勾股定理的实际问题
初中数学 如何证明勾股定理在解决实际问题中的应用

初中数学如何证明勾股定理在解决实际问题中的应用。
勾股定理是初中数学中的重要定理之一,它描述了直角三角形中直角边的平方和等于斜边的平方。
虽然在学习数学的过程中,我们经常通过几何证明来理解勾股定理,但是它在解决实际问题中的应用也是非常广泛的。
在本文中,我们将探讨勾股定理在实际问题中的应用,并通过具体的例子来加深理解。
1. 建筑工程中的应用勾股定理在建筑工程中有着广泛的应用。
例如,在设计房屋的时候,我们需要确定墙壁的角度和长度。
通过使用勾股定理,我们可以计算出两面墙壁之间的距离,从而确保房屋的结构和稳定性。
此外,在设计楼梯和斜坡的过程中,勾股定理也可以用来计算出坡度和高度,以确保安全性。
2. 导航系统中的应用勾股定理在导航系统中也有着重要的应用。
例如,在GPS系统中,我们经常需要确定两个位置之间的距离和方向。
通过使用勾股定理,我们可以计算出两个坐标之间的直线距离,从而确定最短路径和导航方向。
此外,勾股定理还可以用来计算出飞机、船只和汽车等交通工具的速度和位移。
3. 物理学中的应用勾股定理在物理学中也有着广泛的应用。
例如,在力学中,我们经常需要计算物体在斜面上的运动情况。
通过使用勾股定理,我们可以计算出物体在斜面上的加速度、速度和位移等参数。
此外,在光学中,勾股定理可以用来计算出光线的入射角和折射角,从而帮助我们理解光的传播和折射规律。
4. 金融领域中的应用勾股定理在金融领域中也有着一定的应用。
例如,在投资领域,我们经常需要计算投资组合的风险和回报。
通过使用勾股定理,我们可以构建一个有效的投资组合,以最大化回报并降低风险。
此外,在贷款和利率计算中,勾股定理可以用来计算出贷款的利率和还款期限等关键参数。
综上所述,勾股定理在解决实际问题中有着广泛的应用。
无论是在建筑工程、导航系统、物理学还是金融领域,勾股定理都发挥着重要的作用。
通过了解和应用勾股定理,我们可以更好地理解和解决实际问题,提高数学应用能力,并将数学知识与实际生活相结合。
勾股定理的应用

勾股定理的应用勾股定理作为数学中著名的定理之一,广泛应用于各个领域。
它是数学中的基础定理之一,也是几何学中三角形研究的重要工具。
本文将从几个应用角度介绍勾股定理在实际生活中的运用。
一、建筑工程中的应用勾股定理在建筑工程中有着广泛的应用。
举个例子,我们在修建某一斜坡时,需要确定其坡度,勾股定理可以帮助我们准确计算出坡度。
此外,在设计斜面道路、楼梯等结构时,勾股定理也能帮助我们确保结构的稳定与安全。
二、航海导航中的应用在航海导航中,勾股定理被广泛用于测量船只的航向和航速。
通过测量船只相对于岸上两个点的距离,结合勾股定理可以计算出船只的位移和速度,为航海者提供准确的导航信息。
三、地理测量中的应用在地理测量中,勾股定理被用于测量两个相隔较远的地点之间的距离。
通过在地面上进行三角测量,即测量两个点与另一个点的夹角以及距离,再利用勾股定理求解,可以得到精确的距离数据,为地理测量和地图绘制提供重要支持。
四、天文学中的应用在天文学中,勾股定理被用于测量遥远星体之间的距离和角度。
天文学家通过观测星体的位置和角度,结合勾股定理的计算方法,可以确定天体的距离和大小,进而推断宇宙的形态和结构。
五、计算机图形学中的应用计算机图形学中,勾股定理被广泛应用于图形处理和渲染。
图形引擎通过勾股定理来计算线段的长度、图形的形状和倾斜度等信息,为计算机生成的图像提供基础数学支持。
综上所述,勾股定理作为数学中一项重要的基础定理,在实际生活中有着广泛的应用。
它在建筑工程、航海导航、地理测量、天文学和计算机图形学等领域中都起着重要的作用。
通过勾股定理的运用,我们可以提高工作效率,确保工程安全,促进科学发展。
因此,深入理解和应用勾股定理对我们的日常生活和社会发展都具有重要意义。
勾股定理的实际应用案例分析

勾股定理的实际应用案例分析勾股定理是数学中的重要定理之一,也是人们在实际生活中常用的数学工具。
本文将通过分析一些实际应用案例,展示勾股定理在解决问题中的作用和价值。
1. 建筑领域中的勾股定理应用在建筑领域,勾股定理是测量和设计中不可或缺的工具之一。
例如,当建筑师设计一个直角形房间时,他们需要使用勾股定理来确保房间的墙壁是垂直的。
通过测量房间两个相对角的长度,并应用勾股定理计算斜边的长度,建筑师可以确保墙壁是垂直的,从而确保房间的稳定性和安全性。
2. 地理测量中的勾股定理应用地理测量中的三角测量法是一种常用的测量方法,其中就包括利用勾股定理来计算距离和角度。
例如,当测量两个地点之间的直线距离时,测量员可以使用勾股定理,通过测量两个直角边的长度计算出斜边的长度,从而得到两地之间的距离。
3. 航空航天领域中的勾股定理应用在航空航天领域,勾股定理也起到重要的作用。
例如,飞机在空中导航时会使用仪表着陆系统(ILS)来进行着陆。
这个系统包括一个地面引导系统和一个飞机上的接收机。
通过利用勾股定理,地面引导系统可以计算出飞机与跑道之间的距离和高度,从而为飞行员提供准确的导航和着陆指引。
4. 电子设备制造中的勾股定理应用在电子设备制造过程中,勾股定理也常被应用于检测和排除设备中的故障。
例如,在制造电视机时,工程师可能要使用勾股定理来测量电视屏幕的对角线,以确保屏幕大小符合规格要求。
如果测量出的对角线长度不符合预期结果,就可能意味着设备存在问题,需要进行进一步检查和修复。
综上所述,勾股定理在实际生活中有着广泛的应用。
无论是在建筑领域、地理测量、航空航天还是电子设备制造等领域,勾股定理都是不可或缺的工具和方法。
通过分析勾股定理的实际应用案例,我们可以更加深入地理解这个数学定理的重要性,并通过它解决问题和改进现有技术。
用勾股定理解决实际问题

用勾股定理解决实际问题勾股定理是数学中的基本定理之一,它描述了一个直角三角形中,直角边的平方和等于斜边的平方。
这个定理在实际生活中有着广泛的应用,特别是在计算机图形学、建筑设计、地理测量和航天航空等领域。
本文将通过几个实际问题的例子,探讨如何运用勾股定理解决实际问题。
一、房屋设计中的勾股定理应用在房屋设计中,为了保证建筑的结构稳定和美观,需要进行精确的测量和计算。
勾股定理在房屋设计中起着重要的作用。
例如,在设计一个三角形屋顶的平面布置时,我们需要测量斜边的长度。
假设一栋楼房的两个直角边分别为6米和8米,请问斜边的长度是多少?根据勾股定理,斜边的长度可以通过以下公式计算:斜边长度= √(直角边1的长度² + 直角边2的长度²)代入已知数值,斜边长度= √(6² + 8²) = √(36 + 64) = √100 = 10米因此,该三角形屋顶的斜边长度为10米。
二、地理测量中的勾股定理应用在地理测量中,勾股定理可以帮助我们计算两个点之间的距离、角度和方位。
例如,假设我们需要测量两个山顶之间的直线距离,我们只能在地面上进行测量。
假设山顶A和山顶B之间的两个直角边长度分别为300米和400米,请问山顶A和山顶B之间的直线距离是多少?根据勾股定理,直线距离可以通过以下公式计算:直线距离= √(直角边1的长度² + 直角边2的长度²)代入已知数值,直线距离= √(300² + 400²) = √(90000 + 160000) =√250000 = 500米因此,山顶A和山顶B之间的直线距离为500米。
三、建筑设计中的勾股定理应用在建筑设计中,勾股定理可以用于计算斜面的长度和倾斜角度。
例如,在设计一个斜坡道时,我们需要计算斜坡的长度和倾斜角度。
假设斜坡的水平距离为10米,垂直高度为2米,请问斜坡的长度和倾斜角度分别是多少?根据勾股定理,斜坡的长度可以通过以下公式计算:斜坡长度= √(水平距离² + 垂直高度²)代入已知数值,斜坡长度= √(10² + 2²) = √(100 + 4) = √104 ≈ 10.20米因此,斜坡的长度约为10.20米。
用勾股定理解决问题

用勾股定理解决问题勾股定理是数学中一个重要的定理,可以解决许多与直角三角形相关的问题。
它表明,在一个直角三角形中,直角边的平方等于其他两边的平方和。
在本文中,我们将探讨如何运用勾股定理来解决一些实际问题。
问题一:计算斜边的长度假设有一个直角三角形,其中一条直角边的长度为3,另一条直角边的长度为4。
我们可以利用勾股定理来计算斜边的长度。
根据勾股定理,斜边的平方等于3的平方加上4的平方,即斜边的平方等于9加上16,得到斜边的平方等于25。
因此,斜边的长度为5。
问题二:判断三条边是否能够构成直角三角形给定三条边的长度,如何确定它们是否能够构成直角三角形?我们可以运用勾股定理来解决这个问题。
假设三条边的长度分别为a、b和c,其中c是最长的边。
如果a的平方加上b的平方等于c的平方,则这三条边可以构成直角三角形;如果不等于,则无法构成直角三角形。
通过这个方法,我们可以快速判断任意三条边是否构成直角三角形。
问题三:求解未知边的长度有时候,我们已知一个直角三角形的两条边的长度,但需要求解另一条边的长度。
这时,我们可以利用勾股定理求解未知边的长度。
假设已知一条直角边的长度为a,另一条直角边的长度为b,且我们希望求解斜边的长度c。
根据勾股定理,c的平方等于a的平方加上b的平方。
通过对这个方程进行求解,我们就可以得到未知边的长度。
问题四:应用于几何图形的计算除了直角三角形,勾股定理在几何图形的计算中也有广泛的应用。
例如,我们可以利用勾股定理来计算矩形的对角线长度。
假设矩形的长为a,宽为b,我们可以利用勾股定理求解对角线的长度。
结论勾股定理是一项在数学和几何学中广泛应用的定理。
通过运用这一定理,我们可以解决许多关于直角三角形的问题,如计算斜边的长度、判断三条边是否能够构成直角三角形、求解未知边的长度,以及应用于几何图形的计算。
勾股定理为我们提供了一种便捷而准确的方法,可以解决许多实际问题。
因此,熟练掌握和应用勾股定理对于数学学习和实际应用都具有重要意义。
勾股定理生活中的应用

勾股定理生活中的应用
勾股定理是数学中的一个重要定理,可以应用于许多实际问题中。
在生活中,勾股定理有以下应用:
1. 测量直角三角形的直角边和斜边的长度。
例如在建筑工程中,
使用勾股定理可以测量房间的对角线长度、屋顶的倾斜角度等。
2. 计算物体的投影距离。
例如,在射击运动中,使用勾股定理可
以计算弹道的投影距离,帮助射手瞄准目标。
3. 计算电路中电压、电流和电阻之间的关系。
例如,在电子工程中,使用勾股定理可以计算电路中不同元件之间的参数,帮助工程师
设计电路。
4. 计算航空航天器的飞行轨迹和速度。
例如,在航空航天领域中,使用勾股定理可以计算卫星的轨道位置和速度,帮助天文学家和工程
师进行航天探测任务。
总之,勾股定理是一种非常实用的数学工具,可以广泛应用于生
活中的各个领域,帮助人们解决实际问题。
勾股定理的实际应用【十二大题型】(解析版)

勾股定理的实际应用【十二大题型】【题型1求梯子滑落高度】【题型2求旗杆高度】【题型3求小鸟飞行距离】【题型4求大树折断前的高度】【题型5解一元一次不等式组】【题型6解决水杯中筷子问题】【题型7解决航海问题】【题型8求河宽】【题型9求台阶上地毯长度】【题型10判断汽车是否超速】【题型11选址使到两地距离相等】【题型12求最短路径】【题型1求梯子滑落高度】1(2023春·广东惠州·八年级校考期中)某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1),如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE,点B在DE上,OE的长即为消防车的高3m)【答案】消防车从原处向着火的楼房靠近的距离AC为3m【分析】在Rt△ABO中,根据勾股定理得到AO和OC,于是得到结论.【详解】解:在Rt△ABO中, ∵∠AOB=90°,AB=15m,OB=12-3=9(m),∴AO=AB2-OB2=152-92=12(m),在Rt△ABO中,∵∠COD=90°,CD=15m,OD=15-3=12(m),∴OC=CD2-OD2=152-122=9(m),∴AC=OA-OC=3(m),答:消防车从原处向着火的楼房靠近的距离AC为3m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.1(2023春·山西晋中·八年级统考期中)如图,小巷左右两侧是竖直的高度相等的墙,一根竹竿斜靠在左墙时,竹竿底端O到左墙角的距离OC为0.7米,顶端B距墙顶的距离AB为0.6米若保持竹竿底端位置不动,将竹竿斜靠在右墙时,竹竿底端到右墙角的距离OF为1.5米,顶端E距墙项D的距离DE为1米,点A、B、C在一条直线上,点D、E、F在一条直线上,AC⊥CF,DF⊥CF.求:(1)墙的高度;(2)竹竿的长度.【答案】(1)墙高3米(2)竹竿的长2.5米【分析】(1)设墙高x米,在RtΔBCO,RtΔEFO根据勾股定理即可表示出竹竿长度的平方,联立即可得到答案;(2)把(1)中的x代入勾股定理即可得到答案.【详解】(1)解:设墙高x米,∵AC⊥CF,DF⊥CF,∴∠BCO=∠EFO=90°,在RtΔBCO,RtΔEFO根据勾股定理可得,BO2=(x-0.6)2+0.72,OE2=(x-1)2+1.52,∵BO=OE,∴(x-1)2+1.52=(x-0.6)2+0.72,解得:x=3,答:墙高3米;(2)由(1得),BO2=(x-0.6)2+0.72,x=3,∴BO=(3-0.6)2+0.72=2.5答:竹竿的长2.5米.【点睛】本题考查勾股定理实际应用题,解题的关键时根据两种不同状态竹竿长不变列等式及正确计算.2(2023春·浙江宁波·八年级统考期末)如图,一条笔直的竹竿斜靠在一道垂直于地面的墙面上,一端在墙面A处,另一端在地面B处,墙角记为点C.(1)若AB=6.5米,BC=2.5米.①竹竿的顶端A沿墙下滑1米,那么点B将向外移动多少米?②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?如果不可能,请说明理由;如果可能,请求出移动的距离(保留根号).(2)若AC=BC,则顶端A下滑的距离与底端B外移的距离,有可能相等吗?若能相等,请说明理由;若不等,请比较顶端A下滑的距离与底端B外移的距离的大小.【答案】(1)①69-52米;②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等,理由见解析(2)不可能相等,顶端A下滑的距离大于底端B外移的距离.【分析】(1)先根据勾股定理可得AC=6米,①根据题意得:AA =1m,可得到A C=AC-AA =5米,由勾股定理可得B C的长,即可求解;②设从A处沿墙AC下滑的距离为x米,点B也向外移动的距离为x米,根据勾股定理,列出方程,即可求解;(2)设AC=BC=a,从A处沿墙AC下滑的距离为m米,点B向外移动的距离为n米,则AB=A B =2a,根据勾股定理,列出方程,可得m-n=m2+n22a,即可求解.【详解】(1)解:∠C=90°,AB=A B =6.5米,∴AC=AB2-BC2=6米,①根据题意得:AA =1m,∴A C=AC-AA =5米,∴B C=A B 2-A C2=692米,∴BB =B C-BC=692-2.5=69-52米,即点B将向外移动69-52米;②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等,理由如下:设从A处沿墙AC下滑的距离为x米,点B也向外移动的距离为x米,根据题意得:6-x2+2.5+x2=6.52,解得:x1=3.5,x2=0(舍去),∴从A处沿墙AC下滑的距离为3.5米时,点B也向外移动的距离为3.5米,即竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等;(2)解:不可能相等,理由如下:设AC =BC =a ,从A 处沿墙AC 下滑的距离为m 米,点B 向外移动的距离为n 米,则AB =A B =2a ,根据题意得:a -m 2+a +n 2=2a 2,整理得:2a m -n =m 2+n 2,即m -n =m 2+n 22a,∵a 、m 、n 都为正数,∴m -n =m 2+n 22a>0,即m >n .∴顶端A 下滑的距离大于底端B 外移的距离.【点睛】本题主要考查了勾股定理的实际应用,熟练掌握勾股定理是解题的关键.3(2023春·辽宁沈阳·八年级统考期中)拉杆箱是人们出行的常用品,采用拉杆箱可以让人们出行更轻松.如图,一直某种拉杆箱箱体长AB =65cm ,拉杆最大伸长距离BC =35cm ,在箱体底端装有一圆形滚轮,当拉杆拉到最长时,滚轮的圆心在图中的A 处,点A 到地面的距离AD =3cm ,当拉杆全部缩进箱体时,滚轮圆心水平向右平移55cm 到A ′处,求拉杆把手C 离地面的距离(假设C 点的位置保持不变).【答案】拉杆把手C 离地面的距离为63cm【分析】过C 作CE ⊥DN 于E ,延长AA '交CE 于F ,根据勾股定理即可得到方程652-x 2=1002-(55+x )2,求得A 'F 的长,即可利用勾股定理得到CF 的长,进而得出CE 的长.【详解】如图所示,过C 作CE ⊥DN 于E ,延长AA '交CE 于F ,则∠AFC =90°,设A 'F =x ,则AF =55+x ,由题可得,AC =65+35=100,A 'C =65,∵Rt △A 'CF 中,CF 2=652-x 2,Rt △ACF 中,CF 2=1002-(55+x )2,∴652-x 2=1002-(55+x )2,解得x =25,∴A 'F =25,∴CF =A C 2-A F 2=60(cm ),又∵EF =AD =3(cm ),∴CE =60+3=63(cm ),∴拉杆把手C 离地面的距离为63cm .【点睛】本题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.【题型2求旗杆高度】1(2023春·山西临汾·八年级统考期末)同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B 的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE 为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2=AF2+EF2,根据AC=AE,得出AB2+12=(AB-1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB-1)2+52,又∵AC=AE,∴AB2+12=(AB-1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12=(AB-1)2+52.1(2023春·江西景德镇·八年级统考期中)2021年是中国共产党建党100周年,大街小巷挂满了彩旗.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在地面上.旗杆从旗顶到地面的高度为240cm,在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.【答案】90cm【分析】首先观察题目,作辅助线构造一个直角三角形,如图,连接DE;已知彩旗为长方形,由题意可知,无风的天气里,彩旗自然下垂时,彩旗最低处到旗杆顶部的长度正好是长方形彩旗完全展开时的对角线的长度,根据勾股定理可求出它的长度;然后用旗杆顶部到地面高度减去这个数值,即可求得答案.【详解】彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=240-150=90(cm).∴彩旗下垂时的最低处离地面的最小高度h为90cm.【点睛】本题考查了勾股定理的实际应用,此类题的难点在于正确理解题意,结合实际运用勾股定理.2(2023春·八年级课时练习)太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.7米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH的长度.【答案】(1)风筝的高度CE为21.7米(2)BH的长度为9米【分析】(1)在Rt△CDB中由勾股定理求得CD的长,再加上DE即可;(2)利用等积法求出DH的长,再在Rt△BHD中由勾股定理即可求得BH的长.【详解】(1)在Rt△CDB中,由勾股定理,得:CD=C2-BD2=252-152=20(米),所以CE=CD+DE=20+1.7=21.7(米),答:风筝的高度CE为21.7米.(2)由等积法知:12BD×DC=12BC×DH,解得:DH=15×2025=12(米).在Rt△BHD中,BH=BD2-DH2=9(米),答:BH的长度为9米.【点睛】本题考查了勾股定理的实际应用,正确运用勾股定理是关键,注意计算准确.3(2023春·山西吕梁·八年级统考期中)如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【答案】6【分析】先根据勾股定理求得AC,进而求得AD,根据勾股定理即可求得范围.【详解】由题意可知AC+BC=8,AB=4,则AC2+AB2=BC2,即AC2+42=(8-AC)2,解得AC=3,若下次大风将旗杆从D处吹断,如图,∴AD=AC-1.25=3-1.25=1.75,∴BD=AB-AD=8-1.75=6.25,AB=BD2-AD2= 6.252-1.752=6.∴则距离旗杆底部周围6米范围内有被砸伤的危险.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.【题型3求小鸟飞行距离】1(2023春·陕西咸阳·八年级统考期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C点的距离.【答案】17米【分析】已知AB和AC的长度,根据勾股定理即可求出BC的长度,小鸟下降12米,则BD=AB-12,根据勾股定理即可求出CD的长度.【详解】解:由勾股定理得;BC2=AC2-AB2=252-202=225,∴BC=15(米),∵BD=AB-AD=20-12=8(米),∴在Rt△BCD中,由勾股定理得CD=DB2+BC2=82+152=17,∴此时小鸟到地面C点的距离17米.答;此时小鸟到地面C点的距离为17米.【点睛】本题主要考查了勾股定理得实际应用,熟练地掌握勾股定理的内容是解题的关键.1(2023春·八年级课时练习)有两棵树,一棵高6米,另一棵高3米,两树相距4米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了( )米.A.3B.4C.5D.6【答案】C【分析】此题可以过低树的一端向高树引垂线.则构造了一个直角三角形:其斜边是小鸟飞的路程,一条直角边是4,另一条直角边是两树相差的高度3.根据勾股定理得:小鸟飞了5米.【详解】解:如图所示,AB=6m,CD=3m,BC=4m,过D作DE⊥AB于E,则DE=BC=4m,BE=CD=3m,AE=AB-BE=6-3=3m,在Rt△ADE中,AD=5m.故选:C.【点睛】能够正确理解题意,准确画出图形,熟练运用勾股定理即可.2(2023春·山东枣庄·八年级统考期中)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?【答案】它至少需要5.2s才能赶回巢中.【分析】根据题意,构建直角三角形,利用勾股定理解答.【详解】解:如图,由题意知AB=3,CD=14-1=13,BD=24.过A作AE⊥CD于E.则CE=13-3=10,AE=24,∴在Rt△AEC中,AC2=CE2+AE2=102+242.∴AC=26,26÷5=5.2(s).答:它至少需要5.2s才能赶回巢中.【点睛】本题考查了勾股定理的应用.关键是构造直角三角形,同时注意:时间=路程÷速度.3(2023春·贵州贵阳·八年级校考期中)假期中,小明和同学们到某海岛上去探宝,按照探宝图,他们从A点登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的直线距离是多少千米?【答案】10千米【分析】通过行走的方向和距离得出对应的线段的长度.根据题意构造直角三角形,利用勾股定理求解.【详解】解:过点B作BD⊥AC于点D.根据题意可知,AD=8-3+1=6,BD=2+6=8,在Rt△ABD中,∴AB=AD2+BD2=62+82=10.答:登陆点A到宝藏处B的距离为10千米.【点睛】本题考查勾股定理的实际应用.读懂题意,根据题意找到需要的等量关系,与勾股定理结合求线段的长度是解题的关键.【题型4求大树折断前的高度】1(2023春·八年级课时练习)如图,在倾斜角为45°(即∠NMP=45°)的山坡MN上有一棵树AB,由于大风,该树从点E处折断,其树顶B恰好落在另一棵树CD的根部C处,已知AE=1m,AC=18m.(1)求这两棵树的水平距离CF;(2)求树AB的高度.【答案】(1)3m(2)6m【分析】(1)根据平行的性质,证得AF=CF,根据勾股定理即可求得.(2)在Rt△CEF中,根据勾股定理即可解得.【详解】(1)由题可知MP∥CF,∠F=90°∴∠ACF=∠NMP=45°,∴AF=CF在Rt△ACF中,CF2+AF2=AC2,∴2CF2=18,∴AF=CF=3(m).即这两棵树的水平距离为3m.(2)在Rt△CEF中,CE2=CF2+EF2∴CE=32+42=5,∴AB=AE+CE=5+1=6(m).即树AB的高度为6m.【点睛】此题考查了勾股定理,解题的关键是熟悉勾股定理的实际应用.1(2023春·广东云浮·八年级统考期中)海洋热浪对全球生态带来了严重影响,全球变暖导致华南地区汛期更长、降水强度更大,使得登录广东的台风减少,但是北上的台风增多.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10mB.15mC.18mD.20m【答案】C【分析】如图,勾股定理求出AC的长,利用AC+BC求解即可.【详解】解:如图,由题意,得:BC=5,AB=12,BC⊥AB,∴AC=AB2+BC2=13,∴这棵大树在折断前的高度为13+5=18m;故选C.【点睛】本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.2(2023春·山西阳泉·八年级统考期末)我国古代数学名著《算法统宗》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即P C=10尺,秋千踏板离地的距离P B和身高5尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为x尺,根据题意可列方程为.【答案】(x+1-5)2+102=x2.【分析】根据勾股定理列方程即可得出结论.【详解】解:由题意知:OP'=x,OC=x+1-5,P'C=10,在Rt△OCP'中,由勾股定理得:(x+1-5)2+102=x2.故答案为:(x+1-5)2+102=x2.【点睛】本题主要考查了勾股定理的应用和列方程,读懂题意是解题的关键.3(2023春·广东珠海·八年级校考期中)如图,一根直立的旗杆高8m,因刮大风旗杆从点C处折断,顶部B着地且离旗杆底部A4m.(1)求旗杆距地面多高处折断;(2)工人在修复的过程中,发现在折断点C的下方1.25m的点D处,有一明显裂痕,若下次大风将旗杆从点D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【答案】(1)旗杆距地面3m处折断;(2)距离杆脚周围6米大范围内有被砸伤的危险.【分析】(1)由题意可知:AC+BC=8米,根据勾股定理可得:AB2+AC2=BC2,又因为AB=4米,即可求得AC的长;(2)易求D点距地面3-1.25=1.75米,BD=8-1.75=6.25米,再根据勾股定理可以求得AB=6米,所以6米内有危险.【详解】(1)由题意可知:AC+BC=8米,∵∠A=90°,∴AB2+AC2=BC2,又∵AB=4米,∴AC=3米,BC=5米,∴旗杆距地面3m处折断;(2)如图,∵D点距地面AD=3-1.25=1.75米,∴BD=8-1.75=6.25米,∴AB=BD2-AD2=6米,∴距离杆脚周围6米大范围内有被砸伤的危险.【点睛】本题考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.【题型5判断是否受台风影响】1(2023春·湖北武汉·八年级统考期中)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ 上A处距离O点240米,如果火车行驶时,火车头周围150米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为秒.【答案】9【分析】过点A作AC⊥MN,求出最短距离AC的长度,然后在MN上取点B,D,使得AB=AD=150米,根据勾股定理得出BC,CD的长度,即可求出BD的长度,然后计算出时间即可.【详解】解:过点A作AC⊥MN,∵∠QON=30°,OA=240米,OA=120米,∴AC=12在MN上取点B,D,使得AB=AD=150米,当火车到B点时对A处产生噪音影响,∵AB=150米,AC=120米,∴由勾股定理得:BC=AB2-AC2=1502-1202=90米,CD=AD2-AC2=1502-1202=90米,即BD=180米,∵72千米/小时=20米/秒,∴影响时间应是:180÷20=9秒.故答案为:9.【点睛】本题主要考查了勾股定理,解题的关键在于准确找出受影响的路段,从而利用勾股定理求出其长度.1(2023春·陕西西安·八年级统考期中)为了鼓励大家积极接种新冠疫苗,某区镇政府采用了移动宣讲的形式进行广播宣传.如图,笔直的公路MN的一侧点A处有一村庄,村庄到公路MN的距离为300m,宣讲车P周围500m以内能听到广播宣传,宣讲车P在公路上沿MN方向行驶.(1)村庄能否听到广播宣传?请说明理由.(2)已知宣讲车的速度是50m/min,如果村庄能听到广播宣传,那么总共能听多长时间?【答案】(1)能,理由见解析(2)16【分析】(1)根据村庄A到公路MN的距离为300米<500米,即可得出村庄能听到广播宣传.(2)根据勾股定理得到BP=BQ=5002-3002=400(米),求得PQ=800米,即可得出结果.【详解】(1)村庄能听到广播宣传,理由如下:∵村庄A到公路MN的距离为300米<500米,∴村庄能听到广播宣传.(2)如图:假设当宣传车行驶到P点开始能听到广播,行驶到Q点不能听到广播,则AP=AQ=500米,AB=300米,由勾股定理得:BP=BQ=5002-3002=400(米),∴PQ=800米,∴能听到广播的时间为:800÷50=16(分钟),∴村庄总共能听到16分钟的宣传.【点睛】本题考查了勾股定理的应用,结合生活实际,便于更好地理解题意是解题的关键.2(2023春·山东青岛·八年级校考期末)如图所示,在甲村至乙村的公路AB旁有一块山地正在开发,现需要在C处进行爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB.为了安全起见,爆破点C周围半径250米范围内不得进入,在进行爆破时,公路AB 是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.【答案】公路AB有危险需要封锁,需要封锁的路段长度为140米【分析】过C作CD⊥AB于D,利用勾股定理算出AB的长度,然后利用三角形的面积公式可求出CD的长,用CD的长和250比较大小即可判断是否需要封锁,最后根据勾股定理求出封锁的长度.【详解】解:公路AB需要暂时封锁,理由如下:如图,过C作CD⊥AB于D,因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米,因为S△ABC=12AB⋅CD=12BC⋅AC,所以CD=BC⋅ACAB=400×300500=240(米),由于240米<250米,故有危险,封锁长度为:2×2502-2402=140米,因此AB段公路需要暂时封锁,封锁长度为140米.【点睛】本题考查了正确运用勾股定理,善于观察题目的信息是解题的关键.3(2023春·广东广州·八年级校考期中)如图,A城气象台测得台风中心在A城正西方向320km的B 处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,则A城遭受这次台风影响有多长时间?【答案】(1)要,理由见解析(2)6h【分析】(1)由A点向BF作垂线,垂足为C,根据勾股定理求得AC的长,与200km比较即可得结论;(2)BF上分别取D、G,则△ADG是等腰三角形,由AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在GD长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.【详解】(1)解:由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200km,则还有一点G,有AG=200km.∵DA=AG,∴△ADG是等腰三角形,∵AC⊥BF,∴AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200km,AC=160km,由勾股定理得,CD=DA2-AC2=2002-1602=120km,则DG=2DC=240km,遭受台风影响的时间是:t=240÷40=6(h).【点睛】此题主要考查了勾股定理的应用以及点到直线的距离,构造出直角三角形是解题关键.【题型6解决水杯中筷子问题】1(2023春·河北唐山·八年级统考期中)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4<a<5B.3≤a≤4C.2≤a≤3D.1≤a≤2【答案】B【分析】如图,当吸管底部在D点时吸管在罐内部分最短,当吸管底部在B点时吸管在罐内部分最长,此时利用勾股定理在Rt△ADB中求出AB即可.【详解】解:如图,当吸管底部在底面圆心时吸管在罐内部分最短,此时吸管的的长度就是圆柱形的高,即12,∴a=16-12=4,当吸管底部在饮料罐的壁底时吸管在罐内部分最长,吸管长度=AD2+BD2=122+52=13,∴此时a=16-13=3,所以3≤a≤4.故选:B.【点睛】本题考查勾股定理的应用,善于观察题目的信息,正确理解题意是解题的关键.1(2023春·重庆渝中·八年级重庆市求精中学校校考期中)一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2mB.2.5cmC.2.25mD.3m【答案】A【分析】设水池的深度BC=xm,则AB=(0.5+x)m,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC中,AC=1.5m.AB-BC=0.5m.设水池的深度BC=xm,则AB=(0.5+x)m.根据勾股定理得出:∵AC2+BC2=AB2,∴1.52+x2=(x+0.5)2,解得:x=2.故选:A.【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键.2(2023春·山东青岛·八年级校考期中)有一个边长为10米的正方形水池,在水池正中央有一根新生的芦苇,它高出水面1米.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问:这个水池水的深度和这根芦苇的长度分别是多少?【答案】水池水深12米,芦苇长13米【分析】根据题意,构造直角三角形,根据勾股定理列出方程求解即可.【详解】解:如图:设芦苇BC长为x米,则水深AB为(x-1)米.∵芦苇长在水池中央,×10=5(米)∴AC=12根据勾股定理得:AC2+AB2=BC2,则:52+(x-1)2=x2,解得:x=13,∴x-1=13-1=12,答:水池水深12米,芦苇长13米.【点睛】本题主要考查勾股定理的实际应用,熟练掌握勾股定理的内容,勾股题意构造直角三角形,,根据勾股定理列出方程求解是解题的关键.3(2023春·河南漯河·八年级统考期中)如图,湖面上有一朵盛开的红莲,它高出水面30cm.大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,已知红莲移动的水平距离为60cm,则水深是cm.【答案】45【分析】设水深h厘米,则AB=h,AC=h+30,BC=60,利用勾股定理计算即可.【详解】红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.设水深h厘米,由题意得:Rt△ABC中,AB=h,AC=h+30,BC=60,由勾股定理得:AC2=AB2+BC2,即h+302=h2+602,解得h=45.故答案为:45.【点睛】本题考查了勾股定理的应用,正确审题,明确直角三角形各边的长是解题的关键.【题型7解决航海问题】1(2023春·重庆巴南·八年级统考期末)在海平面上有A,B,C三个标记点,其中A在C的北偏西54°方向上,与C的距离是800海里,B在C的南偏西36°方向上,与C的距离是600海里.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为500海里,每隔半小时会发射一次信号,此时在点B处有一艘轮船准备沿直线向点A处航行,轮船航行的速度为每小时20海里.轮船在驶向A处的过程中,最多能收到多少次信号?(信号传播的时间忽略不计).【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;∴∠ACB=90°;∵AC=800,BC=600;∴AB=AC2+BC2=1000海里;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里.∵CH⊥AB;∴∠CHB =90°;∵S △ABC =12AC ⋅BC =12AB ⋅CH ;∴CH =480;∵CN =CM =500;∴NH =MH =CM 2-CH 2=140;则信号次数为140×2÷20=14(次).答:最多能收到14次信号.【点睛】本题考查了勾股定理的应用,直角三角形的判定等知识,涉及路程、速度、时间的关系,熟练掌握勾股定理是关键.1(2023春·河南信阳·八年级统考期末)如图,已知港口A 东偏南10°方向有一处小岛B ,一艘货轮从港口A 沿南偏东40°航线出发,行驶80海里到达C 处,此时观测小岛B 在北偏东60°方向.(1)求此时货轮到小岛B 的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.【答案】(1)此时货轮到小岛B 的距离为80海里;(2)轮船向正东方向航行没有触礁危险.【分析】(1)先根据题意求出∠BAC =40°、∠ACB =100°,据此得∠ABC =∠ACB =40°,从而得出AC =BC =40海里;(2)作BD ⊥CD 于点D ,由∠BCD =30°、BC =70知BD =12BC =35,从而做出判断.【详解】解:(1)由题意知∠BAC =90°-10°-40°=40°,∠ACB =40°+60°=100°,∴∠ABC =180°-∠BAC -∠ACB =40°,∴∠ABC =∠BAC ,∴BC =AC =80海里,即此时货轮到小岛B 的距离为80海里;(2)如图,作BD ⊥CD 于点D ,在Rt △BCD 中,∵∠BCD =30°、BC =80,∴BD =12BC =40,∵40>36,。
勾股定理在实际生活中的应用

勾股定理在实际生活中的应用
勾股定理是古希腊数学家勾股所提出的,它表明了一个有三个正整
数组成的三角形的三条边(a,b,c)之间的关系,即a^2+b^2=c_2,主要
用于计算三角形中各边的长度,这个定理应用广泛。
1. 三棱锥和其他几何体
勾股定理在解决三角形问题的同时也有助于计算立体几何图面的表面
积和体积,特别是可以用来计算三棱锥的表面积和体积,对于任何一
个具有两个边长的三棱锥,可以使用勾股定理来求解它的底面和顶面
之间的距离,从而算出它的表面积和体积。
2. 建筑计算
勾股定理在建筑计算中也有用到,它可以帮助计算建筑物外墙和屋顶
坡度的高度,或者确定其他三角形形状建筑物的高度。
同时,屋面的
坡度也可以使用勾股定理来计算,因为屋面的坡度也是一个三角形,
勾股定理可以用来确定屋面的高度和角度。
3. 水利
建纳水利也是勾股定理的常用应用,它可以用来计算水渠或水坝底开
口的高度。
由于受水库底部和上部水平面之间的水头高度受到引水渠
容积受限,进一步受到引水渠斜度限制,那么可以使用勾股定理来求
解引水渠底开口高度。
因此,可以用勾股定理确定引水渠中水的流量,从而计算出正确的储水渠的容积。
4. 导航测量
导航测量中也使用到勾股定理,比如用它来计算从某一特定点到特定方位的垂直距离。
对角线距离也可以通过使用勾股定理来进行计算,这是由于当测量站和要测量的点之间存在着三角形关系,用勾股定理就可以求出两点之间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的实际应用
一、教学目标:
1.知识与技能:运用勾股定理解决一些实际问题的过程,进一步掌握勾股定理。
2.过程与方法:经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。
3.情感态度与价值观:培养数学意识,发展数学理念,体会勾股定理的应用价值。
二、教学重难点: 重点:勾股定理的应用。
难点:实际问题向数学问题的转化。
三、教学用具:多媒体课件 四、教学过程
一)前置性预习作业(课前自主完成,课上自主汇报)
一种盛饮料的圆柱形杯(如图),测得内部底面直径为5㎝,高为12㎝,吸管放进杯里,杯口外面露出5㎝,问吸管要做多长?
二)师生互动性交流
一个门框的尺寸如图所示,一块长3m ,宽2.2m 的薄木板能否从门框内通过?为什么? 分析: 木板的宽2.2米大于1米,所以横着不能从门框内通过.木板的宽2.2米大于2米,所以竖着不能从门框内通过.因为对角线AC 的长度最大,所以只能试试斜着能否通过. 所以将实际问题转化为数学问题.
小结:此题是将实际为题转化为数学问题,从中抽象出Rt△ABC,并求出斜边AC 的问题。
三、合作研讨
一个5m 长的梯子AB,斜靠在一竖直的墙AO 上,这时AO 的距离为4m, 如果梯子的顶端A 沿墙下滑1m,那么梯子底端B 也外移1m 吗?
分析:要求出梯子的底端B 是否也外移1米,实际就是求BD 的长,而BD=OD-OB
如果梯子的顶端A 沿墙下滑1.5m,那么梯子底端B 也外移1.5m 吗? 通过前面的题目设置陷阱,加深学生对此类问题的记忆。
(只需验证即可) C
B
A
D C
A B
1m
C
A C A
O
B D
四、当堂检测
1、 如图,学校有一块长方形花园,有极少数人为了避开拐角走“捷径”,在花园内走出了一条“路”,仅仅少走了________米路, 却踩伤了花草。
2、如图,大风将学校内一棵树的树干吹裂,随时都可能倒下,十分危急。
发现上报后学校领导迅速赶到现场,并决定从断裂处将树干锯断。
现在需要划出一个安全警戒区域,那么你能确定这个安全区域的半径至少是多少米吗?
3、一大楼发生火灾,消防车立即赶到距安全距离大楼9米处,升起云梯到失火的窗口,已知发生火灾的窗口距地面有14.2米,云梯底部距地面2.2米,问云梯至少需要搭出多少米可以够到失火的窗口?
4、如图,盒内长,宽,高分别是4分米,3分米和12分米,盒内可放的棍子最长是多少分米?
五、小结:
应用勾股定理解决实际问题的一般思路:
在解决实际问题时,首先要画出适当的示意图,将实际问题抽象为数学问题,并构建直角三角形模型,再运用勾股定理解决实际问题. 3
4
5m
18m
4
3 1
六、拓广延伸
如图,池塘边有两点A 、B ,无法直接测量AB 之间的距离,请你运用所学过的知识设计一种方法,来测量AB 间的距离。
要求:1、画出设计图
2、若涉及到角度,请直接标在设计图中
3、若涉及到长度,请用a 、b 、c 等字母 比一比,哪位同学的方法既多又好?
七、布置作业:课本26页练习1、2 八、板书设计:
勾股定理的实际问题
复习引入:…………… 合作研讨:……………… 3…………………… ………………………… …………………………… 4…………………… 自主学习:…………… 巩固练习:1…………… 小结:…………… ………………………… 2………………………… 拓广延伸:………
九、课后反思:
B
A。