高三数学分布列和期望

合集下载

高考数学 考前查缺补漏系列 热点06 概率与统计问题,你能渡过“事理关”和“数理关”吗?

高考数学 考前查缺补漏系列 热点06 概率与统计问题,你能渡过“事理关”和“数理关”吗?

概率与统计问题,你能渡过“事理关”和“数理关”吗?【常见题型】在概率中,事件之间有两种最基本的关系,一种是事件之间的互斥(含两个事件之间的对立),一种是事件之间的相互独立的,互斥事件至少有一个发生的概率等于各个事件发生的概率之和,相互独立事件同时发生的概率等于各个事件各自发生的概率之积,在概率计算中正确地把随机事件进行分拆是正确解决问题的根本所在.概率计算题的核心环节就是把一个随机事件进行类似本题的分拆,这中间有三个概念,事件的互斥,事件的对立和事件的相互独立,在概率的计算中只要弄清楚了这三个概念,根据实际情况对事件进行合理的分拆,就能把复杂事件的概率计算转化为一个个简单事件的概率计算,达到解决问题的目的.一.概率与茎叶图相联系例1【河北省唐山市2011—2012学年度高三年级第二次模拟考试】(理)某篮球队甲、乙两名队员在本赛零已结束的8场比赛中得分统计的茎叶图如下:(I )比较这两名队员在比赛中得分的均值和方差的大小;(II )以上述数据统计甲、乙两名队员得分超过15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过15分次数X 的分布列和均值.(Ⅰ)x-甲= 1 8(7+9+11+13+13+16+23+28)=15, x -乙= 1 8(7+8+10+15+17+19+21+23)=15, s 2甲= 1 8[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s 2乙= 1 8[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小). …4分(Ⅱ)根据统计结果,在一场比赛中,甲、乙得分超过15分的概率分别为p 1= 38,p 2= 1 2,两人得分均超过15分的概率分别为p 1p 2=316,依题意,X ~B (2,316),P (X =k )=C k 2(316)k(1316)2-k ,k =0,1,2, …7分X 的分布列为…10分 X 的均值E (X )=2×316=8. …12分(文)某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下:(I )比较这两名队员在比赛中得分的均值和方差的大小:(II )从乙比赛得分在20分以下的6场比赛中随机抽取2场进行失误分析,求抽到恰好有1场得分不足10分的概率. 解:(Ⅰ)x-甲= 1 8(7+9+11+13+13+16+23+28)=15, x -乙= 1 8(7+8+10+15+17+19+21+23)=15, s 2甲= 1 8[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s 2乙= 1 8[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小). …4分 (Ⅱ)题设所述的6个场次乙得分为:7,8,10,15,17,19. …7分二.频率分布表、频率分布直方图与概率相结合 例2【2012年长春市高中毕业班第二次调研测试】 对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如 下:【命题意图】本小题主要考查统计与概率的相关知识,具体涉及到频率分布表、频率分布直方图、离散型随机变量的分布列以及数学期望的求法. 【试题解析】⑴由题可知 50.25M =,12n M =,m p M =,10.05M= 又 5121m M +++=解得 20M =,0.6n =,2m =,0.1p =则[15,20)组的频率与组距之比a 为0.12. (4分)⑵由⑴知,参加服务次数在区间[15,20)上的人数为3600.6216⨯=人. (6分) ⑶所取出两人所获得学习用品价值之差的绝对值可能为0元、20元、40元、60元,则 22251222201066177(0)190190C C C P C ++++===, 111111512122212206024286(20)190190C C C C C C P C ++++===, 111152121220101222(40)190190C C C C P C ++===, 11512205(60)190C C P C ==.(10分)()0(0)20(20)40(40)60(60)E X P P P P =⋅+⋅+⋅+⋅7786225290020406019019019019019=⨯+⨯+⨯+⨯= (12分)(文)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:⑴求出表中M 、p 及图中a 的值;三、排列组合和概率相结合例3【2012东城区普通高中示范校高三综合练习(二)】(理)某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训的培训次数 1 2 3 参加人数 5 15 20(1的概率; (2)从40人中任选两名学生,用X 表示这两人参加培训次数之差的绝对值,求随机变量X 的分布列及数学期望EX . 解:(1)这3名同学中至少有2名同学参加培训次数恰好相等的概率为494419134012011515=-=C C C C P . ……………………5分(2)由题意知X =0,1,222251520240111151515202401152024061(0);15675(1);1565(2).39C C C P X C C C C C P X C C C P X C ++===+====== 则随机变量X 的分布列:分组 频数 频率 [10,15) 10 0.25 [15,20) 25 n [20,25) m p [25,30) 2 0.05 合计M1X0 12P15661 15675395012.156********X EX =⨯+⨯+⨯=所以的数学期望 ……………………13分样本容量与总体中个体数的比为,181905= 所以从,,A B C 三个工作组分别抽取的人数为2,2,1. ------------------5分(II )设12,A A 为从A 组抽得的2名工作人员,12,B B 为从B 组抽得的工作人员,1C 为从C 组抽得的工作人员,若从这5名工作人员中随机抽取2名,其所以可能的结果是:),,(),,(),,(),,(),,(),,(),,(),,(),,(112112221211211121C B B B C A B A B A C A B A B A A A21(,)B C ,共有10种, ------9分其中没有A 组工作人员的结果是:121121(,),(,),(,)B B B C B C 有3种,--------------------------11分 所以从抽取的5名工作人员中再随机抽取2名进行汇总整理,此时这两名工作人员中没有A 组工作人员的概率310P =。

高三数学随机变量的分布列试题

高三数学随机变量的分布列试题

高三数学随机变量的分布列试题1.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P(<X<)的值为()A.B.C.D.【答案】D【解析】由题意得,+++=1,解得a=.于是P(<X<)=P(X=1)+P(X=2)=+=a=,故选D.2. [2014·四川模拟]在四次独立重复试验中,事件A在每次试验中出现的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为()A.B.C.D.【答案】C【解析】设事件A在每次试验中发生的概率为p,则事件A在4次独立重复试验中,恰好发生k 次的概率为pk=p k(1-p)4-k(k=0,1,2,3,4),∴p0=p0(1-p)4=(1-p)4,由条件知1-p=,∴(1-p)4=,∴1-p=,∴p=.∴p1=p·(1-p)3=4××()3=,故选C.3.[2014·唐山检测]2013年高考分数公布之后,一个班的3个同学都达到一本线,都填了一本志愿,设Y为被录取一本的人数,则关于随机变量Y的描述,错误的是()A.Y的取值为0,1,2,3B.P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)=1C.若每录取1人学校奖励300元给班主任,没有录取不奖励,则班主任得奖金数为300Y D.若每不录取1人学校就扣班主任300元,录取不奖励,则班主任得奖金数为-300Y【答案】D【解析】由题意知A、B正确.易知C正确.对于D,若每不录取1人学校就扣班主任300元奖金,录取不奖励,则班主任得奖金数为-300(3-Y)=300Y-900.4.设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此两球所得分数之和,求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=,V(η)=,求a∶b∶c.【答案】(1)ξ的分布列为(2)3∶2∶1【解析】(1)由已知得到:当两次摸到的球分别是红红时ξ=2,此时P(ξ=2)==;当两次摸到的球分别是黄黄、红蓝、蓝红时ξ=4时,P(ξ=4)==;当两次摸到的球分别是红黄,黄红时ξ=3时,P(ξ=3)==;当两次摸到的球分别是黄蓝,蓝黄时ξ=5时,P(ξ=5)==;当两次摸到的球分别是蓝蓝时ξ=6时,P(ξ=6)==.所以ξ的分布列为ξ23456由已知得到:η有三种取值即1,,所以η的分布列为所以,所以b=2c,a=3c,所以a∶b∶c=3∶2∶1.5.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.【答案】(1)0.5(2)0.8(3)ξ0123【解析】解:记A表示事件:进入商场的1位顾客购买甲种商品;记B表示事件:进入商场的1位顾客购买乙种商品;记C表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种;记D 表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种.(1)C=A·B+A·B,P(C)=P(A·B+A·B)=P(A·B)+P(A·B)=P(A)·P(B)+P()·P(B)=0.5×0.4+0.5×0.6=0.5.(2)D=A·B,P(D)=P(A·B)=P(A)·P(B)=0.5×0.4=0.2,P(D)=1-P(D)=0.8.(3)ξ~B(3,0.8),故ξ的分布列P(ξ=0)=0.23=0.008;P(ξ=1)=×0.8×0.22=0.096;P(ξ=2)=×0.82×0.2=0.384;P(ξ=3)=0.83=0.512.6.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X的分布列.【答案】(1)、、(2)X的分布列为【解析】(1)记“甲队以3∶0胜利”为事件A1,“甲队以3∶1胜利”为事件A2,“甲队以3∶2胜利”为事件A3,由题意,各局比赛结果相互独立,故P(A1)==,P(A2)=××=,P(A3)=××=.所以,甲队以3∶0、3∶1、3∶2胜利的概率分别是、、;(2)设“乙队以3∶2胜利”为事件A4,由题意,各局比赛结果相互独立,所以P(A4)=××=.由题意,随机变量X的所有可能的取值为0,1,2,3,根据事件的互斥性得P(X=0)=P(A1+A2)=P(A1)+P(A2)=,P(X=1)=P(A3)=,P(X=2)=P(A)=,4P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=.故X的分布列为7.一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋子中任取4个小球(假设取到任一小球的可能性相等).(1)求取出的小球中有相同编号的概率;(2)记取出的小球的最大编号为,求随机变量的分布列和数学期望.【答案】(1);(2)随机变量的分布列为:346随机变量的数学期望 .【解析】(1)应用古典概型概率的计算公式,关键是利用组合知识,确定事件数;(2) 随机变量的可能取值为.计算相应概率即得随机变量的分布列为:数学期望 .试题解析:(1):设取出的小球中有相同编号的事件为,编号相同可分成一个相同和两个相同 2分4分(2) 随机变量的可能取值为:3,4,6 6分, 7分, 8分9分所以随机变量的分布列为:346所以随机变量的数学期望 . 12分【考点】古典概型,互斥事件,离散型随机变量的分布列及数学期望.8.某商场为吸引顾客消费推出一项促销活动,促销规则如下:到该商场购物消费满100元就可转动如图所示的转盘一次,进行抽奖(转盘为十二等分的圆盘),满200元转两次,以此类推;在转动过程中,假定指针停在转盘的任一位置都是等可能的;若转盘的指针落在A区域,则顾客中一等奖,获得10元奖金;若转盘落在B区域或C区域,则顾客中二等奖,获得5元奖金;若转盘指针落在其他区域,则不中奖(若指针停到两区间的实线处,则重新转动).若顾客在一次消费中多次中奖,则对其奖励进行累加.已知顾客甲到该商场购物消费了268元,并按照规则参与了促销活动.(1)求顾客甲中一等奖的概率;(2)记X为顾客甲所得的奖金数,求X的分布列及其数学期望.【答案】(1)(2)【解析】(1)设事件A表示该顾客中一等奖,P(A)=×+2××=,所以该顾客中一等奖的概率是.(2)X的可能取值为20,15,10,5,0,P(X=20)=×=,P(X=15)=2××=,P(X=10)=×+2××=,P(X=5)=2××=,P(X=0)=×=.所以X的分布列为数学期望E(X)=20×+15×+10×+5×=.9.辽宁某大学对参加全运会的志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X,求随机变量X的分布列.(3)求X的数学期望.【答案】(1)(2)(3)【解析】(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“甲、乙、丙至少有一名考核为优秀”为事件E.则P(E)=1-P( )=1-P()P()P( )=1-××=.(2)由题意,得X的可能取值是,2,,3.因为P(X=)=P()=,P(X=2)=P(A )+P(B)+P(C )=,P(X=)=P(AB)+P(A C)+P( B C)==,P(X=3)=P(ABC)=,所以X的分布列为:(3)由(2)知E(X)=×+2×+×+3×==.10.随机变量的分布列如右:其中成等差数列,若,则的值是.【答案】.【解析】由题意,则.【考点】随机变量的期望和方差.11.一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为、,记.(Ⅰ)求取最大值的概率;(Ⅱ)求的分布列及数学期望.【答案】(Ⅰ);(Ⅱ)所以的分布列:数学期望.【解析】(1)随机变量的分布列问题,首先确定随机变量的所有可能值;(2))本题属古典概型,各随机变量所对应的事件包含的基本事件无法用公式求出,需一一列举出来.列举时要注意避免重复和遗漏,这是极易出错的地方试题解析:(Ⅰ)当时,最大。

61随机变量的概率分布、期望与方差1

61随机变量的概率分布、期望与方差1

61随机变量的概率分布、期望与⽅差1如皋市薛窑中学2011届⾼三理科数学⼀轮复习61随机变量的概率分布、期望与⽅差【考点解读】离散型随机变量及其分布列:A;超⼏何分布:A;条件概率及相互独⽴事件:A;n次独⽴重复试验的模型及⼆项分布:B;离散型随机变量的均值与⽅差:B【复习⽬标】1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。

2?了解超⼏何分布及其导出过程,并能进⾏简单的应⽤。

3?了解条件概率和两个事件相互独⽴的概念( 对条件概率的应⽤题不作要求 )。

4 ?理解n次独⽴重复试验的模型及⼆项分布,并能解决⼀些简单的实际问题。

5?了解取有限值的离散型随机变量的均值、⽅差的意义,会根据离散型随机变量的分布列求出期望值、⽅差。

活动⼀:基础知识1. 随机变量:1) 定义: _________________________________________________________ 。

2) ____________________________________ 表⽰⽅法:。

2. 随机变量分布列的定义:假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,①称①为随机变量X 的概率分布列,简称X 的分布列3. 概率分布表将①⽤表的形式表⽰如下:4. 分布列的性质:概率分布列中P(i 1,2L n)满⾜以下两个条件:(1) ______________________________(2) ______________________________5. 两点分布如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布.其概率分布表为:其中⼁min{ M , n},且n N,M N,n,M,N N .称分布列(2)说明:①超⼏何分布的模型是不放回抽样;②超⼏何分布种的参数是(n, M , N);③记号H (r; n, M , N)中各个字母的含义: _________________________ 7. n 次独⽴重复试验定义:⼀般地,由n 次试验构成,且每次试验相互独⽴完成,每次试验的结果仅有两种对⽴的状态即A 与A ,每次试验中P(A) p 0,我们将这样的试验称为n 次独⽴重复试验.思考:n 次独⽴重复试验必须具备哪些条件? &⼆项分布定义:(1 )在n 次独⽴重复试验中,事件 A 恰好发⽣k ( 0 k n )次的概率为(2)若随机变量X 的分布列为P(X k) C ;p k q n k ,0 p 1, p q 1,k 0,1,2丄n ,则称X 服从参数为n, p 的⼆项分布,记作 X ~ B n, p . 9.随机变量的均值离散型随机变量的均值:般地,则称 _____________________________ 为随机变量X 的均值或数学期望,记为E(X)或其中X i 是随机变量X 的可能取值,p 是概率,P i 0,i 1,2,L , n, P 1P 2 L ⼏110.随机变量的⽅差与标准差 (1 )定义:离散型随机变量X 的分布列为则(X E(X))2描述了 X i (i 1,2丄,n)相对于均值E(X)的偏离程度. n⽽ V(X) (x EX)2p ii 1为这些偏离程度的加权平均,刻画了随机变量与其均值 E(X)的平均偏离程度,我们称 V(X)为随机变量X 的⽅差,其算数平⽅根为随机变量 X 的标准差. (2)⽅差的意义:⽅差是⼀个常⽤来体现随机变量 X 取值分散程度的量,如果 V(X)值⼤,表⽰X 取值分散程度⼤,E(X)的代表性差;⽽如果V(X)值⼩,表⽰X 取值分散程度⼩,E(X)的代表性好.(3 )离散型随机变量⽅差的计算:n①利⽤定义计算: V(X)X i 2 P i 2,其中P i 是X 的分布列.i 1②利⽤公式计算:V(X)E(X 2)(E(X))2.活动⼆:基础练习1 .袋中有⼤⼩相同的红球 6个、⽩球 5个,从袋中每次任意取岀1个球,直到取岀的球是⽩球时为⽌,所需要的取球次数为随机变量,则的可能值为答案 1 , 2,…,7为超⼏何分布列.如果随机变量(n, M,N)的超⼏何分布,记为并将P(Xr n r C M C N Mr)"C —JC NX 的分布列为超⼏何分布列,则称随机变量 X ~ H(n ,M ,N),0,1,2,L ,l 记为 H (r; n,M, N)X 服从参数为2.已知随机变量X的分布列为P (X=i)=丄 (i=1, 2, 3),则P (X=2)= .2a ----------------- 答案133?如果?B 15,丄,则使P ( =k)取最⼤值的k值为4 --------------答案3或44. 已知的概率分布则在下列式⼦中,① E ( ) =- 1;② V (3)=空;③ P( =0)= 1 .273正确的个数是.答案25.已知的分布列为=-1,0,1,对应P=!.2,1 , 1,且设=26 3+1,则的期望是答案236.甲、⼄两⼈轮流投篮直⾄某⼈投中为⽌,已知甲投篮每次投中的概率为0.4,⼄每次投篮投中的概率为0.6,各次投篮互不影响.设甲投篮的次数为,若⼄先投,且两⼈投篮次数之和不超过4次,求的概率分布.解因为⼄先投,且次数之和不超过4次,所以,甲投篮次数的随机变量可以是0, 1,2三个.由于⼄先投,若⼄第⼀次就投中,则甲就不再投,/? P ( =0) =0.6.当=1时,它包含两种情况.第⼀种:甲第1次投中,这种情况的概率为P1=0.4 X 0.4=0.16.第⼆种:甲第1次未投中,⼄第2次投中,这种情况的概率为P2=0.4 X 0.6 X 0.6=0.144 , /? P ( =1) =P!+P2=0.304.当=2时,投篮终⽌,/? P ( =2) =0.4 X 0.6 X 0.4=0.096.的概率分布为2活动三:典型例题例1某商场举⾏抽奖促销活动,抽奖规则是:从装有9个⽩球、1个红球的箱⼦中每次随机地摸出⼀个球,记下颜⾊后放回,摸出⼀个红球可获得奖⾦10元;摸出两个红球可获得奖⾦ 50元.现有甲、⼄两位顾客,规定:甲摸⼀次,⼄摸两次,令 X 表⽰甲、⼄两⼈摸球后获得的奖⾦总额 .求: (1) X 的概率分布; (2) X 的均值.9 19P(X =50)=兀X 孑=贡故X 的概率分布为X0 10 20 50 60 P729 243 18 9 1 1 0001 0001 0001 0001 000729 243 1891⑵ E (X ) =0X 帀+10X r^+20X 茴+50X 贡+60X 贡=3?3(元).⽴的,并且概率都是 1.3(1 )设X 为这名学⽣在途中遇到红灯的次数,求 X 的分布列;设Y 为这名学⽣在⾸次停车前经过的路⼝数,求 Y 的概率分布;(3 )求这名学⽣在途中⾄少遇到⼀次红灯的概率解 (1)将通过每个交通岗看做⼀次试验,则遇到红灯的概率为 1,且每次试验结果是相互独⽴的,故 X ?B ( 6,3所以X 的分布列为kP (X=k ) = C (5 - 35分(1) X 的所有可能取值为0,10,20,50,60.9 P (X=0)=— 10 3= 7291 000P (X=10) =— X10 9 10 + — X C 2X — X10 109 = 2431 000P(X=20)=10 C2 X丄X ?=旦10 10 1 000P(X=60)=110311 000 例2 ⼀名学⽣每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独2 6,k=0,1,2, 3,4, 5,6.(2)由于Y表⽰这名学⽣在⾸次停车时经过的路⼝数,显然Y是随机变量,其取值为0, 1, 2, 3, 4, 5.其中:{Y=k} (k=0, 1, 2, 3, 4, 5)表⽰前k个路⼝没有遇上红灯,但在第k+1个路⼝遇上红灯,故各概率应按独⽴事件同时发⽣计算.k2P (Y=k)=-3⽽{ Y=6}表⽰⼀路没有遇上红灯,26 故其概率为P (Y=6)=-.38分因此Y的概率分布为:Y0123231121212P——■—3333333Y456456P 12122 33333(3)这名学⽣在途中⾄少遇到⼀次红灯的事件为{X> 1}={ X=1 或X=2 或…或X=6},分所以其概率为6P (X> 1) = P(X k) 1 P(X o)k 16=1- 2= 665?0.912.3 729分例3 甲、⼄两个野⽣动物保护区有相同的⾃然环境,且野⽣动物的种类和数量也⼤致相等,⽽两个保护区每个季度发现违反保护条例的事件次数的概率分布分别为0123P0.30.30.20.212 分1416试评定这两个保护区的管理⽔平 . 解甲保护区的违规次数的数学期望和⽅差为E( )=0 X 0.3+1 X 0.3+2 X 0.2+3 X 0.2=1.3;V()=(0-1.3)2X 0.3+(1-1.3)2X 0.3+(2-1.3)2X 0.2+(3-1.3)2X 0.2=1.21.⼄保护区的违规次数的数学期望和⽅差为E( )=0 X 0.1+0.5+2 X 0.4=1.3;V( )=(0-1.3) 2X 0.1+(1-1.3) 2X 0.5+(2-1.3) 2X 0.4=0.41.因为E( )=E(), V( ) >V(),所以两个保护区内每个季度发⽣的违规事件的平均次数相同,但甲保护区的违规事件次数相对分散和波动,⼄保护区内的违规事件次数更集中和稳定.活动四:⾃主检测答案 p (1-p )2.若某⼀射⼿射击所得环数 X 的概率分布如下:则此射⼿“射击⼀次命中环数 X > 7"的概率是 ____________ .3 .设 ?B ( n, p ),若有E( )=12 , V( )=4,则n 、p 的值分别为答案18,24.设随机变量X 的概率分布为:5. 有甲、⼄、丙、丁四名⽹球运动员,通过对过去战绩的统计,在⼀场⽐赛中,甲对⼄、丙、丁取胜的概率分别为 0.6,0.8,0.9.(1) 若甲和⼄之间进⾏三场⽐赛,求甲恰好胜两场的概率;(2) 若四名运动员每两⼈之间进⾏⼀场⽐赛,求甲恰好胜两场的概率; (3) 若四名运动员每两⼈之间进⾏⼀场⽐赛,设甲获胜场次为,求随机变量的概率分布. 解 (1)甲和⼄之间进⾏三场⽐赛,甲恰好胜两场的概率为 P=c 3 X 0.6 2X 0.4=0.432.(2)记“甲胜⼄”,“甲胜丙”,“甲胜丁"三个事件分别为A ,B ,。

概率统计与期望方差分布列大题拔高练-高考数学重点专题冲刺演练(原卷版)

概率统计与期望方差分布列大题拔高练-高考数学重点专题冲刺演练(原卷版)

概率统计与期望方差分布列大题拔高练新高考数学复习分层训练(新高考通用)1.(2023·广东广州·高三广东实验中学校考阶段练习)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间0,20,20,40,40,60,60,80,80,100分组,绘制频后测量小白鼠的某项指标值,按[)[)[)[)[]率分布直方图如图所示,实验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只,假设小白鼠注射疫苗后是否产生抗体相互独立.指标值抗体合计小于60不小于60有抗体没有抗体合计a=的独立性检验,判断能否认为注射(1)填写下面的2×2列联表,并根据列联表及0.05疫苗后小白鼠产生抗体与指标值不小于60有关.(单位:只)(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小自鼠产生抗体.(i)用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p;(ii)以(i)中确定的概率p作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n个人注射2次疫苗后产生抗体的数量为随机变量X.试验后统计数据显示,当X=99时,P(X)取最大值,求参加人体接种试验的人数n.参考公式:22()()()()()n ad bc x a b c d a c b d -=++++(其中n a b c d =+++为样本容量)20()P x k ≥0.500.400.250.150.1000.0500.0250k 0.4550.708 1.323 2.072 2.706 3.841 5.0242.(2023春·广东惠州·高三校考阶段练习)北京冬奥会的举办使得人们对冰雪运动的关注度和参与度持续提高,某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如图数据:(1)从这10所学校中随机抽取2所,在抽取的2所学校参与“单板滑雪”的人数超过30人的条件下,求这2所学校参与“自由式滑雪”的人数超过30人的概率;(2)“自由式滑雪”参与人数超过40人的学校可以作为“基地学校”,现在从这10所学校中随机抽取3所,记X 为选出“基地学校”的个数,求X 的分布列和数学期望.3.(2023·广东广州·统考一模)为了拓展学生的知识面,提高学生对航空航天科技的兴趣,培养学生良好的科学素养,某校组织学生参加航空航天科普知识答题竞赛,每位参赛学生答题若干次,答题赋分方法如下:第1次答题,答对得20分,答错得10分:从第2次答题开始,答对则获得上一次答题得分的两倍,答错得10分.学生甲参加答题竞赛,每次答对的概率为34,各次答题结果互不影响.(1)求甲前3次答题得分之和为40分的概率;(2)记甲第i 次答题所得分数)N (i X i *∈的数学期望为()i E x .①写出()1i E X -与()i E x 满足的等量关系式(直接写出结果,不必证明):②若()100i E x >,求i 的最小值.4.(2023·广东湛江·统考一模)某工厂一台设备生产一种特定零件,工厂为了解该设备的生产情况,随机抽检了该设备在一个生产周期中的100件产品的关键指标(单位:cm ),经统计得到下面的频率分布直方图:(1)由频率分布直方图估计抽检样本关键指标的平均数x 和方差2s .(用每组的中点代表该组的均值)(2)已知这台设备正常状态下生产零件的关键指标服从正态分布()2,N μσ,用直方图的平均数估计值x 作为μ的估计值 μ,用直方图的标准差估计值s 作为σ估计值 σ.(i )为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了()3,3μσμσ-+之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备.下面是某个生产周期中抽测的10个零件的关键指标:0.8 1.20.95 1.01 1.23 1.12 1.330.97 1.210.83利用 μ和 σ判断该生产周期是否需停止生产并检查设备.(ii )若设备状态正常,记X 表示一个生产周期内抽取的10个零件关键指标在()3,3μσμσ-+之外的零件个数,求()1P X ≥及X 的数学期望.参考公式:直方图的方差()221n i i i s x x p ==-∑,其中i x 为各区间的中点,i p 为各组的频率.参考数据:若随机变量X 服从正态分布()2,N μσ,则()330.9973P X μσμσ-≤≤+≈,0.105≈0.110≈,90.99730.9760≈,100.99730.9733≈.5.(2023·江苏·统考一模)某小区有居民2000人,想通过验血的方法筛查出乙肝病毒携带者,为此需对小区全体居民进行血液化验,假设携带病毒的居民占a %,若逐个化验需化验2000次.为减轻化验工作量,随机按n 人一组进行分组,将各组n 个人的血液混合在一起化验,若混合血样呈阴性,则这n 个人的血样全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需对每个人再分别单独化验一次.假设每位居民的化验结果呈阴性还是阳性相互独立.(1)若0.2a =,20n =,试估算该小区化验的总次数;(2)若0.9a =,每人单独化验一次花费10元,n 个人混合化验一次花费9n +元.求n 为何值时,每位居民化验费用的数学期望最小.(注:当0.01p <时,()11np np -≈-)6.(2023·江苏·统考一模)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.7.(2023·辽宁沈阳·统考一模)2022年12月初某省青少年乒乓球培训基地举行了混双选拔赛,其决赛在韩菲/陈宇和黄政/孙艺两对组合间进行,每场比赛均能分出胜负.已知本次比赛的赞助商提供了10000元奖金,并规定:①若其中一对赢的场数先达到4场,则比赛终止,同时这对组合获得全部奖金;②若比赛意外终止时无组合先赢4场,则按照比赛继续进行各自赢得全部奖金的概率之比给两对组合分配奖金.已知每场比赛韩菲/陈宇组合赢的概率为()01p p <<,黄政/孙艺赢的概率为1p -,且每场比赛相互独立.(1)若在已进行的5场比赛中韩菲/陈宇组合赢3场、黄政/孙艺组合赢2场,求比赛继续进行且韩菲/陈宇组合赢得全部奖金的概率()f p ;(2)若比赛进行了5场时终止(含自然终止与意外终止),则这5场比赛中两对组合之间的比赛结果共有多少不同的情况?(3)若比赛进行了5场时终止(含自然终止与意外终止),设12p =,若赞助商按规定颁发奖金,求韩菲/陈宇组合获得奖金数X 的分布列.8.(2023·江苏·二模)为促进经济发展,某地要求各商场采取多种举措鼓励消费.A 商场在春节期间推出“你摸球,我打折”促销活动,门口设置两个盒子,甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,购物满一定金额的顾客可以从甲、乙两个盒内各任取2个球.具体规则如下:摸出3个红球记为一等奖,没有红球记为二等奖,2个红球记为三等奖,1个红球记为鼓励奖.(1)获得一、二、三等奖和鼓励奖的折扣率分别为5折、7折、8折和9折.记随机变量ξ为获得各奖次的折扣率,求随机变量ξ的分布列及期望()Eξ;(2)某一时段内有3人参加该促销活动,记随机变量η为获得7折及以下资格的人数,求()2Pη=.9.(2023·辽宁·哈尔滨三中校联考一模)某学校号召学生参加“每天锻炼1小时”活动,为了了解学生参与活动的情况,随机调查了100名学生一个月(30天)完成锻炼活动的天数,制成如下频数分布表:天数[0,5](5,10](10,15](15,20](20,25](25,30]人数4153331116(1)由频数分布表可以认为,学生参加体育锻炼天数X近似服从正态分布()2,Nμσ,其中μ近似为样本的平均数(每组数据取区间的中间值),且 6.1σ=,若全校有3000名学生,求参加“每天锻炼1小时”活动超过21天的人数(精确到1);(2)调查数据表明,参加“每天锻炼1小时”活动的天数在(15,30]的学生中有30名男生,天数在[0,15]的学生中有20名男生,学校对当月参加“每天锻炼1小时”活动超过15天的学生授予“运动达人”称号.请填写下面列联表:性别活动天数合计[0,15](15,30]男生女生合计并依据小概率值0.05α=的独立性检验,能否认为学生性别与获得“运动达人”称号有关联.如果结论是有关联,请解释它们之间如何相互影响.附:参考数据:()0.6827P X μσμσ-≤≤+=;()220.9545P X μσμσ-≤≤+=;()330.9973P X μσμσ-≤≤+=.()()()()()()22n ad bc n a b c d a b c d a c b d χ-==+++++++α0.10.050.010.0050.001x α 2.706 3.841 6.6357.87910.82810.(2023·河北邢台·校联考模拟预测)为弘扬体育精神,营造校园体育氛围,某校组织“青春杯”3V3篮球比赛,甲、乙两队进入决赛.规定:先累计胜两场者为冠军,一场比赛中犯规4次以上的球员在该场比赛结束后,将不能参加后面场次的比赛.在规则允许的情况下,甲队中球员M 都会参赛,他上场与不上场甲队一场比赛获胜的概率分别为35和25,且每场比赛中犯规4次以上的概率为14.(1)求甲队第二场比赛获胜的概率;(2)用X 表示比赛结束时比赛场数,求X 的期望;(3)已知球员M 在第一场比赛中犯规4次以上,求甲队比赛获胜的概率.11.(2023·河北衡水·河北衡水中学校考三模)某社区对55位居民是否患有新冠肺炎疾病进行筛查,已知随机一人其口拭子核酸检测结果呈阳性的概率为2%,且每个人的口拭子核酸是否呈阳性相互独立.(1)假设该疾病患病的概率是0.3%,且患病者口拭子核酸呈阳性的概率为98%,设这55位居民中有一位的口拭子核酸检测呈阳性,求该居民可以确诊为新冠肺炎患者的概率;(2)根据经验,口拭子核酸检测采用分组检测法可有效减少工作量,具体操作如下:将55位居民分成若干组,先取每组居民的口拭子核酸混在一起进行检测,若结果显示阴性,则可断定本组居民没有患病,不必再检测;若结果显示阳性,则说明本组中至少有一位居民患病,需再逐个进行检测,现有两个分组方案:方案一:将55位居民分成11组,每组5人;方案二:将55位居民分成5组,每组11人,试分析哪一个方案的工作量更少?参考数据:50.980.904≈,110.980.801≈.12.(2023·福建福州·统考二模)脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例.某运动生理学家在对某项健身活动参与人群的脂肪含量调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17.(1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计.(结果保留整数)(2)假设全体参与者的脂肪含量为随机变量X ,且X ~N (17,σ2),其中σ2近似为(1)中计算的总样本方差.现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率.附:若随机变量×服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ≈0.6827,P(μ-2σ≤X ≤μ+2σ)≈0.9545≈4.7,0.158653≈0.004.13.(2023·山东青岛·统考一模)今天,中国航天仍然迈着大步向浩瀚宇宙不断探索,取得了举世瞩目的非凡成就.某学校为了解学生对航天知识的知晓情况,在全校学生中开展了航天知识测试(满分100分),随机抽取了100名学生的测试成绩,按照[)60,70,[)70,80,[)80,90,[]90,100分组,得到如下所示的样本频率分布直方图:(1)根据频率分布直方图,估计该校学生测试成绩的中位数;(2)用样本的频率估计概率,从该校所有学生中随机抽取10名学生的成绩,用()P X k =表示这10名学生中恰有k 名学生的成绩在[]90,100上的概率,求()P X k =取最大值时对应的k 的值;(3)从测试成绩在[]90,100的同学中再次选拔进入复赛的选手,一共有6道题,从中随机挑选出4道题进行测试,至少答对3道题者才可以进入复赛.现有甲、乙两人参加选拔,在这6道题中甲能答对4道,乙能答对3道,且甲、乙两人各题是否答对相互独立.记甲、乙两人中进入复赛的人数为ξ,求ξ的分布列及期望.14.(2023·山东潍坊·统考模拟预测)某校举行“强基计划”数学核心素养测评,要求以班级为单位参赛,最终高三一班(45人)和高三二班(30人)进入决赛.决赛规则如下:现有甲、乙两个纸箱,甲箱中有4个选择题和2个填空题,乙箱中有3个选择题和3个填空题,决赛由两个环节组成,环节一:要求两班级每位同学在甲或乙两个纸箱中随机抽取两题作答,作答后放回原箱.并分别统计两班级学生测评成绩的相关数据;环节二:由一班班长王刚和二班班长李明进行比赛,并分别统计两人的测评成绩的相关数据,两个环节按照相关比赛规则分别累计得分,以累计得分的高低决定班级的名次.(1)环节一结束后,按照分层抽样的方法从两个班级抽取20名同学,并统计每位同学答对题目的数量,统计数据为:一班抽取同学答对题目的平均数为1,方差为1;二班抽取同学答对题目的平均数为1.5,方差为0.25,求这20人答对题目的均值与方差;(2)环节二,王刚先从甲箱中依次抽取了两道题目,答题结束后将题目一起放入乙箱中,然后李明再抽取题目,已知李明从乙箱中抽取的第一题是选择题,求王刚从甲箱中取出的是两道选择题的概率.15.(2023·山东聊城·统考一模)某中学在高一学生选科时,要求每位学生先从物理和和历史这两个科目中选定一个科目,再从思想政治、地理、化学、生物这四个科目中任选两个科目.选科工作完成后,为了解该校高一学生的选科情况,随机抽取了部分学生作为样本,对他们的选科情况统计后得到下表:思想政治地理化学生物物理类100120200180历史类1201406080(1)利用上述样本数据填写以下22⨯列联表,并依据小概率值0.001α=的独立性检验,分析以上两类学生对生物学科的选法是否存在差异.科类生物学科选法选不选合计物理类历史类合计(2)假设该校高一所有学生中有35的学生选择了物理类,其余的学生都选择了历史类,且在物理类的学生中其余两科选择的是地理和化学的概率为15,而在历史类的学生中其余两科选择的是地理和化学的概率为110.若从该校高一所有学生中随机抽取100名学生,用X表示这100名学生中同时选择了地理和化学的人数,求随机变量X的均值()E X.附:()()()()()22n ad bca b c d a c b d χ-=++++α0.10.050.0010.0050.001xα 2.706 3.841 6.6357.87910.82816.(2023·湖北武汉·统考模拟预测)口袋中共有7个质地和大小均相同的小球,其中4个是黑球,现采用不放回抽取方式每次从口袋中随机抽取一个小球,直到将4个黑球全部取出时停止.(1)记总的抽取次数为X,求E(X);(2)现对方案进行调整:将这7个球分装在甲乙两个口袋中,甲袋装3个小球,其中2个是黑球;乙袋装4个小球,其中2个是黑球.采用不放回抽取方式先从甲袋每次随机抽取一个小球,当甲袋的2个黑球被全部取出后再用同样方式在乙袋中进行抽取,直到将乙袋的2个黑球也全部取出后停止.记这种方案的总抽取次数为Y,求E(Y)并从实际意义解释E(Y)与(1)中的E(X)的大小关系.17.(2023·湖北·统考模拟预测)某市举行招聘考试,共有4000人参加,分为初试和复试,初试通过后参加复试.为了解考生的考试情况,随机抽取了100名考生的初试成绩,并以此为样本绘制了样本频率分布直方图,如图所示.(1)根据频率分布直方图,试求样本平均数的估计值;(2)若所有考生的初试成绩X近似服从正态分布()2,Nμσ,其中μ为样本平均数的估计值,13σ≈,试估计初试成绩不低于88分的人数;(3)复试共三道题,第一题考生答对得5分,答错得0分,后两题考生每答对一道题得10分,答错得0分,答完三道题后的得分之和为考生的复试成绩.已知某考生进入复试,他在复试中第一题答对的概率为34,后两题答对的概率均为35,且每道题回答正确与否互不影响.记该考生的复试成绩为Y ,求Y 的分布列及均值.附:若随机变量X 服从正态分布()2,N μσ,则:()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.18.(2023·湖北武汉·华中师大一附中校联考模拟预测)某地区区域发展指数评价指标体系基于五大发展理念构建,包括创新发展、协调发展、绿色发展、开放发展和共享发展5个一级指标.该地区区域发展指数测算方法以2015年作为基期并设指数值为100,通过时序变化,观察创新发展、协调发展、绿色发展、开放发展和共享发展5个分领域指数值的变动趋势.分别计算创新发展、协调发展、绿色发展、开放发展和共享发展5个分指数,然后合成为该地区区域发展总指数,如下图所示.若年份x (2015年记为1x =,2016年记为2x =,以此类推)与发展总指数y 存在线性关系.(1)求年份x 与发展总指数y 的回归方程;(2)若规定发展总指数大于115的年份为和谐发展年,和谐发展年中发展总指数低于130的视为良好,记1分,发展总指数大于130的视为优秀,记2分,从和谐发展年中任取三年,用X 表示赋分之和,求X 的分布列和数学期望.参考公式:回归方程y bx a =+$$$,其中a y bx =-$$,()()()121n ii i ni i x x y y b x x ==--=-∑∑ ,()()81228.9i i i x x y y =--=∑,119.05y =.19.(2023春·江苏南京·高三南京师范大学附属中学江宁分校校联考阶段练习)某学校为了了解高一学生安全知识水平,对高一年级学生进行“消防安全知识测试”,并且规定“体能达标”预测成绩小于60分的为“不合格”,否则为“合格”.若该校“不合格”的人数不超过总人数的5%,则该年级知识达标为“合格”;否则该年级知识达标为“不合格”,需要重新对该年级学生进行消防安全培训.现从全体高一学生中随机抽取10名,并将这10名学生随机分为甲、乙两个组,其中甲组有6名学生,乙组有4名学生.甲组的平均成绩为70,标准差为4;乙组的平均成绩为80,标准差为6(题中所有数据的最后结果都精确到整数).(1)求这10名学生测试成绩的平均分x 和标准差s ;(2)假设高一学生的知识测试成绩服从正态分布2(,)N μσ.将上述10名学生的成绩作为样品,用样本平均数x 作为μ的估计值,用样本标准差s 作为σ的估计值.利用估计值估计:高一学生知识达标是否“合格”?(3)已知知识测试中的多项选择题中,有4个选项.小明知道每道多项选择题均有两个或三个正确选项.但根据得分规则:全部选对的得5分,部分选对的得2分,有选错的得0分.这样,小明在做多项选择题时,可能选择一个选项,也可能选择两个或三个选项,但不会选择四个选项.假设小明在做该道多项选择题时,基于已有的解题经验,他选择一个选项的概率为12,选择两个选项的概率为13,选择三个选项的概率为16.已知该道多项选择题只有两个正确选项,小明完全不知道四个选项的正误,只好根据自己的经验随机选择.记X 表示小明做完该道多项选择题后所得的分数.求X 的分布列及数学期望.附:①n 个数的方差2211()n i i s x x n ==-∑;②若随机变量Z 服从正态分布2(,)N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=.20.(2023春·湖南长沙·高三长沙一中校考阶段练习)某学校为了弘扬中华传统文化,组织开展中华传统文化活动周,活动周期间举办中华传统文化知识竞赛活动,以班级为单位参加比赛,每班通过中华传统文化知识竞答活动,择优选拔5人代表班级参加年级比赛.年级比赛分为预赛与决赛二阶段进行,预赛阶段的赛制为:将两组中华传统文化的们答题放在甲、乙两个纸箱中,甲箱有5个选择题和3个填空题,乙箱中有4个选择题和3个填空题,比赛中要求每个班级代表队在甲或乙两个纸箱中随机抽取两题作答.每个班级代表队先抽取一题作答,答完后试题不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个试题放回原纸箱中.(1)若1班代表队从甲箱中抽取了2个试题,答题结束后错将题目放入了乙箱中,接着2班代表队答题,2班代表队抽取第一题时,从乙箱中抽取试题.已知2班代表队从乙箱中取出的是选择题,求1班代表队从甲箱中取出的是2个选择题的概率;(2)经过预赛,成绩最好的6班代表队和18班代表队进入决赛,决赛采用成语接龙的形式进行,采用五局三胜制,即两班代表队中先胜三局的代表队赢得这场比赛,比赛结束.已知第一局比赛6班代表队获胜的概率为35,18班代表队胜的概率为25,且每一局的胜者在接下来一局获胜的概率为25,每局必分胜负.记比赛结束时比赛局数为随机变量X ,求随机变量X 的数学期望()E X .21.(2023春·湖南·高三校联考阶段练习)某学校食堂中午和晩上都会提供,A B 两种套餐(每人每次只能选择其中一种),经过统计分析发现:学生中午选择A 类套餐的概率为23,选择B 类套餐的概率为13;在中午选择A 类套餐的前提下,晩上还选择A 类套餐的概率为14,选择B 类套餐的概率为34;在中午选择B 类套餐的前提下,晩上选择A 类套餐的概率为12,选择B 类套餐的概率为12.(1)若同学甲晩上选择A 类套餐,求同学甲中午也选择A 类套餐的概率;(2)记某宿舍的4名同学在晩上选择B 类套餐的人数为X ,假设每名同学选择何种套餐是相互独立的,求X 的分布列及数学期望.22.(2023·湖南·校联考模拟预测)基础学科招生改革试点,也称强基计划,强基计划是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域.某校在一次强基计划模拟考试后,从全体考生中随机抽取52名,获取他们本次考试的数学成绩(x )和物理成绩(y ),绘制成如图散点图:根据散点图可以看出y 与x 之间有线性相关关系,但图中有两个异常点A ,B .经调查得知,A 考生由于重感冒导致物理考试发挥失常,B 考生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计的值:5015800i i x==∑,5013900i i y ==∑,501462770i i i x y ==∑,()502128540i i x x =-=∑,()502118930i i y y =-=∑,其中,i i x y 分别表示这50名考生的数学成绩、物理成绩,1i =,2,…,50,y 与x 的相关系数0.45r ≈.(1)若不剔除A ,B 两名考生的数据,用52组数据作回归分析,设此时y 与x 的相关系数为0r .试判断0r 与r 的大小关系(不必说明理由);(2)求y 关于x 的线性回归方程(系数精确到0.01),并估计如果B 考生加了这次物理考。

高考专题复习 超几何分布(解析版)

高考专题复习    超几何分布(解析版)

第4讲 超几何分布一.离散型随机变量的概率分布(1)随着试验结果变化而变化的变量叫做随机变量,常用字母X ,Y ,ξ,η,…表示,所有取值可以一一列出的随机变量叫做离散型随机变量.(2)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表为离散型随机变量X (3)离散型随机变量的概率分布的性质: ①p i ≥0,i =1,2,…,n ; ②p 1+p 2+…+p i +…+p n =1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 二.两点分布如果随机变量X 的概率分布表为其中0<p <1,则称离散型随机变量X 三.超几何分布1.概念:一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =r )=C r M C n -rN -MC n N(r =0,1,2,…,l ).即其中l =min(M ,n ),且n 如果一个随机变量X 的概率分布具有上表的形式,则称随机变量X 服从超几何分布.2.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是: ①考察对象分两类; ②已知各类对象的个数;③从中抽取若干个个体,考察某类个体个数X 的概率分布 四.离散型随机变量的均值与方差 1.离散型随机变量的均值与方差一般地,若离散型随机变量X 的分布列为:(1)称1122()n n E X x p x p x p =++⋅⋅⋅+为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)称21()(())nii i D X x E X p ==-∑为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏X 的标准差. 2.均值与方差的性质若Y =aX +b ,其中a ,b 为常数,则Y 也是随机变量, 且E (aX +b )=aE (X )+b ;D (aX +b )=a 2D (X )考向一 分布列性质【例1】(1)设离散型随机变量X 的概率分布为下表,求2X +1的概率分布.(2)若(1(3)若(1)中条件不变,求随机变量η=X2的概率分布.【答案】见解析【解析】(1)由概率分布的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.列表为从而2X+1的概率分布为(2)由(1)知m=0.3∴P(η=1)=P(X=0)+P(X=2)P(η=0)=P(X=1)=0.1,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的概率分布为(3)依题意知η的值为列表为从而η=X 2的概率分布为【举一反三】1.设X 是一个离散型随机变量,其概率分布为则q =________. 【答案】 32-336【解析】 ∵13+2-3q +q 2=1,∴q 2-3q +43=0,解得q =32±336.又由题意知0<q 2<23,∴q =32-336.2.设随机变量ξ的概率分布为P (ξ=k )=m ⎝ ⎛⎭⎪⎫23k(k =1,2,3),则m 的值为________.【答案】2738【解析】 由概率分布的性质得P (ξ=1)+P (ξ=2)+P (ξ=3)=m ×23+m ×⎝ ⎛⎭⎪⎫232+m ×⎝ ⎛⎭⎪⎫233=38m 27=1,∴m =2738. 考向二 超几何分布【例2-1】 某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求: (1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X 的概率分布. 【答案】(1)47. (2)见解析【解析】(1)设事件A :选派的3人中恰有2人会法语,则P (A )=C 25C 12C 37=47.(2)由题意知,X 服从超几何分布,X 的可能取值为0,1,2,3, P (X =0)=C 34C 37=435, P (X =1)=C 24C 13C 37=1835,P (X =2)=C 14C 23C 37=1235, P (X =3)=C 33C 37=135,∴X 的概率分布为【例2-2】为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行,某甲乙两个单位各有200名员工,为了了解员工低碳出行的情况,统计了12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如下: (1)若甲单位数据的平均数是122,求x ;(2)现从如图的数据中任取4天的数据(甲、乙两单位中各取2天),记其中甲、乙两单位员工低碳出行人数不低于130人的天数为1ζ, 2ζ,令12=ηζζ+,求η的分布列和期望.【答案】(1)8;(2)答案见解析.【解析】(1)由题意()10510711311511912612013213414112210x ++++++++++=,解得8x =.(2)由题意知,随机变量η的所有可能取值有0,1,2,3,4.()227622101070;45C C p C C η=== ()112736221010911;225C C C p C C η===()222211113674736422101012;3C C C C C C C C p C C η++=== ()211112364734221010223;225C C C C C C p C C η+=== ()223422101024;225C C p C C η===η∴的分布列为:η0 1 2 34P745 91225 13 22225 2225∴()012344522532252255E η=⨯+⨯+⨯+⨯+⨯=.【举一反三】1.某普通高中为了解本校高三年级学生数学学习情况,对一模考试数学成绩进行分析,从中抽取了n 名学生的成绩作为样本进行统计(该校全体学生的成绩均在[]60,150),按下列分组[)60,70,[)70,80,[)80,90,[)90,100,[)100,110,[)110,120,[)120,130,[)130,140,[]140,150作出频率分布直方图,如图1;样本中分数在[)70,90内的所有数据的茎叶图如图2:根据往年录取数据划出预录分数线,分数区间与可能被录取院校层次如表.【套路总结】超几何分布的两个特点①超几何分布是不放回抽样问题; ②随机变量为抽到的某类个体的个数. (2)超几何分布的应用条件 ①两类不同的物品(或人、事);(1)求n 的值及频率分布直方图中的,x y 值;(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取2人,求此2人都不能录取为专科的概率;(3)在选取的样本中,从可能录取为自招和专科两个层次的学生中随机抽取3名学生进行调研,用ξ表示所抽取的3名学生中为自招的人数,求随机变量ξ的分布列和数学期望.【答案】(1)0.014;(2)616625;(3)见解析 【解析】(1)由图2知分数在[)70,80的学生有4名, 又由图1知,频率为:0.008100.08⨯=,则:4500.08n == 50.015010x ∴==⨯,()10.0420.0820.10.120.160.240.01410y -⨯+⨯++++==(2)能被专科院校录取的人数为:()500.0040.008106⨯+⨯=人抽取的50人中,成绩能被专科院校录取的频率是:635025= ∴从该校高三年级学生中任取1人能被专科院校录取的概率为325, 记该校高三年级学生中任取2人,都不能被专科院校录取的事件为A则此2人都不能录取为专科的概率:()23616125625P A ⎛⎫=-=⎪⎝⎭(3)选取的样本中能被专科院校录取的人数为6人成绩能过自招线人数为:()500.0120.0040.0081012⨯++⨯=人, 又随机变量ξ的所有可能取值为0,1,2,3∴()363182050816204C P C ξ∴====;()2161231818015181668C C P C ξ====; ()1261231839633281668C C P C ξ====;()03612318220553816204C C P C ξ==== ∴随机变量ξ的分布列为:()012322046868204E ξ∴=⨯+⨯+⨯+⨯= 【套路运用】1.随机变量X 的概率分布如下:其中a ,b ,c 成等差数列,则P (|X |=________. 【答案】 23 ⎣⎢⎡⎦⎥⎤-13,13【解析】 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据概率分布的性质,得0≤13-d ≤23,0≤13+d ≤23,∴-13≤d ≤13.2.若离散型随机变量X的分布列是则常数c的值为_____.【答案】【解析】由随机变量的分布列知,9c2﹣c≥0,3﹣8c≥0,9c2﹣c+3﹣8c=1,∴c =.故答案为:.3.我国城市空气污染指数范围及相应的空气质量类别见下表:空气污染指数空气质量空气污染指数空气质量0--50 优201--250 中度污染51--100 良251--300 中度重污染101--150 轻微污染>300 重污染151----200 轻度污染我们把某天的空气污染指数在0-100时称作A类天,101--200时称作B类天,大于200时称作C类天.下图是某市2018年全年监测数据中随机抽取的18天数据作为样本做的茎叶图:(百位为茎,十、个位为叶)(1)从这18天中任取3天,求至少含2个A类天的概率;(2)从这18天中任取3天,记X是达到A类或B类天的天数,求X的分布列.【答案】(1);(2)见解析【解析】(1)从这18天中任取3天,取法种数有种,3天中至少有2个A类天的取法种数有种,所以这3天至少有2个A类天的概率;(2)的一切可能的取值是,当时,;当时,;当时,;当时,;的分布列为:X 3 2 1 0P数学期望。

概率论分布列期望方差习题及答案

概率论分布列期望方差习题及答案

概率论分布列期望方差习题及答案The following text is amended on 12 November 2020.圆梦教育 离散型随机变量的分布列、期望、方差专题姓名:__________班级:__________学号:__________1.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为,,,假设各盘比赛结果相互独立。

(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.2.已知某种从太空带回的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的. (1) 第一小组做了三次实验,求实验成功的平均次数;(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p ,出现“×”的概率为q .若第k 次出现“○”,则a k =1;出现“×”,则a k =1-.令S n =a 1+a 2+…+a n ()n N *∈.(1)当12p q ==时,求S 6≠2的概率;(2)当p =31,q =32时,求S 8=2且S i ≥0(i =1,2,3,4)的概率.4.在一个有奖问答的电视节目中,参赛选手顺序回答123A A A 、、三个问题,答对各个问题所获奖金(单位:元)对应如下表:当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答123A A A 、、的概率分别为421534、、,正确回答一个问题后,选择继续回答下一个问题的概率均为12,且各个问题回答正确与否互不影响.(Ⅰ)按照答题规则,求该选手1A 回答正确但所得奖金为零的概率;(Ⅱ)设该选手所获奖金总数为ξ,求ξ的分布列与数学期望.5.某装置由两套系统M,N 组成,只要有一套系统工作正常,该装置就可以正常工作。

高考数学一轮总复习课件:离散型随机变量的分布列、均值与方差

高考数学一轮总复习课件:离散型随机变量的分布列、均值与方差

超几何分布
在含有M件次品的N件产品中,任取n件,其中恰有X件次
CMkCN-Mn-k
品,则P(X=k)=________C_N_n __,k=0,1,2,…,m,其中m
=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列:
X
0
P
CM0CN-Mn-0 CNn
为超几何分布列.
1

m
CM1CN-Mn-1 CNn

CMmCN-Mn-m CNn
如果随机变量X的分布列具有上表的形式,那么称随机变量
X服从超几何分布,记作X~H(N,M,n).
1.判断下列说法是否正确(打“√”或“×”). (1)抛掷均匀硬币一次,出现正面的次数是随机变量. (2)在离散型随机变量的分布列中,随机变量取各个值的概 率之和可以小于1. (3)离散型随机变量的各个可能值表示的事件是彼此互斥 的.
思考题2 (1)(2021·吉林省汪清县高三月考)已知随机变 量ξ的分布列如下表,则x=____12____.
ξ01 2
P x2 x
1 4
【解析】
由随机变量概率分布列的性质可知:x2+x+
1 4
=1,且0≤x≤1,解得x=12.
(2)(2021·青铜峡市高三期末)设随机变量ξ的概率分布列如下
表,则P(|ξ-3|=1)=( A )
3.设ξ是一个离散型随机变量,则下列不一定能成为ξ的概
率分布列的一组数是( C )
A.0,0,0,1,0
B.0.1,0.2,0.3,0.4
C.p,1-p(p为实数)
D.1×1 2,2×1 3,…,(n-11)·n,1n(n∈N*,n≥2)
解析
显然A、B满足分布列的两个性质;对于D,有

分布列,期望,方差

分布列,期望,方差

第二十六讲 分布列,期望,方差典型例题选读例1.2008年某地区发现禽流感疑似病例共10例,其中有4位禽流感患者,若从10例禽流感疑似病例中任意抽取4例进行分析诊断,并对其中的禽流感患者采用一种新的治疗方案进行治疗,每位禽流感患者被治愈的概率为13。

(1)求4例禽流感疑似病例中恰有2位禽流感患者且只有1位被治愈的概率;(2)设ξ表示4例禽流感疑似病例中被确诊为禽流感患者的人数,求ξ的分布列及数学期望。

解:(1)投4例禽流感疑似病例中恰有2位禽流感患者的概率为2P ,则2264241037C C P C == 2位禽流感患者中只有1位被治愈的概率为12124339C ⨯⨯= 所以,4例禽流感疑似病例中恰有2位禽流感患者且只有1位被治愈的概率为3477921⨯= ;(2)43166444101018(0),(1)1421C C C P P C C ξξ====== ,221364644441010103411(2),(3),(4)735210C C C C P P P C C C ξξξ========= ∴数学期望0123414217352105E ξ=⨯+⨯+⨯+⨯+⨯=例2.某食品企业一个月内被消费者投诉的次数用ξ表示,据统计,随机变量ξ的概率分别如下:(Ⅰ)求a 的值和ξ(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率。

解:(Ⅰ)由概率分布的性质得0.1+0.3+2a +a =1,解得a =0.2. ξ∴的概率分布为00.110.3E ξ∴=⨯+⨯+(Ⅱ)设事件A 表示“两个月内共被投拆2次”;事件1A 表示“两个月内有一个月被投诉2次,另外一个月被投诉0次”;事件2A 表示“两个月内每个月均被投诉1次”.则由事件的独立性得:112()(2)(0)20.40.10.08p A C P P ξξ====⨯⨯=.212()()()0.080.090.17P A P A P A =+=+=.故该企业在这两个月内共被消费者投拆2次的概率为0.17.例3 如图所示,质点P 在正方形ABCD 的四个顶点上按逆时针方向前进. 现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字. 质点P 从A 点出发,规则如下:当正方体上底面出现的数字是1,质点P 前进一步(如由A 到B );当正方体上底面出现的数字是2,质点P 前两步(如由A 到C ),当正方体上底面出现的数字是3,质点P 前进三步(如由A 到D ). 在质点P 转一圈之前连续投掷,若超过一圈,则投掷终止. (I )求点P 恰好返回到A 点的概率;(II )在点P 转一圈恰能返回到A 点的所有结果中,用随机变量ξ表示点P 恰能返回到A 点的投掷次数,求ξ的数学期望. 解:(I )投掷一次正方体玩具,上底面每个数字的出现都是等可能的, 其概率为31621==P ,因为只投掷一次不可能返回到A 点,若投掷两次点P 就恰好能返回到A 点,则上底面出现的两个数字应依次为:(1,3)、(3,1)、(2,2)三种结果,其概率为313)31(22=⋅=P ;若投掷三次点P 恰能返回到A 点,则上底面出现的三个数字应依为:(1,1,2)、(1,2,1)、(2,1,1)三种结果,其概率为913)31(33=⋅=P ;若投掷四次点P 恰能返回到A 点,则上底面出现的四个数字应依次为:(1,1,1,1),其概率为811)31(44==P 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时考点19 统计-----随机变量的分布列和期望
高考考纲透析:
等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差
高考风向标:
离散型随机变量的分布列、期望和方差
热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19)
甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001)
本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。

解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4
比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=33
0.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。

因而
P (ξ=4)=2230.60.40.6C ⨯⨯⨯+22
30.40.60.40.3744C ⨯⨯⨯=
比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。

因而
P (ξ=5)=222
40.60.40.6C ⨯⨯⨯+22240.40.60.40.3456C ⨯⨯⨯=
所以ξ的概率分布为
ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656
变式新题型1.(2005年高考·卷·理19)袋子A 中装有若干个均匀的红球和白球,从A 中
摸出一个红球的概率是3
1

(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ.
解:(Ⅰ) 33
35
12140333243
C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭
(Ⅱ)(i )22
24
1218
33381
C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭
(ii)随机变量ξ的取值为0,1,2,3,;
由n 次独立重复试验概率公式()()
1n k
k k n n P k C p p -=-,得
()5
0513*******P C ξ⎛⎫==⨯-=
⎪⎝⎭; ()4
1511801133243P C ξ⎛⎫==⨯⨯-=
⎪⎝⎭ ()2
325
11802133243
P C ξ⎛⎫⎛⎫
==⨯⨯-=
⎪ ⎪⎝⎭⎝⎭ ()32
3511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=
⎪ ⎪⎝⎭⎝⎭
(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是
ξ的数学期望是
32808017131
012324324324324381
E ξ=
⨯+⨯+⨯+⨯=
热点题型2 随机变量ξ的取值围及分布列
[样题2]在一次购物抽奖活动中,假设某10券中有一等奖券1,可获价值50元的奖品;有
二等奖券3,每可获价值10元的奖品;其余6没有奖,某顾客从此10券中任抽2,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE . 解法一:
(Ⅰ)32
45151210
26=-=-=C C I P ,即该顾客中奖的概率为32.
(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元).
.151
)60(,152
)50(,151)20(,52
)10(,31)0(2
10
1
3112
101
611210232
101
61321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且
故ξ有分布列:
从而期望.1615
1
6015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE 解法二:
(Ⅰ),32
4530)(2
10
2
41614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一
由于10券总价值为80元,即每的平均奖品价值为8元,从而抽2的平均奖品价值ξE =2×8=16(元).
变式新题型2.假设一种机器在一个工作日发生故障的概率为0 2,若一周5个工作日
无故障,可获利润10万元;仅有一个工作日发生故障可获利润5万元;仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元 求:
(Ⅰ)一周5个工作日恰有两个工作日发生故障的概率(保留两位有效数字); (Ⅱ)一周5个工作日利润的期望(保留两位有效数字)
解:以ξ表示一周5个工作日机器发生故障的天数,则ξ~B (5,0 2)
).5,4,3,2,1,0(8.02.0)(55=⨯⨯==-k C k P k k k ξ (Ⅰ).21.08.02.0)2(3225≈⨯⨯==C P ξ
(Ⅱ)以η表示利润,则η的所有可能取值为10,5,0,-2
.328.08.0)0()10(5
≈====ξηP P
.410.08.02.0)1()5(4
115≈⨯⨯====C P P ξη .205.08.02.0)2()0(3
225≈⨯⨯====C P P ξη
.
()2(≥=-=ξηP P
η∴的概率分布为
∴利润的期望=10×0 328+5(万元)
[样题3] (2005年高考·卷·理19)
A 、
B 两位同学各有五卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一卡片,否则B 赢得A 一卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设ξ表示游戏终止时掷硬币的次数.
(1)求ξ的取值围; (2)求ξ的数学期望E ξ.
解:(1)设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩

⎨⎧≤≤=+=-915||ξξn m n m ,可得:
.
9,7,5:;9,7,22,7;7,6,11,6;5,5,00,5的所有可能取值为所以时或当时或当时或当ξξξξ===============n m n m n m n m n m n m
(2);64
5)21(2)7(;161322)2
1(2)5(7
155
=====
⨯==C P P ξξ .
32275
6455964571615;64
55
6451611)9(=⨯+⨯+⨯==--
==ξξE P
变式新题型3.某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,
并进行下一组练习,否则一直打完5发子弹后才能进入下一组练习.若该射手在某组练习中
射击命中一次,并且他射击一次命中率为0.8,(1)求在这一组练习中耗用子弹ξ的分布列.(2)求在完成连续两组练习后,恰好共耗用了4发子弹的概率。

分析:该组练习耗用的子弹数ξ为随机变量,ξ可取值为1,2,3,4,5ξ=1,表示第一发击中(练习停止),故P (ξ=1)=0.8
ξ=2,表示第一发未中,第二发命中,故P (ξ=2)=(1-0.8)×0.8=0.16ξ=3,
表示第一、二发未中,第三发命中,故P (ξ=3)=(1-0.8)2
×0.8=0.032以下类推
解:(1)ξ的分布列为
ξ 1 2 3 4 5
P 0.8 0.16 0.032 0.0064 0.0016
补充备例:有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用
它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数 的数学期望和方差.
分析:求时,由题知前次没打开,恰第k次打开.不过,一般我们应从简单的地方入手,如,发现规律后,推广到一般.
解:的可能取值为1,2,3,…,n.
;所以的分布列为:
1 2 …k…n
……

说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键.。

相关文档
最新文档