成人高考专升本高等数学公式大全1
成考专升本常用数学公式

成考专升本常用数学公式数学公式是数学中的重要内容,它们是数学理论和方法的归纳总结,是数学知识的产物。
在成考专升本的数学考试中,经常会使用到一些常用的数学公式,掌握这些公式对于提高解题能力和提高分数是非常重要的。
下面我们来介绍一些常用的数学公式。
一、代数公式1.二项式定理(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n其中C(n,m)表示从n个不同元素中取m个元素的组合数。
2.平方差公式a^2-b^2=(a+b)(a-b)3.三次方差公式a^3 - b^3 = (a - b)(a^2 + ab + b^2)4.二次方差公式a^4-b^4=(a^2+b^2)(a^2-b^2)5.一次方差公式a^n - b^n = (a - b)(a^(n-1) + a^(n-2)b + ... + ab^(n-2) + b^(n-1))6.二次根式根号(ab) = 根号a * 根号b7.乘方a^m*a^n=a^(m+n)8.开方根号(a*b)=根号a*根号b根号(a/b)=根号a/根号b二、几何公式1.三角形面积公式S=1/2*底*高2.平行四边形面积公式S=底*高3.梯形面积公式S=(上底+下底)*高/24.正方形面积公式S=边长^25.矩形面积公式S=长*宽6.圆面积公式S=π*半径^27.圆周长公式L=2*π*半径8.球表面积公式S=4*π*半径^29.球体积公式V=4/3*π*半径^3三、三角函数公式1.正弦定理a/sinA = b/sinB = c/sinC = 2R其中R为三角形外接圆半径。
2.余弦定理a^2 = b^2 + c^2 - 2bc * cosAb^2 = a^2 + c^2 - 2ac * cosBc^2 = a^2 + b^2 - 2ab * cosC3.三角函数关系sin^2θ + cos^2θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθsecθ = 1 / cosθcscθ = 1 / sinθ4.三角函数和角度之间的转换弧度=角度*π/180角度=弧度*180/π四、导数公式1.常数导数若f(x)=C,其中C为常数,则f'(x)=02.幂函数的导数若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)3.指数函数的导数若f(x) = a^x(a为常数),则f'(x) = a^x * ln(a)以上是一些成考专升本常用的数学公式,掌握这些公式能够更加方便地解题,提高答题效率。
成人高考专升本高等数学公式大全

成人高考专升本高等数学公式大全1.代数基本公式:-平方差公式:$a^2-b^2=(a+b)(a-b)$-三角恒等式:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正弦余弦定理:$\sin^2 A + \cos^2 A = 1$- 二项式定理:$(a + b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$2.函数与极限公式:-导数的四则运算:- $(u \pm v)' = u' \pm v'$- $(uv)' = u'v + uv'$- $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$- 泰勒公式:$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \cdots$-常用极限:- $\lim_{x \to 0}\frac{\sin x}{x} = 1$- $\lim_{x \to \infty}(1 + \frac{1}{x})^x = e$- $\lim_{x \to \infty}(1 + \frac{k}{x})^x = e^k$- $\lim_{n \to \infty}(1 + \frac{x}{n})^n = e^x$3.微分公式:-求导法则:-$(c)'=0$- $(x^n)' = nx^{n-1}$-$(e^x)'=e^x$- $(\ln x)' = \frac{1}{x}$-高阶导数:-$(f(x)g(x))''=f''(x)g(x)+2f'(x)g'(x)+f(x)g''(x)$-$(f(g(x)))''=f''(g(x))(g'(x))^2+f'(g(x))g''(x)$-微分运算法则:- $\frac{d(u \pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$ - $\frac{d(kv)}{dx} = k\frac{dv}{dx}$- $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$- $\frac{d(\frac{u}{v})}{dx} = \frac{v\frac{du}{dx} -u\frac{dv}{dx}}{v^2}$4.积分公式:-不定积分法则:- $\int k \,dx = kx + C$- $\int x^n \,dx = \frac{x^{n+1}}{n+1} + C, (n \neq -1)$- $\int e^x \,dx = e^x + C$- $\int \frac{1}{x} \,dx = \ln ,x, + C$-定积分法则:- $\int_a^b kf(x) \,dx = k\int_a^b f(x) \,dx$- $\int_a^b [f(x) + g(x)] \,dx = \int_a^b f(x) \,dx +\int_a^b g(x) \,dx$- $\int_a^b (f(x) - g(x)) \,dx = \int_a^b f(x) \,dx -\int_a^b g(x) \,dx$5.级数公式:-等比级数求和:$S_n = \frac{a(1-q^n)}{1-q}$,其中 $S_n$ 是前n 项和,a 是首项,q 是公比。
高等数学专升本公式集合

高等数学专升本公式集合以下是高等数学专升本常用公式集合:1.导数公式:1)反函数求导:如果y=f(x) (x在某区间上连续、可导),f'(x)≠0,且存在f'(x)的逆函数,则y=f^(-1)(x)在对应的区间上可导,且有(f^(-1))'(x) = 1 / f'(f^(-1)(x));2)乘积法则:(uv)' = u'v + uv';3)商法则:(u/v)' = (u'v - uv') / v^2;4)链式法则:(F(g(x)))' = F'(g(x)) * g'(x),其中F(u)是u的原函数。
2.积分公式:1)基本积分公式:∫x^n dx = x^(n+1) / (n+1) + C (这里C是常数);2)分部积分法:∫u dv = uv - ∫v du;3)替换法:设x=g(t),则dx=g'(t) dt,将dx替换为g'(t) dt 来进行积分。
3.泰勒级数公式:1)常用泰勒级数展开:- e^x = 1 + x + x^2 / 2! + x^3 / 3! + ...;- sin x = x - x^3 / 3! + x^5 / 5! - ...;- cos x = 1 - x^2 / 2! + x^4 / 4! - ...;- ln(1+x) = x - x^2 / 2 + x^3 / 3 - ...。
4.极限公式:1)常用极限:- lim(x→0) (sin x / x) = 1;- lim(x→∞) (1 + 1/x)^x = e;- lim(x→a) (f(x))^g(x) = lim(x→a) e^(g(x) * ln(f(x)))。
5.级数公式:1)常用级数:-等比数列求和:∑(n=0)^(∞) ar^n = a / (1-r),其中|r|<1;-幂级数求和:∑(n=0)^(∞) a(n)x^n,其中a(n)是常数。
成人高考专升本数学公式汇编

成人高考专升本数学公式汇编数学是成人高考专升本考试中的一门重要科目,掌握数学公式和定理是提高解题效率的关键。
下面是一些常用的数学公式的汇编,供参考:一、代数公式:1.分配律:对于任意实数a、b、c,有如下公式:a*(b+c)=a*b+a*c(a+b)*c=a*c+b*c2.平方差公式:a^2-b^2=(a+b)*(a-b)3.二次方程的解法公式:对于一般形式的二次方程 ax^2 + bx + c = 0,其解为:x1,2 = (-b ± √(b^2 - 4ac)) / 2a4.一元一次方程的解法:对于形如 ax + b = 0 的一元一次方程,其解为:x=-b/a二、几何公式:1.三角形的面积公式:对于已知三角形的三边长a、b、c,可利用海伦公式计算三角形的面积S:S=√(p*(p-a)*(p-b)*(p-c))其中,p=(a+b+c)/22.圆的面积和周长公式:对于已知圆的半径r,可计算圆的面积和周长:S=π*r^2C=2π*r3.直角三角形的勾股定理:对于直角三角形,其边长分别为a、b、c(a和b为直角边,c为斜边),满足以下关系:c^2=a^2+b^24.正弦定理和余弦定理:对于任意三角形的三个内角A、B、C及对应的三边a、b、c,满足以下关系:a/sinA = b/sinB = c/sinC (正弦定理)a^2 = b^2 + c^2 - 2bc*cosA (余弦定理)三、概率与统计公式:1.排列公式:P(n,m)=n!/(n-m)!2.组合公式:C(n,m)=n!/(m!*(n-m)!)3.二项式定理:对于任意实数a、b和非负整数n,有如下展开式:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n 除了以上列举的一些常用公式外,还有很多其他的数学公式可以根据具体题型和知识点进行查找和应用。
在备考过程中,可以根据教材和习题册提供的公式,进行适当的总结和归纳,建立自己的公式汇编,以提高解题的速度和准确性。
专升本成人高考高数常用公式

专升本成人高考高数常用公式在成人高考高数中,常用的公式有:1. 三角函数相关公式:- sin²θ + cos²θ = 1 (正弦、余弦平方和为1)- sin(α ± β) = sin α cos β ± cos α sin β (正弦的和差公式)- cos(α ± β) = cos α cos β ∓ sin α sin β (余弦的和差公式) - tan(α ± β) = (tan α ± tan β) / (1 ∓ tan α tan β) (正切的和差公式)- sin 2θ = 2 sin θ cos θ (正弦的倍角公式)- cos 2θ = cos²θ - sin²θ = 2 cos²θ - 1 = 1 - 2 sin²θ (余弦的倍角公式)2. 导数相关公式:- (x^n)' = nx^(n-1) (幂函数的导数)- (sin x)' = cos x (正弦函数的导数)- (cos x)' = -sin x (余弦函数的导数)- (tan x)' = sec²x (正切函数的导数)- (e^x)' = e^x (指数函数的导数)- (ln x)' = 1/x (自然对数函数的导数)3. 积分相关公式:- ∫(x^n) dx = x^(n+1) / (n+1) + C (幂函数的不定积分)- ∫sin x dx = -cos x + C (正弦函数的不定积分)- ∫cos x dx = sin x + C (余弦函数的不定积分)- ∫tan x dx = -ln|cos x| + C (正切函数的不定积分)- ∫e^x dx = e^x + C (指数函数的不定积分)- ∫(1/x) dx = ln|x| + C (自然对数函数的不定积分)以上是一些常用的高数公式,需要注意的是,公式可以根据需要进行组合和变形,因此熟练掌握和灵活运用是非常重要的。
专升本高等数学公式

专升本高等数学公式高等数学(专升本)是一门重要的学科,其中涉及了许多重要的公式和定理。
下面是一些在这门课程中常见的高等数学公式:一、极限1.基本极限公式:- 常数函数极限:lim(c) = c (c为常数)- 幂函数极限:lim(x^n) = a^n (n为常数)- 三角函数极限:lim(sin x) = sin a (a为常数)- 指数函数极限:lim(a^x) = a^a (a为常数)- 对数函数极限:lim(log_a x) = log_a a (a为常数)- 指数函数、对数函数极限:lim(a^x - 1) = ln a (a为正常数)- 指数函数、对数函数极限:lim(log_a (1 + x)) = ln a (a为正常数)2.无穷小与无穷大的性质:-无穷小的乘除性质-无穷小与有界量的乘除性质-无穷小的常数倍性质-无穷小与有界量的加减性质-无穷大的加减乘除性质-无穷小与无穷大的关系3.极限的运算法则:-四则运算法则-复合函数法则-两个无穷小量乘积的极限二、导数和微分1.基本导数公式:-变量常数的导数:d(c)=0(c为常数)- 幂函数导数:d(x^n) = nx^(n-1) (n为常数)- 三角函数导数:d(sin x) = cos x (d为常数)- 三角函数导数:d(cos x) = -sin x (d为常数)- 指数函数导数:d(a^x) = a^xlna (a为常数)- 对数函数导数:d(log_a x) = 1/(xlna) (a为常数,且x>0) 2.复合函数导数:-链式法则:d(f(g(x)))=f'(g(x))*g'(x)3.导数的法则:- 和差法则:d(u ± v) = du/dx ± dv/dx- 积法则:d(uv) = u * dv/dx + v * du/dx- 商法则:d(u/v) = (v * du/dx - u * dv/dx) / v^2三、不定积分1.基本积分公式:- 幂函数积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n不等于-1) - 指数函数积分:∫(a^x)dx = (a^x)/(lna) + C (a不等于1) - 三角函数积分:∫sin x dx = -cos x + C- 三角函数积分:∫cos x dx = sin x + C- 三角函数积分:∫sec^2 x dx = tan x + C- 三角函数积分:∫csc^2 x dx = -cot x + C- 对数函数积分:∫(1/x)dx = ln,x, + C2.基本积分性质:-积分的线性性质-积分的分部积分法-积分的换元法-积分的替换法四、微分方程1.常微分方程:- 一阶线性齐次方程:dy/dx + p(x)y = 0- 一阶线性非齐次方程:dy/dx + p(x)y = f(x)-二阶齐次方程:y''+p(x)y'+q(x)y=0-二阶非齐次方程:y''+p(x)y'+q(x)y=f(x)2.常微分方程的解法:-变量分离法-齐次方程的解法-一阶线性非齐次方程的解法-二阶齐次方程的解法-二阶非齐次方程的解法这些公式和定理是高等数学(专升本)中的一部分,掌握了这些公式对于学习和理解高等数学非常重要。
成人高考专升本高等数学公式(含特殊三角函数值)
高等数学公式导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx xtgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R Cc Bb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
专升本高等数学公式大全
专升本高等数学公式大全以下是一些高等数学常用的公式:1. 导数与微分公式:- 基本导数公式:(常数函数)' = 0,(x^n)' = nx^(n-1),(e^x)' = e^x,(a^x)' = a^xlna,(ln x)' = 1/x,(sin x)' = cos x,(cos x)' = -sin x,(tan x)' = sec^2 x,(cot x)' = -csc^2 x,(sec x)' = sec x tan x,(csc x)' = -csc x cot x- 乘积法则:(uv)' = u'v + uv'- 商法则:(u/v)' = (u'v - uv')/v^2- 链式法则:如果y = f(u)和u = g(x),则dy/dx = dy/du * du/dx2. 微分中值定理:- 拉格朗日中值定理:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一个c∈(a, b),使得f'(c) = (f(b) - f(a))/(b - a)- 柯西中值定理:如果函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,且g'(x) ≠ 0,则存在一个c∈(a, b),使得[f'(c)/g'(c)] = [f(b) - f(a)]/[g(b) - g(a)]3. 积分公式:- 基本积分公式:∫k dx = kx + C,∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1),∫(1/x) dx = ln|x| + C,∫e^x dx = e^x + C,∫a^x dx = (a^x)/lna + C,∫sin x dx = -cos x + C,∫cos x dx = sin x + C,∫t an x dx = -ln|cos x| + C,∫cot x dx = ln|sin x| + C,∫sec x dx = ln|sec x + tan x| + C,∫csc x dx = ln|csc x - cot x|+ C- 线性性质:∫[a*f(x) + b*g(x)] dx = a∫f(x) dx + b∫g(x) dx- 分部积分法:∫u dv = uv - ∫v du4. 泰勒公式:- 一阶泰勒公式:f(x)≈f(a) + f'(a)(x - a)- 麦克劳林公式:f(x)≈f(a) + f'(a)(x - a) + f''(a)(x - a)^2/2! + ... + f^n(a)(x - a)^n/n!以上仅是一些高等数学中的基本公式,实际应用中还有更多公式与定理。
专升本高数公式大全总结
专升本高数公式大全总结以下是一些常用的高数公式总结:1. 导数公式:- 基本公式:$(c)^n = ncx^{n-1}$,其中c为常数,n为指数,x为变量。
- 基本函数的导数:$sinx' = cosx, cosx' = -sinx, tanx' = sec^2x, cotx' = -csc^2x, secx' = secxtanx, cscx' = -cscxcotx$。
2. 积分公式:- 基本公式:$\int f'(x)dx = f(x) + C$,其中C为常数。
- 基本函数的不定积分:$\int sinxdx = -cosx + C, \int cosxdx = sinx + C, \int tanxdx = -ln|cosx| + C$。
3. 三角函数公式:- 正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,其中a、b、c为三角形的边长,A、B、C为对应角,R为外接圆半径。
- 余弦定理:$c^2=a^2+b^2-2abcosC$。
- 正弦二倍角公式:$sin2x=2sinxcosx$。
- 余弦二倍角公式:$cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x$。
4. 极限公式:- 基本公式:$\lim_{x\to c}f(x) = f(c)$,其中c为常数。
- 乘法法则:$\lim_{x\to c}[f(x)g(x)] = \lim_{x\to c}f(x) \cdot\lim_{x\to c}g(x)$。
- 除法法则:$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}$,其中$\lim_{x\to c}g(x) \neq 0$。
5. 级数公式:- 等比数列求和公式:$S_n = \frac{a(1-q^n)}{1-q}$,其中S_n为前n项和,a为首项,q为公比。
成人高考高升专数学常用知识点及公式(打印版)精编版
成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件)B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式
导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数: 两个重要极限:
a
x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=
'='⋅-='⋅='-='='2
2
22
11
)(11
)(11
)(arccos 11
)(arcsin x arcctgx x arctgx x x x x +-
='+=
'--
='-=
'⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C
a x x a x dx C shx chxdx C chx shxdx C
a a dx a C
x ctgxdx x C x dx tgx x C
ctgx xdx x dx C tgx xdx x dx x
x
)ln(ln csc csc sec sec csc sin sec cos 222
22
22
2C a
x
x a dx C x a x
a a x a dx C a x a
x a a x dx C a x
arctg a x a dx C
ctgx x xdx C tgx x xdx C
x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2
2222222⎰
⎰⎰⎰⎰++-=-+-+--=-+++++=+-=
==-C
a
x a x a x dx x a C
a x x a a x x dx a x C
a x x a a x x dx a x I n
n xdx xdx I n n n
n arcsin 22ln 22)ln(221
cos sin 22
2222222
2222222
22
2
22
2
π
π
三角函数公式: ·诱导公式:
·和差角公式: ·和差化积公式:
2
sin
2sin 2cos cos 2cos
2cos 2cos cos 2sin
2cos 2sin sin 2cos
2sin
2sin sin β
αβαβαβ
αβαβαβ
αβαβαβ
αβ
αβα-+=--+=+-+=--+=+α
ββαβαβαβ
αβαβ
αβαβαβ
αβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=
±⋅±=
±=±±=±1
)(1)(sin sin cos cos )cos(sin cos cos sin )sin(
·倍角公式: ·半角公式: ·正弦定理:
R C
c
B b A a 2sin sin sin === ·余弦定理:
C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=
-=
2
arccos 2
arcsin π
π
高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:
定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:
)
,,(),,(),,(30
))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(}
,,{,0
),,(0),,(0))(())(())(()()()(),,()
()()
(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x y
x y x x z x z z y z y -=
-=-=-+-+-==⎪⎩⎪⎨
⎧====-'+-'+-''-=
'-='-⎪⎩
⎪
⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:
上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线
ωψϕωψϕωψϕ方向导数与梯度:
多元函数的极值及其求法: 重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω
∑
∑
∑
∑
∑
Ω
∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂ds
A dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n n
div )cos cos cos (...
,0div ,div )cos cos cos ()(
成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:
—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数: 级数审敛法:
绝对收敛与条件收敛: 幂级数:
函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数:
周期为l 2的周期函数的傅立叶级数: 微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程:
二阶常系数齐次线性微分方程及其解法:
二阶常系数非齐次线性微分方程。