(1)需将函数解析式改写成分段函数后在画图(2)利用整体思想把先看成整体,然后再去绝对值(3)方程有两个解即函数和函数的图像有两个交点,利用数形结合思想分析问题试题解析:(Ⅰ)图像如图(1)所示(Ⅱ)即(舍)或或(Ⅲ)由图像(2)分析可知当方程有两解时,或【考点】(1)函数图像的画法(2)一元二次不等式和绝对值不等式(3)数形结合思想16.已知函数,若存在当时,则的取值范围是【答案】【解析】如图所示当时有,当时有所以即【考点】分段函数,要使时,,即使与函数有两个不同的交点,数形结合思想.17.已知,符号表示不超过的最大整数,若关于的方程(为常数)有且仅有3个不等的实根,则的取值范围是( ).A.B.C.D.【答案】B【解析】因为,所以;分和的情况讨论,显然有.若,此时;若,则;若,因为,故,即.且随着的增大而增大。

高一数学函数专题(含答案)

高一数学函数专题(含答案)

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高中数学必修一函数大题(含详细解答)

高中数学必修一函数大题(含详细解答)

高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。

⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A ZB =(其中Z 为整数集)。

试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。

2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。

① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。

已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。

(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。

3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。

(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。

高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析1.下列幂函数中过点(0,0),(1,1)的偶函数是()A.B.C.D.【答案】B【解析】A中函数的定义域是,不关于原点对称,不具有奇偶性;B中函数经验证过这两个点,又定义域为,且;C中函数不过(0,0);D中函数,∵,∴是奇函数,故选B.【考点】幂函数的性质与函数的奇偶性.2.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.3.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.4.函数的单调增区间是_______.【答案】【解析】由,所以此函数的定义域为,根据复合函数的单调性,所以此函数的单调增区间为.5.(本小题满分12分)已知函数 (为常数)在上的最小值为,试将用表示出来,并求出的最大值.【答案】【解析】(1)因为抛物线y=x2-2ax+1的对称轴方程是,本题属于轴动区间定的问题,然后分轴在区间左侧,在区间内,在区间右侧三种情况分别得到其最小值,得到最小值h(a),然后再求出h(a)的最大值.∵y=(x-a)2+1-a2,∴抛物线y=x2-2ax+1的对称轴方程是.(1)当时,,当时,该函数取最小值;(2) 当时, , 当时,该函数取最小值;(3) 当a>1时, , 当时,该函数取最小值综上,函数的最小值为6.证明:函数是偶函数,且在上是减少的。

(本小题满分12分)【答案】见解析。

【解析】本试题主要是考查了函数的奇偶性的定义以及单调性的性质。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学函数综合试题答案及解析1.定义运算:,对于函数和,函数在闭区间上的最大值称为与在闭区间上的“绝对差”,记为,则= .【答案】.【解析】记,,于是构造函数,则当时,;当或时,所以.即为所求.【考点】函数的最值及其几何意义.2.设,那么()A.B.C.D.【答案】B.【解析】观察题意所给的递推式特征可知:,所以,故选B.【考点】数列的递推公式.3.函数y=-xcosx的部分图象是().【答案】D.【解析】选判断函数的奇偶性,此时,有,可知此函数为奇函数,排除A,C;又当x>0时,取时,可知此时,易知图像与x轴交于,而当时,,故选D.【考点】函数图像的辨析与识别,奇偶函数的定义与性质,排除法,特殊角的三角函数值.4.方程在区间内的所有实根之和为 .(符号表示不超过的最大整数).【答案】2.【解析】设,当时,;当时,;当时,;当时,;即;令,得;令,得;的所有根为0,2,之和为2.【考点】新定义题、函数图像的交点.5.若不等式对任意的上恒成立,则的取值范围是()A.B.C.D.【答案】D.【解析】∵,又∵,,∴,又∵,根据二次函数的相关知识,可知当,时,,综上所述,要使不等式对于任意的恒成立,实数的取值范围是.【考点】1.函数求最值;2.恒成立问题的处理方法.6.下列四个命题:①方程若有一个正实根,一个负实根,则;②函数是偶函数,但不是奇函数;③函数的值域是,则函数的值域为;④一条曲线和直线的公共点个数是,则的值不可能是.其中正确的有________________(写出所有正确命题的序号).【答案】①④【解析】,故①正确;根据定义域,,所以,所以也是奇函数;故②不正确;仅是定义域变了,值域没有改变;故③不正确;是关于对称轴对称的图像,所以与其交点个数只能是偶数个,不可能是1.故④正确.【考点】1.方程根与系数的关系;2.函数奇偶性;3.抽象函数;4.函数图像.7.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式,当时,则,此时,所以A错误;当恒成立时,有,此时假设,则由绝对值不等式可知恒成立,此时与恒成立矛盾,再结合对A选项的分析,可知,所以B选项错误;当时,则,此时,方程,左边是正数,右边是负数,无解,所以C错误;对于D,当关于的方程有解时,由上述C选项的分析可知不可能小于0,当时,,也不满足有解,所以,此时由有解,可得,所以,所以,选项D正确,故选D.【考点】函数与绝对值不等式.8.如果二次函数不存在零点,则的取值范围是()A.B.C.D.【答案】B【解析】∵二次函数不存在零点,二次函数图象向上,∴,可得,解得,故选D.【考点】1、函数零点;2、函数与方程的关系.9.已知函数是定义在上的奇函数,当时的解析式为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的零点.【答案】(Ⅰ)(Ⅱ)零点为【解析】(Ⅰ)先利用奇函数的性质求时的解析式,再求时的解析式,最后写出解析式. 本小题的关键点:(1)如何借助于奇函数的性质求时的解析式;(2)不能漏掉时的解析式.(Ⅱ)首先利用求零点的方法:即f(x)=0,然后解方程,同时注意限制范围.试题解析:(Ⅰ)依题意,函数是奇函数,且当时,,当时,, 2分又的定义域为,当时, 2分综上可得, 2分(Ⅱ)当时,令,即,解得,(舍去) 2分当时,, 1分当时,令,即,解得,(舍去) 2分综上可得,函数的零点为 1分【考点】1、奇函数的性质;2、求方程的零点.10.函数的零点所在的区间是()A.B.C.D.【答案】C.【解析】因为函数的定义域为大于零的实数。

所以不考虑A选项.分别计算,所以,由零点定理可得,函数的零点在区间上.故选C.【考点】1.函数零点定理.2.估算的思想.11.已知函数f(x)=,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).【答案】见解析【解析】本题是一个比较复杂的函数求零点的问题,通过转化为两个较熟悉的函数研究.容易得到两个数有三个交点,所以有三个零点.零点的范围不好确定,本题很巧妙地应用了零点定理,求出了个的范围.这种方法值得好好体会.试题解析:由f(x)=0,得,令,.分别画出它们的图象如图,其中抛物线的顶点坐标为(0,2),与x轴的交点为(-2,0)、(2,0),与的图象有3个交点,从而函数f(x)有3个零点.由f(x)的解析式知x≠0,f(x)的图象在(-∞,0)和(0,+∞)上分别是连续不断地曲线,且即,.所以三个零点分别在区间(-3,-2),,(1,2)内.【考点】1.函数的零点转化为图解.2.零点定理.3.列举发现问题的思维.12.(1)已知函数y=ln(-x2+x-a)的定义域为(-2,3),求实数a的取值范围;(2)已知函数y=ln(-x2+x-a)在(-2,3)上有意义,求实数a的取值范围.【答案】(1)-6 (2)a≤-6【解析】(1)因为,函数y=ln(-x2+x-a)的定义域为(-2,3),所以,-x2+x-a>0的解集为(-2,3),-2,3是方程-x2+x-a=0的根,故a=-6。

(2)因为,函数y=ln(-x2+x-a)在(-2,3)上有意义,即-x2+x-a>0在(-2,3)成立,而二次函数-x2+x-a的图象开口向下,对称轴为,所以,-32+3-a0,故a≤-6。

【考点】对数函数的性质,一元二次不等式的解法,二次函数的图象和性质。

点评:中档题,本题以对比的形式,给出在不同要求下,此类问题的解法,同时注重了基础性。

对于一元二次问题,往往借助于二次函数的图象和性质,数形结合。

13.设为奇函数,为常数,(1)求的值;(2)证明在区间上单调递增;(3)若,不等式恒成立,求实数的取值范围。

【答案】(1)-1(2)∵,(),设,则∵,∴∴,在区间上单调递增(3)【解析】(1)∵,∴∴,即,∴(2)∵,(),设,则∵,∴∴,在区间上单调递增(3)设,则在上是增函数∴对恒成立,∴-【考点】函数性质:奇偶性单调性点评:若函数满足则是奇函数,若满足则是偶函数,第二问证明函数单调性采用的是定义的方法,此外导数法也是判定单调性常用方法,第三问不等式恒成立问题中常将其转化为求函数最值14.已知函数(1)写出的单调区间(2)解不等式(3)设上的最大值【答案】∴f(x)的单调递增区间是(-∞,1]和[2,+∞);单调递减区间是[1,2]⑵∵或∴不等式f(x)<3的解集为{x|x<3}⑶①当②当1≤a≤2时,f(x)在[0 1]上是增函数,在[1,a]上是减函数,此时f(x)在[0 a]上的最大值是f(1)=1③当a>2时,令f(a)-f(1)=a(a-2)-1=a2-2a-1>0, 解得ⅰ当2<a≤时,此时f(a)≤f(1),f(x)在[0,a]上的最大值是f(1)=1ⅱ当a>时,此时f(a)>f(1),f(x)在[0,a]上的最大值是f(a)=a(a-2)综上,当0<a<1时,f(x)在[0,a]上的最大值是a(2-a);【解析】略15.已知函数y=f(x)为奇函数,若f(3)-f(2)=1,则f(-2)-f(-3)=____。

【答案】1【解析】因为函数y=f(x)为奇函数,所以f(-2)=-f(2),f(-3)=-f(3).所以f(-2)-f(-3)=-f(2)+f(3)=116.已知函数的图像,并写出该函数的单调区间与值域。

(1)利用绝对值及分段函数知识,将函数的解析式写成分段函数;(2)在给出的坐标系中画出的图象,并根据图象写出函数的单调区间和值域.【答案】(1)------3分(2)图象如右图所示 --------------6分单调增区间为单调减区间为--------------9分值域为:【解析】略17.下列函数中,在区间内有零点且单调递增的是 ( )A.B.C.D.【答案】 C【解析】函数在区间(-1,1)内不单调;函数在区间(-1,1)内是减函数;函数在区间(-1,1)内是增函数,且所以函数在区间(-1,1)内有零点;函数在时无意义;故选C18.已知函数(1)当,且时,求证:(2)是否存在实数,使得函数的定义域、值域都是?若存在,则求出的值,若不存在,请说明理由。

【答案】解:(1),,所以在(0,1)内递减,在(1,+)内递增。

由,且,即。

(2)不存在满足条件的实数。

①当时,在(0,1)内递减,,所以不存在。

…………………………7分②当时,在(1,+)内递增,是方程的根。

而方程无实根。

所以不存在。

…………………………10分③当时,在(a,1)内递减,在(1,b)内递增,所以,由题意知,所以不存在。

【解析】略19.已知是奇函数,且时,()......A.............B.......C...........D.【答案】C【解析】;所以故选C20.(本小题满分14分)已知,若函数在区间上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断函数在区间上的单调性,并求出的最小值.【答案】解:(1)的图像为开口向上的抛物线,且对称轴为………2分∴有最小值. ………3分当,即时,有最大值;………5分当,即时,有最大值;………7分………8分(3)设,则,在上是减函数.………10分设,则在上是增函数.………12分.∴当时,有最小值。

………14分【解析】略21.函数的定义域为【答案】【解析】令即解得:故的定义域为:22.若函数f(x)满足f(1-x)=f(3+x),且y=f(x)有三个零点,则这三个零点之和等于【答案】6【解析】略23.若关于x的方程 (a>0,且a≠1)有两个不相等的实根,则实数a的取值范围是【答案】;【解析】略24.函数f(x)= 2x与函数g(x)=log2x关于()A x轴对称 B关于y轴对称 C直线y=x对称 D关于原点对称【答案】C【解析】略25.若一次函数有一个零点2,那么函数的零点是 .【答案】【解析】略26.(本题满分12分)设f(x)是定义在(0,+∞)上的增函数,且f()=f(x)-f(y).(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+5)-f()<2.【答案】(1)0(2)(0,4)【解析】略27. .函数的零点所在的大致区间是()A.(1,2)B.(2,3)C.(e,3)D.(e,+∞)【答案】B【解析】略28.函数的零点所在区间为()A.B.C.D.【答案】C【解析】略29.(本小题10分)已知甲、乙两地相距150km,某人开汽车以60km/h的速度从甲地到达乙地,在乙地停留1小时后再以50km/h的速度返回甲地,把汽车离开甲地的距离s表示为时间t(从甲地出发时开始)的函数,求此函数表达式.【答案】【解析】略30.已知,那么等于()A.B.C.D.【答案】C【解析】略31.已知定义在区间上的函数的图像如图所示,对于满足的任意、,给出下列结论:①;②;③.其中正确结论的序号是.(把所有正确结论的序号都填上)【答案】②③【解析】略32.某租赁公司出租同一型号的设备40套,当每套月租金为270元时,恰好全部租出,在此基础上,每套月租金每增加10元,就少租出1套设备,而未租出的设备每月需支付各种费用每套20元,设每套设备实际月租金为元,月收益为元(总收益=设备租金收入—未租出设备支出费用)。

相关文档
最新文档