几何画板中怎样利用椭圆定义构造椭圆

合集下载

活用几何画板优化高中数学圆锥曲线定义的教学——以椭圆定义及其定义法求椭圆为例

活用几何画板优化高中数学圆锥曲线定义的教学——以椭圆定义及其定义法求椭圆为例

活用几何画板优化高中数学圆锥曲线定义的教学——以椭圆定义及其定义法求椭圆为例摘要在高中数学教学中,灵活地合理运用几何画板这一辅助教学工具,不仅有助于形象地展示数量、图形的变化过程和理解概念的生成过程,还有助于培养学生的发散思维、创新思维等能力。

本文以椭圆定义及定义法求椭圆为例,突显几何画板在圆锥曲线教学中的应用价值。

关键词:几何画板;定义;椭圆;数学概念;应用价值理解数学概念是学习数学的基本要求,也是学生进一步解决数学问题的基础知识。

数学概念往往有一个核心概念,再由核心概念演绎而成的子概念,核心概念和子概念组成一个知识体系。

解题运用过程中,往往运用核心概念将数学知识有效的整合,形成系统的知识网络,不仅更有效快速地解决问题,而且有助于学生思维能力的发展和核心素养的内化。

圆锥曲线是高考考查的热点,考题以中、高难度为主,题型涵盖选择题、填空题和解答题,解答题中的求解圆锥曲线方程时,待定系数法与定义法求轨迹是常见方法,我们知道,圆锥曲线这一模块知识,主要考查的学科核心素养为数学运算、直观想象和逻辑推理。

然而,以历年的教学经验看来,在圆锥曲线的解答题中,第一问的求解曲线方程的运算出错的学生都不在少数,特别是题干中可以用定义法快速求解的,由于学生未能抓住题目关键条件,对圆锥曲线定义的理解只停留在表面,反而用了直译法列出方程,却又由于计算不到位,未能化简出结果,最终导致整道题丢分。

因此,若要突破解决这一问题,根源在于让学生理解圆锥曲线的定义。

一、几何画板在椭圆定义教学中的意义对于椭圆的定义,如果只是按照传统的理论传授教学方式进行授课的话,那么作为接收理解知识的学生来讲,概念的理解可能更多的只是停留在概念中文字的描述,而至于椭圆的生成过程的动态过程,在他们脑海里显得淡化甚至是没有。

因此,在传统的教学过程,如果我们教师本身能恰当地利用多媒体技术,借助几何画板的图形界面和简单的操作,把曲线轨迹的形成过程用动态的过程展示,并且最后让学生看到直观图形。

几何画板中的度量功能实验报告:椭圆的画法

几何画板中的度量功能实验报告:椭圆的画法

几何画板中的度量功能实验报告一、 实验目的1. 学习应用数学知识原理来指导绘制圆锥曲线。

2. 掌握几何画板中的建立坐标系,绘制已知点以及运用几何画板中内置计算器计算比值的方法,掌握度量菜单的用法。

3. 应用几何画板中的操作类按钮的功能动态显示圆锥曲线的变化状况。

二、 实验原理圆锥曲线基本定义,椭圆的参数方程以及椭圆的标准方程。

实验内容:根据椭圆的不同定义,标准方程以及参数方程,绘制不同的椭圆曲线。

三、 实验仪器PC 计算机; 软件工具:几何画板5.04 四、实验课时:6课时 五、实验步骤 (一)知识储备椭圆的第一定义:平面内与两定点F 1、F 2(即焦点)的距离的和等于常数的动点P 的轨迹叫做椭圆. 其数学表达式为:|PF 1|+|PF 2|=2a (2a >|F 1F 2|),焦距:|F 1F 2|=2c ≤2a.椭圆的第二定义:平面内到定点F(c ,0)的距离和到定直线l :ca x 2=(F 不在l 上)的距离之比为常数,即离心率ace =(0<e<1)的点的轨迹是椭圆. (二)椭圆的画法:1、根据椭圆的第一定义画椭圆:2种画法。

2、缩放法画椭圆3、双圆法画椭圆(三)各种画法的实验步骤1、根据椭圆的第一定义画椭圆:有两种画法 画法一:(1)新建页:【文件】-【文档选项】-【增加页】-【空白页面】,命名为:根据椭圆的第一定义画椭圆——画法一。

(2)构造控制台:选择【线段工具】,在空白处画线段AB ,选中线段AB ,【构造】-【构造线段上的点】(点C ),选中点C ,【度量】-【点的值】(xx ____上在AB C ),【数据】-【计算】-输入 :上在____1AB C ,选中比值,鼠标右击-【标记比值】。

(3)画圆:选择【点工具】,在空白处,作点D 、点E ,双击点D ,选中点E ,【变换】-【缩放】-【按标记比进行缩放】-【确定】,得到点E ’(通过拖动点C ,可以控制点E ’的位置,从而改变下面的椭圆的离心率。

运用几何画板绘制椭圆的有效方法

运用几何画板绘制椭圆的有效方法

图 3 准线法绘制椭圆
单圆法第一种做法:打开几何画板软件,作出一个
三、同心圆法
圆并隐藏圆周上的控制点 B,该圆的半径为 2a;在圆内
同心圆法的原理是椭圆的参数方程,即椭圆
x2 a2

y2 b2
=1(a>b>0)的参数方程是
x=a y=b
cosθ cosθ
(θ
。 为参数)
在几何画板中定义坐标系,并且绘制两个圆心为原
线,而这条定直线就叫做准线和椭圆准线定义,即垂直
于长轴所在直线的直线,方程为:x =± a2 。 c
具体步骤为:打开软件,定义坐标系并且将原点设
置为 A 点;用左侧工具栏中工具作出线段 CD 并做 E 点
于 CD 上;同时选中 C、E,并测量出 CE 长度,同理将 CD
长度测量出来;打开计算器并且输入 CE/CD,然后双击
YANJIU
研 运用几何画板绘制椭圆的有效方法

嫩江县高级中学 于翠玲
在圆锥曲线中,曲线上的点到定点的距离与到定直 线的距离的商是常数 e,且 0<e<1 时为椭圆。椭圆教学 是中学数学教学中的重点和难点,椭圆的知识和图像都 极为抽象,学生很难理解。不仅如此,有些教师在绘制椭
26 圆图形时也会感到困难,并且准确性不够。而运用几何 画板软件画出的椭圆既准确又美观,还能增加教学的趣味 性,引发学生的学习兴趣,可以让学生轻松、直观地观察并 理解椭圆的定义及其性质,从而收到很好的教学效果。 几何画板以点、线、圆作为基础图形,对这些基础图 形进行拼接、平移、变换、度量、构造、轨迹追踪以及对基 本图形的性质进行运用。学生可以在此过程中探究图形 的内在关系并发现数学的本质,探究数学的奥妙和趣味 性,激发学习数学的兴趣。笔者结合自身教学经验,在总 结、归纳、提炼和创新的基础上整理出七种常用的运用 几何画板绘制椭圆的方法,分享如下: 一、定义法 定义法的原理是圆锥曲线的统一定义,即焦点距离 与到准线距离的商是定值的点的轨迹。椭圆的定义,即 平面内一个动点到两个定点的距离之和等于常数,这个 动点的轨迹叫椭圆,这两个定点叫椭圆的焦点,两焦点 的距离叫作椭圆的焦距。 绘制的具体步骤为:打开软件,新建文件,在绘画板 内画线段 AB 的同时在 AB 上绘制出 C 点,然后在 AB 外选取 D、E 两点,满足 DE>AB;选中 A、C 两点进行标 记向量,然后通过标记向量将 D 平移,得到 D';选中 D 和 D' 点,绘制出一个以 D 为圆心,以 D 和 D' 间距离为 半径的圆并且隐藏;同理,标记 B、C 两个点为标记向 量,并且作出 E 的平移点到 E' 点,构造出圆,隐藏 E' 点;运用点工具做出两个圆周交点为 F、G 两点。 接下来分两种方法研究。 分别选中 F、C 和 G、C 两组点进行构造轨迹绘制出 椭圆曲线,如图 1 所示。

应用几何画板作椭圆和双曲线

应用几何画板作椭圆和双曲线
理论根挽::点Pl是两圆的交点,.’.点P1到F1与F2的距离的差等于两圆 的半径的差,
即}IPF.1一』PF。l f—I彳cI—I口cI=lAB}=2a.

、、、,、
,tj,
∥遐嘛 \。,磊N’+7 ?Z
、,

K、
少弋,,Biblioteka ’画法2:1.以坐标原点0为圆心,分别以a、b(a,b>0)为半径画两个圆: 2.圆OA与x轴的正方向交于点C,过C作x轴的垂线, 3.在圆OA上取一点P,连接OP,直线OP与过点c且和X轴垂直的直 线交于点Ⅳ'过点Ⅳ作x轴的平行线NM; 4.过点P作PR垂直于OP,交X轴于点R:
学教师的“好伙伴”所以自己在数学教学实践不断地总结和探索以提高教 学效果,即使如此也难免有疏漏之处望批评指正。 参考文献:
[1] 《几何画板实例教程》,清华大学出版社2002版. [2] 《数学通报》,998年第12期上.
万方数据
年唪捷博览;43
,/^ y
黔i。 / }
1.,,。.。.一一矿
岁一 。。。f, 迄 \ 、、、~——一一
一.椭■的西法: 画法1: 1.在x轴上取两点F,、E,使】OF,I=l OF2I,用它们作为两个焦点 2.在图形外作一条线段,使它的长度为2a,(2口>f,.‘1): 3.以,I为圆心,2口为半径作圆,在圆上任取一点P;
5.过点R在x轴的垂线交直线NM于点M: 6.分别选中点M和点尸,用“作图”菜单中的“轨迹”功能,画出 双曲线。 理论根据:设么xOP=中, 则IORl=IOP sec中=asec咖,lKMI=NC『=lOC【tg中=btg由, 根据双曲线的参数方程知,点M的轨迹是一个双曲线。 笔者虽然使用《几何画板》的时间不长,但体会到《几何画板》是数

几何画板生成椭圆曲线八种方法

几何画板生成椭圆曲线八种方法
选择“显示”→“线型”→“细线”,选中点G,选择“显示”→“追踪点”。
按住shift键,同时选中外圆圆周上的点E和外圆圆周,选择“编辑”→“操作类按钮”→“动画”,弹出“匹配路径”对话框,选择“单向”、“绕圆c2”、“快速地”,按下“动画”按钮确定。
这时,绘图板上会出现一个“动画”按钮,双击“动画”按钮,就会自动画出椭圆。完成,存盘退出。
几何画板生成椭圆曲线八法
国家教育部推荐的教育软件《几何画板》提供曲线的动态变化,便于观察与验证。如很好的开发它的功能,制作出富于表现力的动态效果的课件,培养学生对抽象曲线的理解和想象能力有极大的帮助。下面就用绘制椭圆曲线的八种方法的同行们商榷。
一、定义法(到两定点的距离和等于定长)
选取“线段”工具,在绘图板中作一线段AB(线段AB的长度为椭圆的长轴长2a)。用“点”工具在线段上任取一点C,按住shift键先后选中A,C点,选择“变换”→“标记向量 "A→C"”。
在圆周上任去一点F,同时选中点F和点A,按Ctrl+L键作出线段FA。再同时选中点F和线段FA,选择“作图”→“垂线”作出该圆的切线。
选中该切线和垂线j,按Ctrl+I键作出交点G,同样的方法作出该切线和垂线k的交点H。连接点G和点E(同时选中两点,按Ctrl+L键),连接点H和点D。作出线段GE和线段HD的交点I(同时选中两条线段,按Ctrl+I键)。选中线段FA,按Ctrl+H键隐藏。
三、同心圆法。
选择“文件”→“新绘图”,选择“图表”→“建立坐标轴”,用“圆”工具作两圆心为原点的同心圆(外圆半径长就是最终椭圆的长半轴长a,内圆半径长就是最终椭圆的短半轴长b),选中点B和圆周上的点C和D,按Ctrl+H键隐藏。

用几何画板绘制椭圆的方法

用几何画板绘制椭圆的方法

用几何画板绘制椭圆的方法作椭圆的方法很多,在此仅举4种方法。

例1:利用椭圆的定义作椭圆。

[简要步骤]:(1)作点A、B,以及线段CD(定长);(2)以点A为圆心,CD为半径作圆,并在圆A上任意取一点E;(3)连接AE、BE,并作BE的垂直平分线FG,交BE于点F,交AE于点G;(4)同时选中点G和点E,作轨迹,如图1。

图1例2:利用椭圆的参数方程作椭圆。

本例的作图原理就是先计算x = a cos t,y = b sin t(-π≤t ≤π),然后根据算得的x、y的值作出点(x,y),最后作出轨迹。

[简要步骤]:(1)显示坐标轴,在x、y轴上分别取点C、D,测量并计算出点C的横坐标和点D的纵坐标,然后将标签分别改为a和b;(2)以任意点E为圆心,点F为圆上一点作圆,在圆上任取一点G,测量角FEG的值,并将标签改为t;(3)将角度设置为弧度制,计算a cos t和b sin t的值,并依次选中,画出点H (a cos t,b sin t);(4)同时选中点H和点G,作轨迹,如图2。

图2例3:利用椭圆的参数方程的几何意义作椭圆。

[简要步骤]:(1)作水平线段AB,在线段AB上取一点C,以点A为圆心,分别以点B、C为圆上一点作两个同心圆,在大圆上任取一点D,连接AD,交小圆于点E;(2)过点D作线段AB的垂线,并过点E作垂线的垂线,两线交于点F;(3)同时选中点D和点F,作轨迹,如图3。

图3例4:利用压缩圆的方法作椭圆。

我们知道,将圆压缩就成了椭圆,因此,我们可以以椭圆的短轴与长轴之比作为压缩比,将圆压缩成椭圆。

[简要步骤]:(1)作线段AB,以线段AB的中点C为圆心,以点B为圆上一点作圆,在圆上任取一点D;(2)过点D作线段AB的垂线,交线段AB于点E;(3)作线段FG、GH,依次选中线段FG、GH,并标识为比例;(4)以点E为缩放中心,将点D以标识的比例压缩,得点D';(5)同时选中点D和点D',作轨迹,如图4。

几何画板生成椭圆曲线八种方法

几何画板生成椭圆曲线八种方法
三、同心圆法。
选择“文件”→“新绘图”,选择“图表”→“建立坐标轴”,用“圆”工具作两圆心为原点的同心圆(外圆半径长就是最终椭圆的长半轴长a,内圆半径长就是最终椭圆的短半轴长b),选中点B和圆周上的点C和D,按Ctrl+H键隐藏。
选择“显示”→“线型”→“虚线”,在外圆圆周上任取一点E,按住shift键,同时选中点A和点E,按Ctrl+L作出线段AE,同时选中线段AE和内圆圆周,按Ctrl+I键作出交点F。
2.按住shift键,先后选中点F,选择“显示”→“追踪点”,同样选中点G和点C,选择“显示”→“追踪点”。
按住shift键,先后选中点C和线段AB,选择“编辑”→“操作类按钮”→“动画”,弹出“匹配路径”对话框,选择“双向”、“沿着线段j”、“慢慢地”,按“动画”按钮完成设置。这时,绘图板上会出现一个“动画”按钮,双击“动画”按钮,就会自动画出椭圆。完成,存盘退出。
同时选中点A和点D,按Ctrl+L键作线段AD。再同时选中垂线k和线段AD定值。
选中点F,按Ctrl+T键追踪点F。选中点D和圆周,选择“编辑”→“操作类按钮”→“动画”,弹出“匹配路径”对话框,选择“单向”、“绕圆c1”、“正常地”,按“动画”按钮完成设置。这时,绘图板上会出现一个“动画”按钮,双击“动画”按钮,就会自动画出椭圆(如图4)。另外您也可以同时选中点F和点D,选择“作图”→“轨迹”也可以作出该椭圆。完成,存盘退出
二、准线法(到定点的距离与到定直线的距离之比为常数e)
打开一个新的绘图板,选择“图表”→“建立坐标轴”。
用“线段”工具作线段CD,在线段CD上任取一点E。同时选中点C和点E,选择“度量”→“距离”,量出CE的长。同样量出CD的长。
按住shift键,选中量出的CE和CD的距离,按鼠标右键弹出对话框,选择“度量”→“计算”。在打开的计算器中选择“数值”→“距离(C到E)”。选择“/”→“距离(C到D)”→“确定”。在绘图板上就会出现CE和CD的比值。用“文本工具”双击该值,弹出“度量值格式”对话框,选择“T文本格式”。 将“距离(C到E)/距离(C到D)”改成“e”,确定,完成改变。选中点B,按Ctrl+H键隐藏,在X轴上取点F(F为椭圆的一个焦点)。作线段GH,在其上取点I。用上面的方法量出GI的距离,并将其距离名称改为c。选中c和e的值,打开计算器,将c除以e的值求出,并将其名改为a。

信息技术应用用《几何画板》探究点的轨迹:椭圆

信息技术应用用《几何画板》探究点的轨迹:椭圆

2
6 3
,-1
2
MP 2 MF MP MN .MP 2 MF MP MN .
m in
m in
过点P1,-1作PN0

l于N
0交椭圆于M
0
,当M运动
到与M
重合
0

即P, M , N三点共线时,MP 2 MF 取得最小值.
答案:MP

2
MF
的最小值为3,此时M

解:(1)依题意可得椭圆左焦点为 F13,0, 右焦点为 F2 3,0,由椭圆第二定义可得
MF1 d1

e

c a

3 5,

MF1

3.d1

5
MF1 3
5.
(2)方法一(直接法):由椭圆定义可得 MF1 MF2 2a 10,而MF1 3, MF2 7
设点M到右准线的距离为d 2 , 由椭圆第二定义可得
4 5
,求点
M 的轨迹.
探究 F是定点,l是不经过F的定直线,动点M到定点F的
距离和它到定直线 l的距离比e是小于1的常数.猜想M
的轨迹是什么?
几何画板探究M的轨迹
发现:M的轨迹是椭圆
信息技术应用 用《几何画板》探究点的轨迹:椭圆
概念分析
椭圆的第二定义:
平面内到一个定点F和一条定直线 l 的距离的比
人教A版数学选修1-1 第二章 2.1椭圆
信息技术应用
用《几何画板》探究点的轨迹:椭圆
白银市第一中学 陈彦娟
信息技术应用 用《几何画板》探究点的轨迹:椭圆
一、回顾旧知
椭圆的定义: PF1 PF2 2a F1F2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何画板中怎样利用椭圆定义构造椭圆
椭圆在平面解析几何的教学中是一个重要的内容,利用几何画板软件可以很准确地画出椭圆图形,为教师的教学都带来了方便。

椭圆定义:平面内到两个定点的距离之和等于定长2a(a>0)的点的轨迹就是椭圆。

那么怎样在几何画板利用椭圆定义构造椭圆呢?(几何画板中文官网)
具体的操作步骤如下:
1.单击“圆工具”,在画板的适当位置任意画一个圆,将圆心的标签改为F1。

单击“点工具”,在圆上任意画一点C,同时选中点F1和点C,执行“构造”—“线段”命令,构造出线段F1C。

单击“点工具”,在线段F1C任意画一点F2。

构造圆和线段F1C并任取一点F2
2.在圆上任意画一点E,并构造线段EF1和线段EF2。

选中线段EF2,执行“构造”—“中点”命令,构造线段EF2的中点F。

构造线段EF1和EF2并构造线段EF2的中点F
3.选中线段EF2和点F,执行“构造”—“垂线”命令,构造出线段EF2的垂直平分线j。

同时选中线段EF1和直线j,选择“构造”—“交点”命令,构造线段EF1和直线j的交点G。

构造出线段EF2的垂直平分线j并构造交点G
4.选中点G和点E(把点E称做是点G的相关点,改变G点的位置,点E的位置也跟着改变),选择“构造”—“轨迹”命令,可画出椭圆。

拖动点B和点F2可改变椭圆的形状。

选中点G和点E构造轨迹得到椭圆
5.执行“文件”—“保存”命令即可。

以上内容介绍了在几何画板中利用利用椭圆定义构造椭圆的方法,只要掌握椭圆定义就可迅速画出椭圆。

相关文档
最新文档