19分布列和数学期望
高二数学随机变量的期望与方差试题答案及解析

高二数学随机变量的期望与方差试题答案及解析1.已知某一随机变量X的分布列如下:且,则a=__________;b=__________。
【答案】,【解析】由得,又由得。
【考点】随机变量的期望2.某市公租房房屋位于A、B、C三个地区,设每位申请人只申请其中一个片区的房屋,且申请其中任一个片区的房屋是等可能的,求该市的任4位申请人中:(1)若有2人申请A片区房屋的概率;(2)申请的房屋在片区的个数的X分布列与期望.【答案】(1)(2)X的分布列为:X123【解析】解:(1)所有可能的申请方式有34种,恰有2人申请A片区房源的申请方式有C·22种,从而恰有2人申请A片区房源的概率为=.(2)X的所有可能值为1,2,3.又p(X=1)==,p(X=2)==,p(X=3)==,综上知,X的分布列为:从而有E(X)=1×+2×+3×=.3.本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时.(1)求出甲、乙所付租车费用相同的概率;(2)求甲、乙两人所付的租车费用之和为随机变量X,求X的分布列与数学期望E(X).【答案】(1) (2) 分布列X02468【解析】解:(1)所付费用相同即为0,2,4元.设付0元为P1=×=,付2元为P2=×=,付4元为P3=×=,则所付费用相同的概率为P=P1+P2+P3=.(2)设甲,乙两个所付的费用之和为X, X可为0,2,4,6,8.P(X=0)=P(X=2)=×+×=P(X=4)=×+×+×=P(X=6)=×+×=P(X=8)=×=.分布列E(X)=+++=.4.已知离散型随机变量X的分布列如表,若E(X)=0,D(X)=1,则a=________,b=________.【答案】【解析】由题意知解得5.设一随机试验的结果只有A和,且P(A)=p令随机变量X=,则X的方差V(X)等于________.【答案】p(1-p)【解析】X服从两点分布,∴V(X)=p(1-p).6.甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.(1)求乙至多击中目标2次的概率;(2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.【答案】(1) (2) Z的分布列如下表:【解析】解:(1)甲、乙两人射击命中的次数服从二项分布,故乙至多击中目标2次的概率为1-33=.C303=;(2)P(Z=0)=C313=;P(Z=1)=C323=;P(Z=2)=C333=.P(Z=3)=C3Z的分布列如下表:Z0123E(Z)=0×+1×+2×+3×=,D(Z)=2×+2×+2×+2×=,∴=.7.样本4,2,1,0,-2的标准差是:()A.1B.2C.4D.【答案】D【解析】,样本4,2,1,0,-2的标准差是:=,选D。
2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。
高考数学最新真题专题解析—二项式定理与随机变量的分布(新高考卷)

高考数学最新真题专题解析—二项式定理与随机变量的分布(新高考卷)【母题来源】2022年新高考I卷【母题题文】)(x+y)8的展开式中x2y6的系数为(用数字作答).(1−yx【解析】【分析】本题考查二项展开式的特定项与特定项的系数,属于基础题.【解答】解:因为(x+y)8展开式的通项T r+1=C8r x8−r y r,令r=5,则x3y5的系数为C85=56;令r=6,则x2y6的系数为C86= 28,所以x2y6的系数为−56+28=−28.【母题来源】2022年新高考II卷【母题题文】随机变量X服从正态分布N(2,σ2),若P(2<x≤2.5)=0.36,则P(X>2.5)=【答案】0.14【解析】【分析】本题考查了正态分布的意义,正态曲线的对称性及其应用.【解答】解:由题意可知,P(X>2)=0.5,故P(X>2.5)=P(X>2)−P(2<X⩽2.5)=0.14.【命题意图】1.考察二项式定理及其应用,考察基本计算能力和逻辑推导能力。
2.考察正太分布,考察正态分布特征。
【命题方向】1.二项展开基本定理,还会涉及到三项展开。
考察特定项,特定项的系数,二项式系数,同时会涉及到赋值法的应用。
多为小题。
2.考察正太分布,二项分布,超几何分布等常见的分布。
【得分要点】一、二项式定理(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*)这个公式所表示的定理叫做二项式定理,右边的多项式叫做(a+b)n的二项展开式,其中的系数C r n(r=0,1,2,…,n)叫做第r+1项的二项式系数.式中的C r n a n-r b r叫做二项式展开式的第r+1项(通项),用T r+1表示,即展开式的第r+1项;T r+1=C r n a n-r b r.二、常见随机变量的分布列(1)两点分布:若随机变量X服从两点分布,则其分布列为X01P1-p p其中p=P(X=1)(2)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称分布列为超几何分布列.X01…mP C0M C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N(3如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(X=k)=C k n P k q n-k,其中k=0,1,2,3,…,n,q=1-P.于是得到随机变量X的概率分布如下:X01…k…nP C0n P0q n C1n P1q n-1…C k n P k q n-k…C n n P n q0由于n n n n…+C n n P n q0中的第k+1项(k=0,1,2,…,n)中的值,故称随机变量X为二项分布,记作X~B(n,P).三.离散型随机变量的均值与方差若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.二项分布的均值、方差若X ~B (n ,p ),则EX =np ,DX =np (1-p ). 3.两点分布的均值、方差若X 服从两点分布,则EX =p (p 为成功概率),DX =p (1-p ). 4.离散型随机变量均值与方差的性质E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ) (a ,b 为常数). 经典真题汇总及解析1.(2021·湖北·高三开学考试)已知随机变量2(0,)X N σ,且()P X a m <=,0a >,则()P a X a -<<=____. (用m 表示) 【答案】2m -1【分析】利用正态分布的性质可得正确的结果. 【详解】因为2(0,)XN σ,故1(0)2P X <=, 则1(0)2P X a m <<=-,故1()2212P a X a m m ⎛⎫-<<=-=- ⎪⎝⎭.故答案为:21m -.2.(2020·海南·三亚市第二中学高三阶段练习)某超市经营的某种包装优质东北大米的质量X (单位:kg )服从正态分布(25,0.04)N ,任意选取一袋这种大米,质量在24.825.4kg 的概率为__________.(附:若2(,)ZN μσ,则()0.6826P Z μσ-<=,(2)0.9544P Z μσ-<=,(3)0.9974P Z μσ-<=)【答案】0.8185【详解】因为()~?25,0.04X N ,所以250.2μσ==,. 所以()()()124.825.420.68260.95440.34130.47720.81852P P X σμσμσ≤≤=-≤≤+=+=+=. 故答案为0.8185.3.(2022·辽宁大连·一模)已知随机变量()2~1,N ξσ,且()()13P P a ξξ≤=≥-,则()190x a x a x+<<-的最小值为______. 【答案】4【分析】由正态曲线的对称性得出4a =,再由基本不等式得出最小值. 【详解】由随机变量()2~1,N ξσ,则正态分布的曲线的对称轴为1ξ=,又因为()()13P P a ξξ≤=≥-,所以()132a +-=,所以4a = 当04x <<时, 有()41919491102910444444x x x x xx x x x x +--+⎛⎫⎛⎫+=+=++⨯≥= ⎪ ⎪---⎝⎭⎝⎭, 当且仅当494x xx x-=-,即1x =时等号成立,故最小值为4. 故答案为:44.(2022·江苏·扬中市第二高级中学模拟预测)在()*43,29,,N 2np x n p n p x ≥≤≤∈展开式中,第2,3,4项二项式系数依次成等差数列,且展开式中有常数项,则该常数项是第________项. 【答案】5【分析】根据等差数列的知识求得n ,结合二项式展开式的通项公式求得正确答案.【详解】由于第2,3,4项二项式系数依次成等差数列, 所以()2132C C C 3n n n n =+≥,()()()1217321n n n n n n n ---=+⇒=⨯⨯.742p x x 展开式的通项公式为71714417711C C 22kkk kkk k pp p k T x x x ----+⎛⎫⎛⎫⎛⎫=⋅⋅-=-⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令704k k p p --=,整理得284k p =+, 由于*,0,1,2,3,4,5,6,729,N p p k ≤≤∈=, 所以3,4p k ==,即常数项是第15k +=项. 故答案为:55.(2021·广东·珠海市第二中学高三阶段练习)若()()()()17217012172111x a a a x x a x +=+++++++,则6216414a a a a a +++++=_______.【答案】1621-【分析】利用赋值法化简求解0241416a a a a a ⋯+++++和0a ,进一步求出答案.【详解】令2x =-,则1701216170a a a a a =⋯+--+-∈令0x =,则1701216172a a a a a =⋯+++++∈,∈+∈得()17024141622a a a a a +++++=⨯⋯ ∈1602414162a a a a a +⋯++++= 令1x =-,则01a = ∈6216414a a a a a +++++=160241416012a a a a a a +++++-=-⋯.故答案为:1621-.6.(2022·湖南·长郡中学一模)已知()2022202201202214x a a x a x -=+++,则32022122320222222a a a a ++++=__________. 【答案】0【分析】利用赋值法可得答案.【详解】根据题意,今0x =,得()20220101a =-=,令12x =,得()2022202212012202212222a a a a -=++++, 因此32022120232022102222a a a a a ++++=-=, 故答案为:0.7.(2022·湖北·襄阳五中二模)已知函数()103cos f x x x =+在x=0处的切线与直线0nx y -=平行,则二项式()()211nx x x ++-展开式中含2x 项的系数为_________.【答案】36【分析】根据导数的几何意义可得()010n f '==,()101x -展开式的通项为:110C (1)rr r r T x +=⋅-⋅,根据()()()()()101010102211111x x x x x x x x ++-=-+-+-分析计算2x 项的系数.【详解】由函数()f x 的解析式,得()103sin f x x '=-,则()010f '=.由题意,得()010n f '==,则二项式()()()()()()()101010102221111111nx x x x x x x x x x x ++-=++-=-+-+-()101x -展开式的通项为:1011010C 1()C (1)r r r rr r r T x x -+=⋅⋅-=⋅-⋅ 所以含2x 项的系数为()()()210210101010C 1C 1C 14510136⋅-+⋅-+⋅-=-+= 故答案为:36.8.(2022·重庆八中模拟预测)为了监控某种食品的生产包装过程, 检验员每天从生产线上随机抽取()*N k k ∈包食品,并测量其质量(单位:g ).根据长期的生产经验,这条生产线正常状态下每包食品质量服从正态分布()2,N μσ.假设生产状态正常,记ξ表示每天抽取的k 包食品中其质量在(3,3)μσμσ-+之外的包数,若ξ的数学期望()0.05E ξ>,则k 的最小值为________.附:若随机变量X 服从正态分布()2,N μσ,则(33)0.9973P X μσμσ-<<+≈.【答案】19【分析】根据正态分布的性质求出在(3,3)μσμσ-+之外的概率,从而得到(),0.0027B k ξ,根据二项分布的期望公式得到不等式,解得即可;【详解】解:依题意(33)0.9973P X μσμσ-<<+≈,所以在(3,3)μσμσ-+之外的概率10.99730.0027P =-=,则(),0.0027B k ξ,则()0.0027E k ξ=,因为()0.05E ξ>,所以0.00270.05k >,解得50018.5227k >≈,因为*N k ∈,所以k 的最小值为19; 故答案为:199.(2021·河北·武安市第一中学高三阶段练习)随机变量ξ的可能值1,2,3,且()()131,31P p P p ξξ==-==-,则D ()ξ的最大值为___________.【答案】1【分析】由题意得到()212P p ξ==-,利用概率范围求得p 的范围,再利用期望和方差的公式求解.【详解】因为随机变量ξ的可能值有1,2,3,且()()131,31P p P p ξξ==-==-, 所以()212P p ξ==-,由0311011,0121p p p ≤-≤⎧⎪≤-≤⎨⎪≤-≤⎩,得11,32p ⎡⎤∈⎢⎥⎣⎦所以()()()()1312123144E p p p p ξ=-+-+-=-.()()()()()()()22214431244123441D p P p p p p ξ=-+⨯-+-+⨯-+-+⨯-, 21116184,,32p p p ⎡⎤=-+-∈⎢⎥⎣⎦,当12p =时,()D ξ的最大值为1. 故答案为:110.(2022·山东师范大学附中模拟预测)已知随机变量()2~4,N ξσ,且()()31P P a ξξ≤=≥+,则()140x a x a x+<<-的最小值为________.【答案】94【分析】先由正态分布对称性求出4a =,进而利用基本不等式“1”的妙用求解最小值.【详解】由正态分布的对称性可知:15a +=,解得:4a =, 因为04x <<,所以40x ->,由基本不等式得:()141144444x x x x x x ⎛⎫⎛⎫⎡⎤+=++- ⎪ ⎪⎣⎦--⎝⎭⎝⎭1441449145244444x x x x x x x x ⎛--⎛⎫=+++≥+⋅= ⎪ --⎝⎭⎝, 当且仅当444x x x x -=-,即43x =时等号成立, 所以不等式得最小值为94故答案为:9411.(2022·河北保定·二模)若112nx x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭展开式中各项的系数之和为96,则展开式中2x 的系数为___________. 【答案】25【分析】由题意可得()21296n+=,从而可求出n ,则展开式中2x 的系数等于1nx x ⎛⎫+ ⎪⎝⎭展开式中x 一次项系数的2倍加上x 的3次项系数 【详解】由题意可知()21296n+=,得5n =,则5111122n x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫++=++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,51⎛⎫+ ⎪⎝⎭x x 展开式的通项公式为552551C C rr r r rx x x --⎛⎫= ⎪⎝⎭, 所以5112x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭展开式中2x 的系数为21552C C 25+=.故答案为:2512.(2022·山东济宁·二模)从甲、乙、丙3名同学中选出2人担任正、副班长两个职位,共有n 种方法,则12nx x ⎛⎫- ⎪⎝⎭的展开式中的常数项为___________.(用数字作答) 【答案】160-【分析】先由题意求出2232C A 6n ==,然后求出二项式展开式的通项公式,令x 的次数为零,求出r 的值,从而可求出展开式中的常数项【详解】因为从甲、乙、丙3名同学中选出2人担任正、副班长两个职位,共有n 种方法, 所以2232C A 6n ==,所以二项式612x x ⎛⎫- ⎪⎝⎭展开式的通项公式为66621661C (2)C (1)2rrrr r r rr T x x x ---+⎛⎫=-=⋅-⋅⋅ ⎪⎝⎭, 令620r -=,得3r =,所以二项式展开式的常数项为3336C (1)2160⋅-⋅=-,故答案为:160-13.(2022·福建·厦门一中模拟预测)已知521()((ax x a xx-为常数)的展开式中各项系数之和为1,则展开式中3x 的系数为___. 【答案】79-【分析】令1x =得各项系数和,求得参数a ,然后由二项展开式通项公式结合多项式乘法法则求得含3x 的项,从而得其系数. 【详解】令1x =,则展开式的各项系数和为5(1)(12)11a a --=-=,解得2a =,所以5(x x 的展开式的通项公式为3552155C (C (2)rr rrr rr Tx xx--+==-,令3552r-=,则0r =,令3522r -=,解得2r =, 所以展开式中含3x 的项为0522235521C 2C (2)79x x x x x ⨯-⨯-=-,所以3x 的系数为79-,故答案为:79-.14.(2020·福建省长乐第一中学高三期中)从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______. 【答案】2【分析】ξ的可能值为1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】ξ的可能值为1,2,3,则()124236115C C p C ξ===;()214236325C C p C ξ⋅===;()3436135C p C ξ===. 故分布列为:ξ123p153515故()1311232555E ξ=⨯+⨯+⨯=. 故答案为:2.【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.。
分布列期望方差知识

离散型随机变量的分布列、数学期望、方差一. 离散型随机变量:若随机变量可能的取值可以按一定次序一一列出,这样的随机变量叫做离散型随机变量;若随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量。
二. 离散型随机变量的分布列、数学期望、方差 1. 设离散型随机变量ξ可能的取值为12,,,,i x x x ,ξ取每一个值()1,2,i x i =的概率为i p ,列表如下:叫做随机变量ξ的概率分布,简称分布列。
有如下性质: (1)()011,2,i p i ≤≤=(2)121i p p p ++++=2.数学期望:1122i i E x p x p x p ξ=++++叫做离散型随机变量ξ的数学期望,简称期望。
反映离散型随机变量ξ取值的平均水平。
若a b ηξ=+,则E aE b ηξ=+。
3.方差:()()()2221122i i D x E p x E p x E p ξξξξ=-+-++-+叫做离散型随机变量ξ的方叫做离散型随机变量ξ的标准差,记作σξ 若a b ηξ=+,则2D a D ηξ=。
方差反映随机变量ξ的取值与平均值的离散情况。
即稳定性。
三.几个典型的分布1.二项分布:n 次独立重复试验中,事件A 发生的次数(),B n p ξ,p 是一次试验A 发生的概率,设1q p =-。
则()()()();,0,1,,k k n kn n P k b k n p P k C p q k n ξ-=====2、几何分布:独立重复试验中事件A 第一次发生时的试验次数ξ服从几何分布,p 是一次试验A 发生的概率,设1q p =-。
()()11,2,k P k q p k ξ-===期望1E p ξ=,方差2q D pξ=。
3.两点分布:一次实验中,事件A 发生记为1,不发生记为0,p 是一次试验A 发生的概率,设1q p =-。
则期望E p ξ=,方差D pq ξ=。
练习1.已知随机变量(),B n p ξ,且6,3E D ξξ==,则()1;,b n p = .2.若随机变量ξ的分布列是:()()1,3P m P n a ξξ====.且2E ξ=,则D ξ的最小值是 .3.若随机变量ξ满足()(),P k g k p ξ==,2D ξ=,21ηξ=-,则E η= ,D η= 。
离散型随机变量的数学期望课件-高二下学期数学湘教版(2019)选择性必修第二册

三、归纳总结:
2.两点分布的数学期望
若X~B(1,p),则E(X)=__p___.
3.二项分布的数学期望 若X~B(n,p),则E(X)=__n_p__.
4.超几何分布的数学期望
nM
若X~H(N,M,n),则E(X)=__N____.
四、小试牛刀:
1.若随机变量X~B(5,0.8),则E(X)的值为
3.2.3 离散型随机变量的数学期望(2)
二、学习目标
1.掌握两点分布、二项分布、超几何分布的数学期望; 2.会利用离散型随机变量的数学期望,解决一些相关的实际 问题.(重点)
一、复习回顾:
1. 离散型随机变量的期望: 一般地,若离散型随机变量X的分布列如下表所示,
X
x1
x2
‧‧‧
xn
P
p1
p2
分析:各方案的总损失分别为多少?没有洪水的概率又是多少?
例4 根据天气预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为
0.01. 该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小
洪水时要损失10000元. 为保护设备,有以下3种方案:
方案1 运走设备,搬运费为3800元;
跟踪训练2 盒中装有5节同牌号的五号电池,其中混有2节废电池. (1)若无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数 X的分布列及数学期望;
(2)若有放回地每次取一节电池检验,求检验4次取到好电池次数Y的数学 期望.
由题意知,每次检验取到好电池的概率均为35, 故 Y~B4,35,则 E(Y)=4×35=152.
‧‧‧
pn
n
则称E( X ) x1 p1 x2 p2 xn pn xi pi
2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题变式题16-19

2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)数学试题变式题16-191.盒中有标记数字1,2,3,4的小球各2个,随机一次取出3个小球.(1)求取出的3个小球上的数字两两不同的概率;E X.(2)记取出的3个小球上的最小数字为X,求X的分布列及数学期望()2.社会需要爱,时代呼唤爱,传递感动,就是传递“正能量”.如图为某爱心救助网站上的一幅爱心图片,其中有2个大爱心,8个小爱心,现从图片中随机取2个爱心.(1)求取出的2个爱心中,至少有1个大爱心的概率;(2)在取出的2个爱心中,大爱心的个数设为X,求随机变量X的分布列和数学期望.3.当前,以ChatGPT为代表的AIGC(利用AI技术自动生成内容的生产方式)领域一系列创新技术有了革命性突破,全球各大科技企业都在积极拥抱AIGC,我国的BAT (百度、阿里、腾讯3个企业的简称)、字节跳动、万兴科技、蓝色光标、华为等领头企业已纷纷加码布局AIGC赛道,某传媒公司准备发布《2023年中国AIGC发展研究报告》,先期准备从上面7个科技企业中随机选取3个进行采访.(1)求选取的3个科技企业中,BAT中至多有1个的概率;(2)记选取的3个科技企业中BAT中的个数为X,求X的分布列与期望.4.当前,以ChatGPT为代表的AIGC(利用AI技术自动生成内容的生产方式)领域一系列创新技术有了革命性突破.全球各大科技企业都在积极拥抱AIGC,我国的BAT (百度、阿里、腾讯3个企业的简称)、字节跳动、万兴科技、蓝色光标、华为等领头企业已纷纷加码布局AIGC赛道,某传媒公司准备发布《2023年中国AIGC发展研究报6.2023年3月某学校举行了普通高中体育与健康学业水平合格性考试.考试分为体能8.如图,平行六面体(1)证明:1C O ⊥平面ABCD ;(2)求二面角1B AA D --的正弦值.(1)求证:EC ⊥平面DFG ;(2)求二面角F DG C --的余弦值.10.如图,在四棱锥P ABCD -3PA =,1AD =,AB =(1)证明:BC ⊥平面PAC .(2)求平面ABE 与平面PCD11.如图,在四棱锥(1)证明: OP⊥平面ABCD;(2)求平面PAD与平面PBC所成锐二面角的余弦值12.如图,菱形ABCD的对角线在AD,CD上,54 AE CF==,(1)证明:D H'⊥平面ABCD;(2)求平面BAD'与平面ACD'的夹角的余弦值.13.如图,在三棱柱ABC DEF-中,AD(1)求证:PE⊥平面BCP;(2)求平面ECP与平面PCD夹角的余弦值14.如图,在三棱柱111ABC A B C 中,平面11AA C C ⊥平面,ABC ABC △为等边三角形,12AC CC ==,160,,ACC D E ∠= 分别是线段1,AC CC 的中点.(1)求证:1A C ⊥平面BDE ;(2)若点P 为线段11B C 上的动点(不包括端点),求平面PBD 与平面BDE 夹角的余弦值的取值范围.15.已知抛物线2:4C y x =的焦点为F ,过F 的直线l 交C 于,A B 两点,过F 与l 垂直的直线交C 于,D E 两点,其中,B D 在x 轴上方,,M N 分别为,AB DE 的中点.(1)证明:直线MN 过定点;(2)设G 为直线AE 与直线BD 的交点,求GMN 面积的最小值.16.已知抛物线2:C y x =,直线l 与抛物线C 交于A ,B 两点,且OA OB ⊥,O 是坐标原点.(1)证明:直线AB 过定点.(2)求AOB 面积的最小值.17.如图,已知抛物线C :24x y =,焦点为F ,直线l :3y kx =+交抛物线于A ,B 两点,延长AF ,BF 分别交抛物线于M ,N 两点.(1)求证:直线MN 过定点;(2)设1FAB S S =△,2FMN S S =△,18.设抛物线2:C y(1)求抛物线C 的标准方程(2)已知点()1,0P ,直线①求证:直线CD 过定点;②求PAB 与PCD 面积之和的最小值20.如图,已知(E m(1)若0m =且121k k =-时,求EMN (2)若1211(0)k k λλ+=≠,证明:直线21.已知点P 、A 、B 是抛物线:C 22.离散对数在密码学中有重要的应用.设25.对非空整数集合27.在平面直角坐标系参考答案:),ABCD 是边长为2的正方形,所以BC DC =,1CB C CD =∠,11CC CC =,1C CD ,所以11BC DC =,则()()()(0,2,0,0,2,0,2,0,0,B D AC --则()112,0,2AA CC ==,()()2,2,0,2,2,0AB AD =-=--,设面1BAA 的法向量为()111,,m x y z =,面DAA 则1111122000220x z AA m AB m x y ⎧⎧+=⋅=⎪⎪⇒⎨⎨⋅=-+=⎪⎪⎩⎩,取1x =9.(1)证明见解析(2)6 4(2)因为EA ⊥平面ABCD ,所以由(1)知()1,2,3EC =-为平面6cos ,4EC n EC n EC n⋅〈〉==-⋅,显然二面角F DG C --为锐二面角,所以二面角则()()0,0,0,3,1,0,A BP -设(),,E x y z ,由2PE EC =故232,2,x x y y z =-=--故233,0,33E ⎛⎫⎪ ⎪⎝⎭,(2)解:因为BC CD =,O 以O 为原点,以OB 、OC 、则()0,0,0O 、()2,0,0B 、(C 所以,()2,2,0DC = ,2AB =12.(1)证明见解析(2)75 25【分析】(1)先利用平行转化得垂直关系,面垂直判定定理证明线面垂直,,且OH()0,0,0H ,()3,1,0A --,()0,5,0B -,(3,C ()6,0,0AC = ,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则0m AB ⎧⋅=⎪⎨ ,即11340x y -=⎧⎨,令x))可知MP、MC、MA两两垂直,以M为原点,MC所在直线为z轴建立空间直角坐标系,又平面11AA C C ⊥平面ABC ,平面11AA C BD ∴⊥平面11AAC C ,又1AC ⊂平面1AAC 1BD AC ∴⊥,又,,BD DE D BD DE =⊂ (2)112,60CA CC ACC ︒==∠= ,∴△则113(0,0,0),(3,0,0),0,,,22D B E C ⎛⎫- ⎪ ⎪⎝⎭1113(3,0,0),0,,,22DB DE C B ⎛⎫∴==- ⎪ ⎪⎝⎭设111(,,),(01)P x y z C P C B λλ=<<,则(x【方法二】:设()11,A x y ,(2B x 设:1l x my =+,则0m >.由y x ⎧⎨⎩故124y y m +=,124y y =-,1y 所以()221,2M m m +.同理可得2221,N mm ⎛⎫+- ⎪⎝⎭.若1m ≠,则直线2:1m MN y m =-法2:设H 为AD 的中点,S 为直线GM 与AD 的交点.由M ,H 分别为AB ,AD 的中点知MH DG ∥,所以GHD MGD S S =△△,故GSH MSD S S =△△.S S =)如图,设A 点在第一象限,过A 点作准线x =-1的垂线,得垂足FD AP == ,//AP FD ,四边形APFD 是平行四边形,//PF AD ,a ,t )()0,0a t >> ,则P (-1,t ),直线PF 的斜率为的方程为2t y xb =-+ ,联立方程242y xty x b ⎧=⎪⎨=-+⎪⎩,因此,PAB 面积的最小值为16.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.22.(1)1(2)证明见解析(3)证明见解析【分析】(1)第一问直接根据新定义来即可.(2)第二问结合新定义、带余除法以及费马小定理即可得证.(3)根据新定义进行转换即可得证.【详解】(1)若11,2p a ==,又注意到102102493111==⨯+,所以1,01,21p a -⊗⊗==.(2)【方法一】:当2p =时,此时{1}X =,此时1b c ==,1b c ⊗=,故()log()0,log()0,log()0a a a p b c p b p c ⊗===,此时()log()log()log()a a a p b c p b p c ⊗=⊕.当2p >时,因2,2,1,,,,p a a a ⊗-⊗ 相异,故2a ≥,而a X ∈,故,a p 互质.记()12=log(),log(),=log()a a a n p b c n p b n p c ⊗=,则12,N m m ∃∈,使得1212,n na pmb a pmc =+=+,故()()1212n n a pm b pm c +=++,故12(mod )n n a bc p +≡,设()121,02n n t p s s p +=-+≤≤-,则12n n s ⊕=,因为1,2,3,..1p -除以p 的余数两两相异,且(),2,3,..1a a a p a -除以p 的余数两两相异,故()()1!23,..1(mod )p a a a p a p ⎡⎤-≡⨯⨯⨯-⎣⎦,故()11mod p a p -≡,故()12mod n n s a a bc p +≡≡,而(mod )(mod ),n a b c p bc p ≡⊗=其中02n p ≤≤-,故s n =即()log()log()log()a a a p b c p b p c ⊗=⊕.法2:记11,1n n a a m p ⊗=+,22,2n n a a m p ⊗=+,1212,,,,n n n n kp a a a a ⊗⊗⊗⊗=+⊗⨯,其中1m ,2m ,k 是整数,则()121221.,..1212n n n n n n a a a m a m a m m p k p ⋅⊗⊗⊗⊗=⊗++++,可知2211,,,n n n n a a a ⊗⊗⋅⊗⊗=.因为1,a ,2,a ⊗,…,2,p a -⊗两两不同,所以存在{0,1,,2}i p ∈⋅⋅⋅-,使得1,,p i a a -⊗⊗=,即1p i i a a a --=()11p ia---可以被p 整除,于是11p i a ---可以被p 整除,即1,1p i a --⊗=.若0i ≠,则1{1,2,,2}p i p --∈⋅⋅⋅-,1,1p i a --⊗≠,因此0i =,,11p a -⊗=. 记log()a n p b =,log()a m p c =,(1)n m n m l p +=⊕+-,其中l 是整数,则,,,(1),,(1),,n m n m n m l p n m l p n m b c a a a a a a a ⊗⊗⋅⊗⊕+-⊗⊕⊗-⊗⊕⊗=⊗=⊗==⊗=,即log()()log()log()a a a p b c p b p c ⊗=⊕.(3)【方法二】:当2b ≥时,由(2)可得()11mod p b p -≡,若1b =,则()11mod p b p -≡也成立.因为log()a n p b =,所以()mod na b p ≡.另一方面,()()()()()22,2,,,2121n p n p n p k k y y y y x b a --⊗-⊗⊗⊗⊗≡≡⊗()()()()()()()()112211mod mod k k kn p k p k k p xb a xb b x b x p x p -----≡≡≡≡≡.由于x X ∈,所以()2,21n p x y y -⊗=⊗.法2:由题设和(2)的法2的证明知:,,,,2(k k nk k n n n y x b x b b b x a a a x a a a ⊗⊗⊗⊗=⊗=⊗⊗⊗⋅⋅⋅⊗=⊗⊗⊗⋅⋅⋅⊗=⊗⊗⊗⋅⋅⋅⊗,(2)(2)(2),,,,2,2,2,1111n p nk n p n p k k k p p p y y y y a a a a a a---⊗⊗⊗⊗-⊗-⊗-⊗=⊗⊗⋅⋅⋅⊗=⊗⊗⋅⋅⋅⊗=⊗⊗⋅⋅⋅⊗.故(2),2,2,2,21nk nk n p p p p y y x a a a a a a-⊗-⊗-⊗-⊗⊗=⊗⊗⊗⋅⋅⋅⊗⊗⊗⊗⋅⋅⋅⊗1,1,1,nkp p p x a a a -⊗-⊗-⊗=⊗⊗⊗⋅⋅⋅⊗.由(2)法2的证明知,11p a -⊗=,所以(2).21n p y y x -⊗⊗=.【点睛】关键点睛:本题的关键是充分理解新定义,然后结合带余除法以及费马小定理等初所以,曲线G 所围成的封闭图形的面积的值为故答案为:5;1x y +=;6.(2)设()00,B x y ,则002x y -+所以,()00,10A B x y ρ=-+-=当00y <时,有(),32A B y ρ=-当320y ≤<时,有(),A B ρ=。
(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。
2019年高考理科数学试题(天津卷)及参考答案

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 A 2B 3C .2D 56.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .2C 2D .28.已知a ∈R ,设函数222,1,()ln , 1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,eD .[]1,e2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.分布列与数学期望
一.基础练习
1.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为
A.1234481216
10
40
C C C C C B.2134481216
10
40
C C C C C C.2314481216
10
40
C C C C C D.1342481216
10
40
C C C C C 2..随机变量ξ的的分布列如下,则m=(
)A.3
1 B.
2
1 C.
6
1 D.
4
13.设随机变量ξ服从二项分布B (6,
21),则P (ξ=3)=()A.165 B.163C 85,D 8
34.某射手射击时击中目标的概率为0.7,设4次射击击中目标的次数为随机变量ξ,则P (ξ≥1)等于()(A )0.9163(B )0.0081(C )0.0756(D )0.9919
5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是()A .21p p B .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p ---
6.某渔船要对下月是否出海做出决策,如出海后遇到好天气,可得收益6000元,如出海后天气变坏将损失8000元,若不出海,无论天气如何都将承担1000元损失费,据气象部门的预测下月好天的概率为0.6,天气变坏的概率为0.4,则该渔船应选择___________(填“出海”或“不出海”).
7.某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成。
现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为。
(结果用分
8.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆。
为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取,,辆。
9某厂生产电子元件,其产品的次品率为5%,现从一
批产品中任意连续取出2件,其中次品数ξ的概率分布
是
10.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是__________________.
二.综合练习
11..在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE .
ξ
123
4
p
41m
316
1ξ
012p
12.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
1
,7
现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(I)求袋中所有的白球的个数;(II)求随机变量ξ的概率分布及数学期望;(III)求甲取到白球的概率.
13.在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。
在试制某种牙膏新品种时,需要选用两种不同的添加剂。
现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。
根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。
用ξ表示所选用的两种不同的添加剂的芳香度之和。
(Ⅰ)写出ξ的分布列;(以列表的形式给出结论,不必写计算过程)(Ⅱ)求ξ的数学期望E ξ。
(要求写出计算过程或说明道理)
14.高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为
3
1
,该研究性学习小组又分成两个小组进行验证性实验.(Ⅰ)第一小组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实
验至少有3次发芽成功的概率;
(Ⅱ)第二小组做了若干次发芽实验(每次均种下一粒种子),如果在一次实验中种子发
芽成功就停止实验,否则将继续进行下次实验,直到种子发芽成功为止,但实验的次数最多不超过5次,求第二小组所做种子发芽试验的次数ξ的概率分布列和数学期望.
11.解:(法一)(Ⅰ)3245151210
26=-
=-=C C I P ,即该顾客中奖的概率为32
.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元).
.151
)60(,152
)50(,151)20(,52
)10(,31)0(2
10
1
3112
101
611210232
101
61321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故ξ有分
布列:
从而期望.1615
1
6015250151205210310=⨯+⨯+⨯+⨯+⨯
=ξE 12.12:解:(I)设袋中原有n 个白球,由题意知2
27(1)1(1)2767762
n
n n C n n C --===⨯⨯可得3n =或2n =-(舍去)即袋中原有3个白球.
(II)由题意,ξ的可能取值为1,2,3,4,5
3(1);7P ξ==()4322;767P ξ⨯===⨯4326
(3);
76535P ξ⨯⨯===⨯⨯43233(4);765435P ξ⨯⨯⨯===⨯⨯⨯432131
(5);
7654335
P ξ⨯⨯⨯⨯===⨯⨯⨯⨯所以ξ的分布列为:
ξ
12345
P
3
727635335135
(III)因为甲先取,所以甲只有可能在第一次,第三次和第5次取球,记”甲取到白球”为事件A ,则()()()22()13535
P A P P P ξξξ==+=+==13(理)解:(Ⅰ)
ξ
12345
6789
P
115115215215315215215115115
ξ
010205060
P
315215115215
1
(Ⅱ)1122322211234567895151515151515151515
E ξ=⨯
+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=14.解(Ⅰ)至少有3次发芽成功,即有3次、4次、5次发牙成功
设5次试验中发芽成功的次数为随机变量X ,则
P (X =3)=24340
)32(3
1
(23
3
5=
⋅C ………………………………1分
243
10
32)31()4(445=⋅==C X P ……………………………………2分
243
132)31()5(555=⋅==C X P ………………………………3分
所以至少有3次发芽成功的概率)
5()4()3(=+=+==X P X P X P P 243
51
24312431024340=++=
………………………………4分(Ⅱ)随机变量ξ的可能取值为1,2,3,4,5
3
1
)1(==ξP ……………………………………5分92
3132)2(=⋅==ξP ……………………………………6分
274
3132()3(2=⋅==ξP ……………………………………7分
818
3132()4(3=⋅==ξP ……………………………………8分
81
16
1)32()5(4=⋅==ξ
P ……………………………………9分
所以ξ的分布列为
ξ
12345
P
319227481881
16…………10分
ξ的数字期望81
211
8116581842743922311=
⨯+⨯+⨯+⨯+⨯=ξE …………12分。