有限元法基础5等参元与数值积分
材料力学有限元法知识点总结

材料力学有限元法知识点总结材料力学是一门研究物质内部结构、性质和变形行为的学科,而有限元法则是一种在工程和科学领域中广泛应用的数值计算方法。
有限元法可以将一个复杂的实体划分为无数小的单元,通过对这些小单元进行分析和计算,最终得到整个实体的力学性质和行为。
本文将对材料力学有限元法的一些核心概念和知识点进行总结。
1. 有限元法基础概念有限元法基于将实际连续的物体离散为有限数量的单元,通过计算每个单元的受力、变形等性质,再通过组合这些单元的结果来近似整个物体的行为。
它包含以下几个基础概念:1.1 单元(Element):有限元法中的基本组成单元,可以是一维的线段、二维的三角形或四边形,或三维的四面体、六面体等。
1.2 节点(Node):单元的角点或边上的点,用于定义单元之间的连接关系和边界条件。
1.3 自由度(Degree of Freedom):每个节点与力学性质相关的物理量,如位移、应力等。
根据问题的不同,在每个节点上可能有一个或多个自由度。
1.4 单元刚度矩阵(Element Stiffness Matrix):描述单元内部受力和变形关系的矩阵,在有限元法中通过组合所有单元的刚度矩阵来得到整个系统的刚度矩阵。
1.5 全局刚度矩阵(Global Stiffness Matrix):由所有单元刚度矩阵组合而成的整个系统的刚度矩阵,用于计算节点的位移和应力。
2. 有限元法的数学原理有限元法的数学原理主要基于以下两个方面:2.1 变分原理(Variational Principle):有限元法的数学基础是根据变分原理推导实现的。
它通过对结构的势能进行变分并进行最小化,得到满足结构力学行为和边界条件的位移和应力场。
2.2 加权残差法(Weighted Residuals Method):有限元法通过将变分原理中的势能函数展开为一系列基函数的线性组合,并使用权重函数对残差进行加权求和的方式进行近似。
这样可以将求解连续问题转化为离散问题,进而进行数值计算。
《有限元基础及应用》课程大纲

《有限元基础及应用》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:有限元法是求解复杂工程问题进行数值模拟非常有效的方法,是现代数字化科技的一种重要基础性原理。
将它应用于科学研究中,可以成为探究物质客观规律的先进手段;将它应用于工程技术中,可成为工程设计和分析的可靠工具。
有限元法已经成为机械工程、车辆工程、航空航天工程、土木建筑等专业的必修课或选修课,有限元商用软件也是广大工程技术人员从事产品开发、设计、分析,以及生产服务的重要工具。
通过本课程的学习使同学们掌握有限元分析方法的基础知识和原理;掌握大型有限元分析软件(ANSYS)的使用;有限元方法的实际应用:能够针对具有复杂几何形状的变形体完整获取复杂外力作用下它内部准确力学信息,在准确进行力学分析的基础上,可以对所研究对象进行强度、刚度等方面的判断,以便对研究结构进行静态、动态的强度和刚度分析、参数设计以及结构优化设计。
内容由浅入深,通俗易懂,结合实践应用分析,培养学生理论联系实际和解决实际问题的能力。
(二)课程目标:课程目标1:掌握有限元方法的基本原理,分析过程和步骤,形函数的构造方法,以及针对不同维度、不同结构准确选择合适的单元的技巧;课程目标2:掌握有限元分析方法,具有对不同工程问题建立相应力学模型再选取适合的有限元模型离散,最后得到高精度低成本的数值模拟结果;课程目标3:利用有限元原理和应用软件(ANSYS),能够针对车辆结构中具有复杂几何形状的零部件完整获取复杂外力作用下其内部的准确力学信息(位移、应力和应变),并能根据强度、刚度、稳定性及疲劳等进行分析判断结构的安全性,具有分析和解决工程实际问题的能力;课程目标4:掌握大型商用有限元软件(ANSYS)对车辆结构部件的静力学、动力学和多物理场耦合问题进行数值模拟和分析。
能够了解不同单元的适用范围以及有限元方法数值模拟的局限性。
(三)课程目标与毕业要求、课程内容的对应关系本课程支撑专业培养计划中毕业要求1、2、3、5。
有限元分析理论基础

有限元理论基础有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
釆用不同的权函数和插值函数形式,便构成不同的有限元方法。
4.加权余量法:是指采用使余量的加权函数为零求得微分方程近似解的方法称为加权余量法。
(Weighted residual method WRM)是一种直接从所需求解的微分方程及边界条件出发,寻求边值问题近似解的数学方法。
加权余量法是求解微分方程近似解的一种有效的方法。
设问题的控制微分方程为:在V域内厶(")-八0 (5.1.1)在S 边界上〃(“)-& = 0 (5.1.2)式中:L、B——分别为微分方程和边界条件中的微分算子;f、g ——为与未知函数u无关的己知函数域值;u——为问题待求的未知函数当弄!J用力u权余•肚法求近丁以解首先在求耳军域上理立一个T式閑数H 一般兵升如下形式:仁土CN=NC(5.1.3)T M式中:c{----------- 彳寺定系数. 也可称为广义坐标;N:--- 取白完备函冬攵*S线.性无关的基函孕攵°由于〃一般只圮彳守求函缨攵U的近1以耳岂因u匕将式(5 1.3) 代入式(5 1 1)牙口式(5 1.2)后将诃•不誉斯兄,昔迅:| R] = L(flb— f在V域内\R B =B(^~g在S 边界上("14)城然 & 、尽反映了r式函竽攵与实解之问的偏差. 它丁门分另U称做内召卩牙口边界余覺。
若在域\'内引入内部权函数硏,在边界S上引入边界权函数W B 则可理立11个消除余甘的条件.一般可农示为:L兀W B1R B dS = 0 (/ = L2.L ,〃) (51-5)• V • S不同的权函数幵;和jr R反映了不同的消除余•眩的准则。
有限单元法的数学基础

有限单元法的数学基础1、引言有限元方法归根结底是一种数值计算方法,它有严格的数学证明作为其近似的客观性和合理性的保证。
力学问题最终归结为一组微分方程的边值问题或者初值问题抑或是混合问题。
比如弹性静力学最终归结为L-N 方程的微分提法。
在很难或者根本不可能得到所得方程的理论解的情况下,究竟用什么样的方法才能得到方程的近似解(这种近似解已经能够满足实际工程的需要),在这种情况下,二十世纪五六十年代由结构力学家进而由数学家提出和证明了这种思想方法的合理性。
有限元方法产生于力学计算,但是,它本质上并不是力学的专利。
世间万物的变化过程很多都可以通过微分方程特别是偏微分方程来描述,也就是说,微分方程是很多现象和过程的数学结构,而大多数的微分方程是不能得到理论解的,这时候就可以使用有限元方法来求其近似解,因为有限元方法是求解微分方程(组)的数值计算方法。
它适用于力学的微分方程,也同样适用于其它领域的相应的微分方程的数值求解。
2、有限元方法数学根源对于一个给定的微分方程定解问题,为了求其近似解,我们可以使用Ritz 方法和Galerkin 方法。
下面分别阐述这两种方法,然后讨论有限元方法和他们的关系。
(1) Ritz 法Ritz 法源于最小势能原理,设H 是可分的Hilbert 空间,在H 中取有限维空间Sn ,它是由N 个线性无关向量12,,,N φφφ 张成,即:121,,(,,)NN n n i i N N i S C C C C R ωωφ=⎧⎫≡=∀∈⎨⎬⎩⎭∑用N S 代替H ,在N S 上求泛函J(w)的极值,即求N U ∈N S ,使得()N J U =min ()N N S N J ωω∈实际上寻求N U 只需通过解一个线性方程组1()(,)()02J D F ωωωω=-≥D--------双线性形式 F--------线性泛函1NN i i i C ωφ==∑111,111()(,)()21(,)()2N N NN i i i i i i i i i NN i j i j i ii j i J D C C F C D C C F C ωφφφφφφ====== =-∑∑∑∑∑-因此,()N J ω是一个以12,,,N C C C 为未知数(自变量)的二次多项式12(,,,)N j C C C ,如果二次项的系数矩阵,1,2,,[(,)]i j i j N D φφ= 是正定的,那么12(,,,)N j j C C C = 在N+1维空间是一个开口向上的椭球抛物面,它有且只有一个极(最)小值点,所谓在N S 上求()N J ω的极值,就是确定00012,,,N C C C ,使得:00012(,,,)N j C C C =1000,,12min (,,,)N C C R N j C C C ∈极值条件:ijC ∂∂|00012,,,N C C C =0 (1,,i N = ) 得:01()()ni ji i i D CF φφφ==∑ (1,,i N = )即:00012[,,,]T N C C C C = 适合方程组:KC=F11[(),,()]T F F F φφ=112111222212(,)(,)(,)(,)(,)(,)(,),(,),,(,)N N N N N N D D D D D D K D D D φφφφφφφφφφφφφφφφφφ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,,,,,, 。
有限元方法

§7. 两点边值问题的有限元方法
本节以两点边值问题为例,并从Ritz法和Galerkin法两 种观点出发来叙述有限元法的基本思想及解题过程.
7.1 基于Ritz法的有限元方程 7.2 基于Galerkin法的有限元方程
这样,我们就得到了单元有限元特征式的一般表示形式:
K(i)u(i) F(i)
第二步:总体合成.总体合成就是将单元上的有限元特征 式进行累加,合成为总体有限元方程. 这一过程实际上是将 单元有限元特征式中的系数矩阵(称为单元刚度矩阵)逐个 累加,合成为总体系数矩阵(称为总刚度矩阵);同时将右 端单元荷载向量逐个累加,合成为总荷载向量,从而得到关 于的线性代数方程组.为此,记
于是有 u(i) (ui1,ui)TB (i)u
从而式(7.16)右端第一个和式为
1 nu iT K iu i 1 nu T [ ( B i) T K iB i] u 1 u T K u ,
2 i 1
2 i 1
2
其中
(未标明的元素均为0)这就是总刚度矩阵. 对式(7.16)右端第二个和式,有
其中,p x C 1 a , b , p 0 , q C a , b , q 0 , f C a , b
精选版课件ppt
3
1. 写出Ritz形式的变分问题
与边值问题(7.1)、(7.2)等价的变分问题是:
求
u*
H
1,使
E
其中,
Ju*m uH in1 EJu J u 1 a u ,u f,u
u j
便得到确定 u1,u2,
,un的线性代数方程组
有限元分析第五章(第二部分

§5-5数值积分1、问题的提出在上一节中对等参元进行单元分析时要进行下列积分: (i) 单元刚度矩阵(ii)体积力的等效结点力(iii)边界力的等效结点力(iv)温升载荷的等效结点力式(5-4-5)~(5-4-8)分别归结为计算以下两种形式的积分对于上述积分仅在单元的形状十分规则的情况下才能得到解析的结果(精确值),一般情况只能用数值积分方法(主要是高斯求积法)求近似值。
虽然数值积分是“被迫“采用的,但后来发现:有选择地控制积分点的个数和位置,可以方便地实现我们的某些特殊意图。
这样一来,数值积分就成为有限元分析的一个重要组成部分,以至本来可以精确积分的三角形单元也常常采用数值积分。
2、数值积分的基本概念任何积分工作取决于三个要素:给定的积分区间,给定的被积函数,具体的积分方法。
下面以一维情况为例介绍数值积分的基本概念 (i) 梯形法函数()x f 在区间(a,b)的积分可以表达为 ()()ini ibax f W dx x f I ∑⎰=≈=1⎰⎰⎰---111111),()(dxdxy x f dx x f 、 [][][][][][][]ηξd d J t B E B tdxdyB E B k T Te det 1111⎰⎰⎰⎰--=={}[][]ηξσd d J t f f N td f f N r y x T y x T eV det 1111⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎰⎰⎰⎰--{}[]{}ηξσγd Jd t B T det 01111T ⎰⎰--={}[]()()⎪⎪⎭⎫ ⎝⎛=⎭⎬⎫⎩⎨⎧=⎰⎰⎰--dy y f dx x f tds q p N r T 1111,ΓΓ(5-4-5) (5-4-8) (5-4-7) (5-4-6)i W :权系数; i x :积分样点;()i x f :积分样点的函数值。
梯形法的求积公式为其中,1--=n ab h ,而a b W ni i -=∑=1(ii) 当被积函数为n-1次多项式P n-1(x )时,则由n 个样点及其样点值(x i , P n-1(x i ),i=1,n )可以精确重构这个多项式,从而可以得到精确解。
有限元法

有限元法有限元法是一套求解微分方程的系统化数值计算方法,它比传统解法具有理论完整可靠,物理意义直观明确,解题效能强等优点,特别是由于这种方法适应性强,形式单纯、规范,所以近年来在电子计算机的配合下,已推广应用到很多工程技术部门和某些科学领域。
本章是从应用的角度来介绍有限元法的基本知识,首先通过典型的位移法阐述有限元法的一般原理与解算过程,然后叙述了剖分单元的技巧,最后介绍与有限元法有关的弹性力学问题。
常用符号规定如下(括号内为力学术语或释例):Ω,表示区域及其边界。
表示区域Ω的单元及其边界。
表示单元的第i个顶点,简记作节点i。
表示系数(刚度)矩阵。
()表示单元的系数(刚度)矩阵。
(x,y,z)表示总体的直角坐标。
()表示单元的局部坐标。
(,,),(,,,)等表示单元的自然坐标。
(x,y ,)表示节点i的直角坐标。
(u,v,w)表示一组待定函数(分别为沿x,y,z方向的位移分量),其列矢量表示为u。
1(u,v,w)表示(u,v,w)在单元上的插值函数,其列矢量表示为u。
(u,v,w)表示节点i的函数(位移)值。
{u,v,w}表示节点i的一组参数值,即函数直到某阶导数在节点i上的值按一定次序排成的列矢量{u}。
例如{u}= {u,v,w}=(u,u,u,u,v,v,v,v,w,w,w,w)式中τ表示转置。
{u,v,w}表示{u,v,w}按单元的节点序号排成的列矢量,表示为{u}。
等表示单元的型函数。
{R}表示n次多项式中含变量x,y,z各项按一定次序排成的列矢量,并以表示其中第k个分量。
例如二元二次多项式{}表示n 次多项式中各项相应的系数排成的列矢量,并以表示其中第k个分量。
例如对于{},{}={f,g,h}表示与节点参数相对应的一组已知函数及其导数在节点i上的值排成的列矢量。
2{f,g,h}表示{f,g,h}按单元的节点序号排成的列矢量。
,或放在定义或公式之后表示其中函数u,v,w,变量x,y,z或下标i,j,k作循环替换后,该定义或公式仍然成立。
有限单元法基础

性体在各节点处的位移解。
3、单元分析---三角形单元
y
3.1 单元的结点位移和结点力向量
从离散化的网格中任取一个单元。三个结点 按反时针方向的顺序编号为:i, j, m。
结点坐标: (xi,yi) , (xj,yj) , (xm,ym) 结点位移: (ui,vi) , (uj,yj) , (um,vm) 共有6个自由度
单元位移插值函数: u(x, y) a1 a2 x a3 y
(3.1)
v(x, y) a4 a5x a6 y
插值函数的系数: a1 aiui a ju j amum / 2 A, a4 aivi a jv j amvm / 2 A,
a2 biui bju j bmum / 2 A, a5 bivi bjv j bmvm / 2 A,
um a1 a2 xm a3 ym , vm a4 a5 xm a6 ym ,
求解以上方程组得到以节点位移和节点坐标表示的6个参数:
a1 aiui a ju j amum / 2 A, a4 aivi a jv j amvm / 2 A, a2 biui bju j bmum / 2 A, a5 bivi bjv j bmvm / 2 A, a3 ciui c ju j cmum / 2 A, a6 civi c jv j cmvm / 2 A,
研究方法
从数学上讲它是微分方程边值问题(椭圆型微分方程、抛物型微分方程和双曲型微 分方程)的一种的数值解法,是一种将数学物理问题化为等价的变分问题的解法,并作 为一种通用的数值解法成为应用数学的一个重要分支。从物理上讲是将连续介质物理 场进行离散化,将无限自由度问题化为有限自由度问题的一种解方法。从固体力学上 认识,是瑞利-里兹法的推广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元法基础
5.1等参变换的概念 单元矩阵的变换 等参变换单元矩阵的变化:
等参变换
单元矩阵的变化:B、K、dΩ、……
11
有限元法基础
5.1等参变换的概念 由于插值函数使用自然坐标,涉及到求导和积分的变 换,如B矩阵的偏微分计算,K矩阵的积分计算。
x Bi 0 y 0 Ni 0 y x N i x 0 0 Ni N i y 0 N i y N i x
3
y Ni yi
i 1
3
z Ni zi
i 1
3
Ni [1 , , ]
9
有限元法基础
5.1等参变换的概念 例:平面4节点单元
x Ni xi
i 1
4
y Ni yi
i 1
4
1 Ni (1 i )(1 i ) (i 1, 2,3, 4) 4
i 1
n
m
u Ni ui
i 1
v Ni vi
i 1
w Ni wi
i 1
6
有限元法基础
5.1等参变换的概念 等参变换
坐标变换和场函数插值采用相同的节点,m=n, 并且
采用相同的插值函数。这样建立的单元,称为等参元。 超参变换 坐标变换的节点数多于场函数插值的节点数,即m>n。 这样建立的单元,称为超参元。 次参变换 坐标变换的节点数少于场函数插值的节点数,即m<n。 这样建立的单元,称为次参元。
3
有限元法基础
5.1等参变换的概念
4
有限元法基础
5.1等参变换的概念
5
有限元法基础
5.1等参变换的概念
规则化单元:母单元
在自然坐标系内(局部)
实际单元:子单元 在总体坐标系内(整体)
利用节点坐标和形函数建立坐标变换关系
x Ni' xi
i 1
n
m
y Ni' yi
i 1
n
m
z Ni' zi
y y y
z N i N i x x z N i N i J y y N i z N i z z
12
有限元法基础
5.1等参变换的概念 1)导数之间的变换 由复合函数求导规则有
Ni Ni x Ni y Ni z x y z
写成矩阵形式
N i x N i x N i x
有限元法基础
5. 等参元与数值积分
本章重点
等参变化的概念和实现单元特性矩阵方法
实现等参变换的条件和满足收敛准则的条件
数值积分的基本思想和Gauss积分的特点 单元刚度矩阵数值积分阶次的选择
1
有限元法基础
5. 等参元与数值积分
关键概念
等(超、次)参变换 等参变换的条件 数值积分 高斯积分
雅克比矩阵和行列式 等参元的收敛性 精确积分
J 1 =
1 * J J
J 的伴随矩阵
14
有限元法基础
5.1等参变换的概念 由坐标变换求得Jacobi矩阵中的元素
n Ni x xi i 1 n Ni y yi i 1 n Ni z zi i 1 n Ni x xi i 1 n Ni y yi i 1 n Ni z zi i 1 n Ni x xi i 1 n Ni y yi i 1 n Ni z zi i 1
15
有限元法基础
5.1等参变换的概念 2)体积微元的变换
x y z d i d j d k x y z d d i d j d k x y z d d i d j d k d
d (d d ) d J d d d
16
有限元法基础
5.1等参变换的概念 单元刚度矩阵
K e BT CB d BT CB J d d d
1 1 1 1 1 1
等效体积力
减缩积分
矩阵的秩
零能模式
2
有限元法基础
5.1等参变换的概念
将局部(自然)坐标中的简单几何形状的单元,转换
成总体(物理)坐标中的几何扭曲的单元,必须建立一
个坐标变换,即
L1 x L2 y f 或 f L3 z L 4
7
有限元法基础
5.1等参变换的概念 例:一维2节点单元
x Ni xi
i 1
2
y Ni yi
i 12Βιβλιοθήκη z Ni zii 1
2
1 N i (1 i ) 2
(i 1, 2)
8
有限元法基础
5.1等参变换的概念 例:二维3节点单元
x Ni xi
i 1
( x, y , z ) J ( , , )
J 称为Jacobi 矩阵
13
有限元法基础
5.1等参变换的概念
N i N i x N i 1 N i J y N i N i z