电气传动课程设计-simulink-仿真

合集下载

SIMULINK仿真

SIMULINK仿真
2.Data Import/Export类设置 ① 矩阵形式。MATLAB把矩阵的第一列默认为时间向量,
后面的每一列对应每一个输入端口,矩阵的第一行表示某 一时刻各输入端口的输入状态。另外,也可以把矩阵分开 来表示,即MATLAB默认的表示方法[t,u],其中t是一维 时间列向量,表示仿真时间,u是和t长度相等的n维列向 量(n表示输入端口的数量),表示状态值。例如,在命 令窗口中定义t和u:
条件执行子系统分为
1.使能子系统
使能子系统表示子系统在由控制信号控制时,控制信号由 负变正时子系统开始执行,直到控制信号再次变为负时结 束。控制信号可以是标量也可以是向量。
建立使能子系统的方法是:打开Simulink模块库中的Ports & Subsystems模块库,将Enable模块复制到子系统模型 中,则系统的图标发生了变化。
阵、结构和包含时间的结构3种选择。“Limit data points to last”用来限定保存到工作空间中 的数据的最大长度。 输出选项(Output options)有: ① Refine output(细化输出) ② Produce additional output(产生附加输出) ③ Produce specified output only(仅在指定 的时刻产生输出)
4.1 初识Simulink—— 一个简单的仿 真实例
在MATLAB的命令窗口输入Simulink,或单击MATLAB主 窗口工具栏上的“Simulink”命令按钮即可启动Simulink。 Simulink启动后会显示如图4.1所示的Simulink模块库浏览 器(Simulink Library Browser)窗口。
U (s)
Kp
Ki s
Kd s

电气传动控制系统课程设计解密版-电气传动控制系统

电气传动控制系统课程设计解密版-电气传动控制系统

电气传动控制系统课程设计解密版|电气传动控制系统电气传动控制系统课程设计一、引言 MATLAB作为一个强大的数学及仿真软件,在科研与工程中被广泛使用。

对于我们自动化系的学生而言,不论是专业发展、学术科研还是今后参加工作,认真学习MATLAB都是有很大必要的。

利用MATLAB/Simulink验证“直流电动机转速/电流双闭环PID控制方案”可以熟悉MATLAB以及Simulink的使用方法,并掌握利用MATLAB分析控制系统性能的技巧。

二、实验原理与建模 1.系统建模 (1) 额定励磁下的直流电动机的动态数学模型图1给出了额定励磁下他励直流电机的等效电路,其中电枢回路电阻R和电感L包含整流装置内阻和平波电抗器电阻与电感在内,规定的正方向如图所示。

图1 直流电动机等效电路由图1可列出微分方程如下:(主电路,假定电流连续)(额定励磁下的感应电动势)(牛顿动力学定律,忽略粘性摩擦)(额定励磁下的电磁转矩)定义下列时间常数:——电枢回路电磁时间常数,单位为s;——电力拖动系统机电时间常数,单位为s;代入微分方程,并整理后得:式中,——负载电流。

在零初始条件下,取等式两侧得拉氏变换,得电压与电流间的传递函数(1)电流与电动势间的传递函数为(2) a) b) c) 图 2 额定励磁下直流电动机的动态结构图 a) 式(1)的结构图 b)式(2)的结构图 c)整个直流电动机的动态结构图 (2) 晶闸管触发和整流装置的动态数学模型在分析系统时我们往往把它们当作一个环节来看待。

这一环节的输入量是触发电路的控制电压Uct,输出量是理想空载整流电压Ud0。

把它们之间的放大系数Ks看成常数,晶闸管触发与整流装置可以看成是一个具有纯滞后的放大环节,其滞后作用是由晶闸管装置的失控时间引起的。

下面列出不同整流电路的平均失控时间:表 1 各种整流电路的平均失控时间(f=50Hz)整流电路形式平均失控时间Ts/ms 单相半波 10 单相桥式(全波) 5 三相全波 3.33 三相桥式,六相半波1.67 用单位阶跃函数来表示滞后,则晶闸管触发和整流装置的输入输出关系为按拉氏变换的位移定理,则传递函数为(3)由于式(3)中含有指数函数,它使系统成为非最小相位系统,分析和设计都比较麻烦。

基于Simulink的简单电力系统仿真【范本模板】

基于Simulink的简单电力系统仿真【范本模板】

实验六 基于Simulink 的简单电力系统仿真实验目的1) 熟悉Simulink 的工作环境;2) 掌握Simulink 电力系统工具箱的使用;3) 掌握在Simulink 的工作环境中建立简单电力系统的仿真模型实验内容输电线路电路参数建模时采用电力系统分析中常用的π型等值电路,搭建如图1所示的一个简单交流单相电力系统,在仿真进行中,负载通过断路器切除并再次投入。

π型等值电路具体元件参数如下:Ω=2.5R ,H L 138.0=,F C C μ967.021==.π型等值电路图1 简单电力系统仿真示意图1) 在Simulink 中建立简单交流单相电力系统模型,并进行仿真,观测负载电流和输电线路末端电压;2) 结合理论知识分析上述观测信号变化的原因;3) 比较不同功率因数,如cos φ=1、cos φ=0。

8(感性)、cos φ=0。

8(容性)负载条件下的仿真结果实验原理与方法1、系统的仿真电路图实验步骤根据所得建立模型,给定参数,得到仿真结果cosφ=1cosφ=0。

8(感性)cosφ=0.8(容性)实验结果与分析cosφ=1cosφ=0.8(感性)cosφ=0。

8(容性)仿真结果分析(1)在纯阻性负载电路中,电压相位与电流相位相同;与感性负载相比,断路器重新闭合后电流没有额外的直流分量.(2)在感性负载中,电压相位超前电流相位;断路器重新闭合时,交变的电流瞬间增加了一个直流分量,随后逐渐减小.(3)在容性负载中,电压相位滞后于电流相位;断路器重新闭合时,电流瞬间突变至极大;与感性负载和纯阻性负载相比,断路器断开时的末端电压由于有电容放电作用,电压波形畸变很小。

(4)当断路器断开时,线路断路,电流突变为0,但电压行波仍在进行,因此在末端能够测量到连续的电压波形,但断路器断开对电压波形造成了影响,产生了畸变。

这是由于能量是通过电磁场传递的,线路断开时电压继续向前传递。

总括:L和C对输出波形振荡的频率和幅度影响程度不同,当变化相同幅度时,电容对振荡频率和幅度的影响要比电感的大.感想:Matlab中Simulik通过拖拉建模方式对电路进行仿真,具有快捷、方便、灵活的特点。

simulink的电力系统仿真实验原理

simulink的电力系统仿真实验原理

simulink的电力系统仿真实验原理电力系统仿真实验原理:电力系统仿真实验是利用Simulink软件对电力系统进行建模、仿真和分析的过程。

该实验主要包括如下几个步骤:1. 建立电力系统模型:在Simulink环境中,根据实际电力系统的结构和特性,利用各种电力元件如发电机、变压器、传输线路、负荷等构建电力系统模型。

可以根据具体需要设置不同的电路参数和拓扑结构,以便对各种电力系统问题进行仿真分析。

2. 设定仿真参数:根据实验要求,设定仿真的时域范围、仿真步长以及模型的输入和输出要求。

例如,可以设定仿真时间为几百毫秒或几秒钟,仿真步长为毫秒级别,以获取系统各个节点的电压、电流等参数。

3. 添加模型控制器:根据需要,可以在模型中添加各种控制器如PID控制器、调速器等,以实现对电力系统的调节和控制。

控制器的参数可以根据实验要求进行设定和调整,以达到理想的控制效果。

4. 进行仿真实验:单击Simulink软件中的"运行"按钮,系统便开始进行仿真计算。

Simulink根据所设定的仿真参数和模型的输入,采用数值计算方法对电力系统进行仿真计算,并输出各个节点的电压、电流等参数。

仿真的过程也可以通过实时仿真功能进行可视化展示。

5. 分析仿真结果:根据仿真结果,可以对电力系统的运行情况进行分析和评估。

例如,可以分析系统的稳定性、安全性、损耗情况等。

如果仿真结果与实际情况存在差异,可以进一步调整电力系统模型和仿真参数,以提高仿真的准确性。

通过Simulink软件的电力系统仿真实验,可以有效地分析和解决实际电力系统中的问题。

同时,仿真实验也为电力系统的运行和优化提供了可靠的依据,减少了实验成本和风险。

实验四-SIMULINK仿真模型的建立及仿真

实验四-SIMULINK仿真模型的建立及仿真

实验四 SIMULINK仿真模型的建立及仿真(一)一、实验目的:1、熟悉SIMULINK模型文件的操作。

2、熟悉SIMULINK建模的有关库及示波器的使用。

3、熟悉Simulink仿真模型的建立。

4、掌握用不同的输入、不同的算法、不同的仿真时间的系统仿真。

二、实验内容:1、设计SIMULINK仿真模型。

2、建立SIMULINK结构图仿真模型。

3、了解各模块参数的设定。

4、了解示波器的使用方法。

5、了解参数、算法、仿真时间的设定方法。

例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。

弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK 模型,并进行仿真运行。

步骤:1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。

图二:已经复制进库模块的新建模型窗3、从模块库复制所需模块到新建模型窗,分别在模块子库中找到所需模块,然后拖进空白模型窗中,如图二。

4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。

5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。

如图三所示:图三:已构建完成的新模型窗6、根据理论数学模型设置模块参数:①设置增益模块<Gain>参数,双击模型窗重的增益模块<Gain>,引出如图四所示的参数设置窗,把<Gain>增益栏中默认数字改为2,单击[OK]键,完成设置;图四:参数已经修改为2的<Gain>增益模块设置窗②参照以上方法把<Gain1>增益模块的增益系数改为100;③修改求和模块输入口的代数符号,双击求和模块,引出如图五所示的参数设置窗,把符号栏中的默认符号(++)修改成所需的代数符号(--),单击[OK]键,完成设置;图五:改变输入口符号的求和模块参数设置窗④对积分模块<Integrator1>的初始状态进行设置:双击积分模块<Integrator1>,引出如图六所示的参数设置窗,把初始条件Initial condition 栏中的默认0初始修改为题目给定的0.05,单击[OK]键,完成设置。

simulink 电力系统仿真教材

simulink 电力系统仿真教材

simulink 电力系统仿真教材Simulink是一种基于MATLAB的仿真环境,可用于电力系统的建模和仿真。

它提供了电力系统各个组件的建模模块,以及连接这些模块的连线,使得用户可以通过简单的拖拽和连接来建立一个完整的电力系统仿真模型。

在Simulink中,用户可以设置各个组件的参数,并对整个系统进行仿真和分析。

电力系统仿真可以帮助工程师们更好地理解和研究电力系统的运行和性能。

通过仿真,我们可以模拟各种工况下的电力系统运行情况,从而评估系统的稳定性、可靠性和安全性。

同时,仿真还能够辅助设计和优化电力系统,帮助我们更好地理解系统的动态行为和特性。

一本优秀的电力系统仿真教材应该包括以下内容:1.电力系统基础知识:教材应该首先介绍电力系统的基本概念和原理,包括电力系统的组成、拓扑结构和运行原理等。

这部分内容可以通过简单的文字和图表来阐述,以帮助读者理解电力系统的基本工作原理。

2. Simulink基础知识:由于Simulink是电力系统仿真的主要工具,教材还应该介绍Simulink的基本知识,包括如何安装和使用Simulink软件,以及Simulink的基本操作和组件库等。

教材可以通过简单的实例来演示Simulink的基本功能和特点。

3.电力系统建模和仿真:教材应该详细介绍如何在Simulink中建立电力系统的仿真模型,包括电网传输线、发电机、变压器、负载等各个组件的建模方法和参数设置。

教材可以通过具体的案例来演示建模的过程,以帮助读者理解如何将实际的电力系统转化为Simulink模型。

4.仿真结果分析:教材应该指导读者如何对仿真结果进行分析和评估,包括系统的稳定性、功率流分布、电压稳定性等方面的分析。

教材可以介绍一些常用的分析工具和方法,并通过具体的案例来演示分析的过程。

5.实际应用和案例:教材应该提供一些实际的电力系统案例,以帮助读者将仿真结果应用于实际工程中。

这些案例可以包括电力系统的稳态和暂态分析、电力系统的稳定控制和调度等方面的应用。

simulink电力电子课程设计

simulink电力电子课程设计

simulink电力电子课程设计一、课程目标知识目标:1. 理解电力电子器件的基本原理及Simulink环境下电力电子电路的建模方法;2. 掌握Simulink中电力电子模块的使用和参数设置,能够构建简单的电力电子变换器模型;3. 学会分析电力电子电路的静态和动态特性,理解仿真结果与实际电路之间的关系。

技能目标:1. 能够运用Simulink软件设计基本的电力电子电路,进行仿真实验,并对结果进行分析;2. 培养学生利用仿真工具解决实际电力电子问题的能力;3. 提高学生团队协作和沟通表达的能力,通过小组讨论,共同完成课程设计任务。

情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学生主动探索和创新的热情;2. 增强学生的环保意识,了解电力电子技术在节能减排方面的重要性;3. 树立正确的工程观念,认识到电力电子技术在实际工程应用中的价值。

本课程针对高年级本科生,以电力电子技术为基础,结合Simulink软件进行课程设计。

在教学过程中,注重理论与实践相结合,充分调动学生的主观能动性,培养具备实际操作能力的优秀电力电子工程师。

通过本课程的学习,使学生能够掌握电力电子电路的设计与仿真,为今后的学习和工作打下坚实基础。

二、教学内容本课程教学内容主要包括以下几部分:1. 电力电子器件原理:介绍常见的电力电子器件(如二极管、晶体管、晶闸管等)的工作原理、特性和应用。

2. Simulink软件基础:讲解Simulink软件的基本操作、模块库的调用、建模与仿真流程。

3. 电力电子电路建模:结合教材章节,学习使用Simulink中的电力电子模块构建电路模型,包括整流器、逆变器、斩波器等。

4. 电力电子电路仿真:通过对不同类型电力电子电路的仿真,分析电路的静态和动态特性,学习参数调整对仿真结果的影响。

5. 实际案例分析:选取典型的电力电子应用案例,分析电路设计、仿真和实验过程,使学生更好地理解理论知识与实际应用之间的联系。

simulink 电力系统仿真教材

simulink 电力系统仿真教材

simulink 电力系统仿真教材简介:Simulink是一种软件工程仿真环境,具有图形化可视化建模工具。

它经常用于电气工程领域中的电力系统仿真。

本教材旨在介绍Simulink在电力系统仿真方面的应用并提供相关教学示例。

第一部分:Simulink基础知识1. Simulink的介绍和安装2. Simulink界面和基本操作3.模型构建和系统参数设置技巧4.信号传递与数据类型第二部分:电力系统基础知识1.电力系统的基本结构和组成2.电力系统的数学建模3.电力系统中常见的设备和元件4.电力系统的传输和分配第三部分:电力系统仿真建模1. Simulink中的电力系统仿真模块2.电力系统仿真建模的基本步骤3.电力系统仿真的常用工具和技巧4.电力系统仿真模型的参数选择和优化第四部分:电力系统仿真案例分析1.单相感性负载仿真模型建立与分析2.三相感性负载仿真模型建立与分析3.发电机与电力系统的并联仿真模型建立与分析4.电力系统的短路故障仿真模型建立与分析第五部分:电力系统实时仿真与调试1. Simulink与实际电力系统的接口方法2.电力系统实时仿真的基础知识3.电力系统实时仿真与调试工具的使用4.电力系统实时仿真案例与应用总结:通过本教材的学习,读者将了解到Simulink在电力系统仿真方面的基本原理、操作技巧和实际应用案例。

Simulink作为一种强大的仿真工具,不仅可以帮助电力工程师实现电力系统的仿真建模,还可以为电力系统的优化和性能评估提供有力支持。

希望本教材能为学习Simulink和电力系统仿真的读者提供帮助,促进他们在电力系统领域的发展和研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气传动课程设计-simulink-仿真
————————————————————————————————作者:————————————————————————————————日期:
电气传动课程设计
题目:转速反馈控制调速系统的仿真
姓名韩雪晴
学院信息与电气工程学院
专业电气工程及其自动化
年级2009级
学号2001
指导教师赵枚
一、概述
调节原理
带转速负反馈的闭环直流调节系统,中有一台与电动机通州安装的测速发电机TG,引出与被调量转速成正比的负反馈电压Ub,与给定电压UB相比较后,得到转速偏差电压ΔUb,经放大器A,产生电力电子转换器UPE的控制电压Uc,用以控制电动机转速n
实验原理图如下图
利用MATLAB下的SIMULINK软件进行系统仿真是十分简单和直观的,SIMULINK提供了使用系统模型框图组态的仿真平台,使用SIMULINK进行仿真和分析可以像在纸上绘图一样简单。

用户可以用图形化的方法直接建立起仿真系统的模型,并通过SIMULINK环境中的菜单直接启动系统的仿真过程,同时将结果在示波器上显示出
来,SIMULINK也实线与MATLAB,C或者FORTRAN之间的数据传递。

所以,掌握强大的SIMULINK工具会大大地增强用户系统的仿真能力。

二、实验目的
1、进一步学习利用MATLAB下的SIMULINK来对控制系统进行仿真。

2、掌握转速、电流反馈控制直流调速系统的原理。

3、学会利用工程的方法设计ACR、ASR调节器的方法
三、实验原理
SIMULINK的简介:
Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。

在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。

Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。

同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。

功能:
Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。

Simulink可以用连续采样时间、离散采样时
间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。

为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。

Simulink&reg;是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。

对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。

. 构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。

Simulink与MATLAB&reg; 紧密集成,可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。

四、设计内容
1、转速负反馈闭环调速系统各环节参数如下:
直流电动机:额定电压U N=220V,额定电流I dN=55A,额定转速n N=1000r/min;
电动机电动势系数C e=0.129V.min/r;
放大系数Ks=40,滞后时间常数Ts=0.00178s,电枢总电阻R=1.0Ω;
电枢回路电磁时间常数Tl=0.00178s,电力拖动系统机电时间常数Tm=0.075s。

转速反馈系数α=0.01V.min/r。

对应额定转速时的给定电压U*n=10V.
2、转速环的MATLAB计算、建立及仿真
转速调节器的设计
确定时间常数电流环等效时间常数
利用LATLAB仿真内容
4、系统模型编辑窗口
打开simulink主界面,新建一个文件,拉出各个模块,组成如图所示
5、修改模块参数,完成模块连接,比例积分控制的无静差直流调速系统的仿真模型
6、仿真模块的运行
选取Kp=0.28,1/τ=3.1。

此时系统响应无超调图像如下
6、调节其参数的调整
在控制系统中设置调节器是为了改善系统的静、动性能。

在采用PI 调节器以后,构成的是无静差调速系统。

利用仿真模型改变比例系数和积分系数,可以轻而易举的得到震荡、有静差、无静差、超大或启动快等不同的转速曲线。

上图的仿真曲线中反应了对给定输入信号的跟随性能指标。

如果改变PI调节器的参数,可以得到转速的超调量不一样、调节时间也不一样的响应曲线。

经过比较可以发现系统的稳定性和快速性是一对矛盾,必须根据工程的要求,选择一个合适的PI参数。

现调整参数
此时Kp=0.85,1/t=15.5,系统转速的响应的超调较大,但快速性好。

仿真图形如下:
五、小结与体会
这次课程设计中,我们学到了许多课堂上学不到的东西,尤其是在Matlab仿真上面有很多自己不懂的地方,我在此用了很多时间和精力。

本次课程设计让我对《电力拖动自动控制系统-运动控制系统》的核心内容---转速、电流反馈控制直流调速系统有了更深的理解,对典型I系统设计加深了认识。

通过matlab的仿真,使我对双闭环反馈控制的直流调速系统有了直观的印象。

六、参考文献
[1]阮毅.《电力拖动自动控制系统-运动控制系统》.北京:机械工业出版社2009;
[2]洪乃刚.《电力电子和电力拖动控制系统的MATLAB仿真》.北京:机械工业出版社,2005.
[3]黄忠霖《电力电子技术的MATLAB实践》国防工业出版社2009。

相关文档
最新文档