应用几何画板作椭圆和双曲线

合集下载

数学中常用几何画板绘制椭圆

数学中常用几何画板绘制椭圆

数学中常⽤⼏何画板绘制椭圆圆锥曲线是⾼中数学的重点和难点,也是历来⾼考的必考内容,所以对于⾼中⽣来说,弄懂圆锥曲线这块难啃的⾻头,是很有必要的。

其中要熟练掌握的圆锥曲线之⼀就是椭圆,它是圆锥与平⾯的截线,其实要想画出椭圆,其⽅法不⽌⼀种,下⾯就⼀起来通过学学椭圆的五种画法。

⽅法⼀、利⽤椭圆第⼀定义构造椭圆椭圆第⼀定义:平⾯内到两个定点的距离之和等于定长2a(a>0)的点的轨迹就是椭圆,按照此定义可画出椭圆,具体步骤如下:1.单击“圆⼯具”,在画板的适当位置任意画⼀个圆,将圆⼼的标签改为F1。

单击“点⼯具”,在圆上任意画⼀点C,同时选中点F1和点C,执⾏“构造”-“线段”命令,构造出线段F1C。

单击“点⼯具”,在线段F1C任意画⼀点F2。

2.在圆上任意画⼀点E,并构造线段EF1和线段EF2。

选中线段EF2,执⾏“构造”-“中点”命令,构造线段EF2的中点F。

3.选中线段EF2和点F,执⾏“构造”-“垂线”命令,构造出线段EF2的垂直平分线j。

同时选中线段EF1和直线j,选择“构造”-“交点”命令,构造线段EF1和直线j的交点G。

4.选中点G和点E(把点E称做是点G的相关点,改变G点的位置,点E的位置也跟着改变),选择“构造”-“轨迹”命令,可画出椭圆。

拖动点B 和点F2可改变椭圆的形状。

⽅法⼆、利⽤椭圆第⼆定义画椭圆椭圆的第⼆定义:设动点M(x, y)与定点F(c, 0)的距离和它到定直线l: x=a2/c的距离的⽐是常数(a>c>0),则点M的轨迹是椭圆。

点F 是椭圆的⼀个焦点,直线l是椭圆中对应于焦点F的准线,常数e=c/a(0<e<1)。

具体的操作步骤如下:步骤⼀打开⼏何画板,使⽤“点⼯具”画任意⼀点F,使⽤“线⼯具”画直线L(点F不在L上)。

过点F作⼀条直线,在直线上取⼀点P;步骤⼆选中点F、P执⾏“度量”--“距离”命令,度量FP的长度;选中点F和度量的FP的长度,执⾏“构造”--“以圆⼼和半径绘圆”构造以点F为圆⼼,FP为半径的圆。

信息技术应用用《几何画板》探究点的轨迹:椭圆

信息技术应用用《几何画板》探究点的轨迹:椭圆
用《几何画板》探究 点的轨迹:椭圆
*轨迹与轨迹方程
轨迹:动点按照一定条件运动所形成的曲线 (几何图形)
轨迹方程:动点运动,其坐标(x,y)所满足的 关系式
(代数方程)
例1 如图,F是定点,l 是不经过F的定直线,动点 M到定点F的距离与到定直线 l 的距离的比e是小于
1的常数,动点M的轨迹是什么?
所以,这样的动点Q的轨迹即为椭圆.
定义法:利用所学过的曲线的定义直接写出 所求的动点的轨迹方程
课堂小结 1.用几何画板探究点的轨迹. 2.轨迹方程的常见求法.
作业
1、已知点P(2,0),Q(8,0),点M与点P
的距离是它与点Q的距离的
1 5
,求点M轨
迹方程.并说明轨迹是什么图形.
2、点M与定点F(2,0)的距离和它到定 直线x=8的距离的比是1:2,求点M轨迹
解:设d是M到直线l : x 245的距离,设M(x,y) 根据题意有 MF 4
d 5

(x 4)2 y 2 4
x

25 4
5
将上式两边平方并化简,得:9x2 25y2 225
y
.M(x,y) .O
F(-4,0)

x2 y2
25 9
1
x 所以,点M的轨迹是长轴、短轴分 别为10、6的椭圆.
又 OQ PQ 为定值 ,等量代换有 OQQAr,分析这个 式子本身的几何意义即得点Q的轨迹.
Pl
Q
..
O
A
演示轨迹三
解:因为点Q是线段PA垂直平 分线上的点,所以有
PQ QA
又 OQPQr
Pl
Q
..
O
A
所以,OQQAr 此即为动点Q到两个定点O、A的距离之和

如何利用几何画板制作双曲线y= /

如何利用几何画板制作双曲线y= /

5如何利用几何画板制作双曲线y=X 关于直线y=x对称的对折动画?(应城市杨河初中教师)a的图像是关于直线y=x对称的,为我们知道,双曲线y=x了直观地反映其对称性,可利用几何画板软件制作对称动画,5为例,谈谈制作步骤。

下面以y=x(1)打开几何画板【5.03版】,点击“绘图”中的“定义坐标系”,显示出带有方格的平面直角坐标系。

(2)点击“数据”中的“新建参数”,在“名称”栏里输入字母“a”,在“数值”栏里输入任意整数(以5为例),点击“确定”。

(3)点击“绘图”中的“绘制新函数”,在“新建函数”对话框里依次点击“5”,“÷”,“x”,“确定”,显示出双5的图像。

曲线y=x(4)单击第一象限的分支,点击右键,点击“属性”,在“函数图像”对话框里,点击“绘图”,将“范围”里的数值改写成“1≤x≤5”,点击“确定”,在第一象限显示5的部分图像。

出y=X(OA (5)在x轴上取一点A,将A点拖到坐标原点O的右边,≤5),构造线段OA,在OA上取一点B,度量B点的横坐标(比如2.85),在“数据”中的“计算”里依次点击“5”,“÷”,“2.85”,“确定”,得到计算结果“1.75”,依次点击“2.85”,“1.75”,“绘图”中的“绘制点(x,y)”,在部分图像上显示一点C,依次点击“C点”,“B点”,“构造”中的“轨迹”,显示出一段双曲线的轨迹图像。

(6)作出直线y=x,拖动点A,让双曲线轨迹图像的端点刚好落在y=x图像上,在双曲线轨迹图像上任取一点D,作D点关于y=x的反射点D’,构造线段DD’,在DD’上任取一点E,依次点击“E点”,“D点”,“构造”中的“轨迹”,显示出另一段能在DDˊ上滑动的双曲线轨迹图像,对E和D,E和D’制作动作按钮,分别为“移动E→D”,“移动E→Dˊ”。

(7)在纵轴上取一点F,将F拖至纵轴的负半轴上,构造线段OF,在OF上任取一点G,度量点G的纵坐标,(比如-1.37),点击“数据”中的“计算”,在对话框里依次点击“5”,“÷”,“-1.37”,“确定”,出现了计算结果“-3.66”,依次点击“-3.66”,“-1.37”,“绘图”中的“绘制点(x,y)”,出现了一点H,依次点击“H点”,“G点”,“构造”中的“轨迹”,出现了一段双曲线轨迹图像,拖动F点,让轨迹图像的端点刚好落在y=x上,在轨迹图像上取一点I,作I关于Y=x的反射点I’,构造线段I I’,在I I’上任取一点J,依次点击“J点”,“I点”,“构造”中的“轨迹”,作J和I,J和I”的动作按钮,分别为“移动J→I”,“移动J→I”。

几何画板生成椭圆曲线八种方法

几何画板生成椭圆曲线八种方法
选择“显示”→“线型”→“细线”,选中点G,选择“显示”→“追踪点”。
按住shift键,同时选中外圆圆周上的点E和外圆圆周,选择“编辑”→“操作类按钮”→“动画”,弹出“匹配路径”对话框,选择“单向”、“绕圆c2”、“快速地”,按下“动画”按钮确定。
这时,绘图板上会出现一个“动画”按钮,双击“动画”按钮,就会自动画出椭圆。完成,存盘退出。
几何画板生成椭圆曲线八法
国家教育部推荐的教育软件《几何画板》提供曲线的动态变化,便于观察与验证。如很好的开发它的功能,制作出富于表现力的动态效果的课件,培养学生对抽象曲线的理解和想象能力有极大的帮助。下面就用绘制椭圆曲线的八种方法的同行们商榷。
一、定义法(到两定点的距离和等于定长)
选取“线段”工具,在绘图板中作一线段AB(线段AB的长度为椭圆的长轴长2a)。用“点”工具在线段上任取一点C,按住shift键先后选中A,C点,选择“变换”→“标记向量 "A→C"”。
在圆周上任去一点F,同时选中点F和点A,按Ctrl+L键作出线段FA。再同时选中点F和线段FA,选择“作图”→“垂线”作出该圆的切线。
选中该切线和垂线j,按Ctrl+I键作出交点G,同样的方法作出该切线和垂线k的交点H。连接点G和点E(同时选中两点,按Ctrl+L键),连接点H和点D。作出线段GE和线段HD的交点I(同时选中两条线段,按Ctrl+I键)。选中线段FA,按Ctrl+H键隐藏。
三、同心圆法。
选择“文件”→“新绘图”,选择“图表”→“建立坐标轴”,用“圆”工具作两圆心为原点的同心圆(外圆半径长就是最终椭圆的长半轴长a,内圆半径长就是最终椭圆的短半轴长b),选中点B和圆周上的点C和D,按Ctrl+H键隐藏。

用几何画板绘制椭圆的方法

用几何画板绘制椭圆的方法

用几何画板绘制椭圆的方法作椭圆的方法很多,在此仅举4种方法。

例1:利用椭圆的定义作椭圆。

[简要步骤]:(1)作点A、B,以及线段CD(定长);(2)以点A为圆心,CD为半径作圆,并在圆A上任意取一点E;(3)连接AE、BE,并作BE的垂直平分线FG,交BE于点F,交AE于点G;(4)同时选中点G和点E,作轨迹,如图1。

图1例2:利用椭圆的参数方程作椭圆。

本例的作图原理就是先计算x = a cos t,y = b sin t(-π≤t ≤π),然后根据算得的x、y的值作出点(x,y),最后作出轨迹。

[简要步骤]:(1)显示坐标轴,在x、y轴上分别取点C、D,测量并计算出点C的横坐标和点D的纵坐标,然后将标签分别改为a和b;(2)以任意点E为圆心,点F为圆上一点作圆,在圆上任取一点G,测量角FEG的值,并将标签改为t;(3)将角度设置为弧度制,计算a cos t和b sin t的值,并依次选中,画出点H (a cos t,b sin t);(4)同时选中点H和点G,作轨迹,如图2。

图2例3:利用椭圆的参数方程的几何意义作椭圆。

[简要步骤]:(1)作水平线段AB,在线段AB上取一点C,以点A为圆心,分别以点B、C为圆上一点作两个同心圆,在大圆上任取一点D,连接AD,交小圆于点E;(2)过点D作线段AB的垂线,并过点E作垂线的垂线,两线交于点F;(3)同时选中点D和点F,作轨迹,如图3。

图3例4:利用压缩圆的方法作椭圆。

我们知道,将圆压缩就成了椭圆,因此,我们可以以椭圆的短轴与长轴之比作为压缩比,将圆压缩成椭圆。

[简要步骤]:(1)作线段AB,以线段AB的中点C为圆心,以点B为圆上一点作圆,在圆上任取一点D;(2)过点D作线段AB的垂线,交线段AB于点E;(3)作线段FG、GH,依次选中线段FG、GH,并标识为比例;(4)以点E为缩放中心,将点D以标识的比例压缩,得点D';(5)同时选中点D和点D',作轨迹,如图4。

使用几何画板找出椭圆、双曲线的对称轴、顶点和焦点以及抛物线的焦点

使用几何画板找出椭圆、双曲线的对称轴、顶点和焦点以及抛物线的焦点

称轴 l;
2.如图 3,在抛物线上任找一点 A( 不是抛物线
的顶点),过 A 作 AB ⊥ l 于点 B,作点 B 关于顶点 O 的
对称点 C,连接 AC;
3.过点 A 作 AD ⊥ AC,交对称轴 l 于点 D;
4.取 CD 中点为 F,则点 F 就是抛物线的焦点.
下面给出该作法的证明.
证明 不妨设抛物线
的中心,文[2] 介绍了如何使用几何画板找出已知
双曲线的中心和已知抛物线的顶点. 本文介绍如何
使用几何画板找出已知椭圆、双曲线的对称轴、顶点
和焦点以及已知抛物线的焦点,作为文[1] 与文[2]
的补充.
1 找出已知椭圆的对称轴、顶点和焦点
步骤如下:
1. 利用文 [1] 的
方法找到椭圆的中心
O;
2.如图 1,在椭圆
称轴.
因 为 OE = b, EF1 = a, 所 以 OF1 =
EF1 2 - OE 2 = a2 - b2 = c,同理, OF2 = c,
于是 F1、F2 是椭圆的两个焦点. 2 找出已知双曲线的对称轴、顶点和焦点
步骤如下:
1.利用文[2] 的
方法 找 到 双 曲 线 的
中心 O; 2. 如图 2, 在双
y0 x0

所以直线
GF2
的方程为



=-
a2 b2
y0 x0
(


m)
,令


0,可得点 F2
的横坐标为
xF2

b2
nx
0 +a a2y0

my0
,平方
可得
x2 F2

使用几何画板找出椭圆、双曲线的对称轴、顶点和焦点以及抛物线的焦点

使用几何画板找出椭圆、双曲线的对称轴、顶点和焦点以及抛物线的焦点

使用几何画板找出椭圆、双曲线的对称轴、顶点和焦点以及抛物线的焦点作者:黄伟亮来源:《中学数学杂志(高中版)》2015年第04期文[1]介绍了如何使用几何画板找出已知椭圆的中心,文[2]介绍了如何使用几何画板找出已知双曲线的中心和已知抛物线的顶点.本文介绍如何使用几何画板找出已知椭圆、双曲线的对称轴、顶点和焦点以及已知抛物线的焦点,作为文[1]与文[2]的补充.1 找出已知椭圆的对称轴、顶点和焦点步骤如下:图11.利用文[1]的方法找到椭圆的中心O;2.如图1,在椭圆上任找一点A(不是椭圆的顶点),以O为圆心,OA为半径作圆,该圆与椭圆的其余三个交点分别为B、C、D;3.连接AB、AD,过点O分别作AB、AD的平行线,得到直线l1、l2,则直线l1、l2就是椭圆的两条对称轴;4.直线l1与椭圆交于E、F两点,直线l2与椭圆交于G、H两点,则E、F、G、H是椭圆的四个顶点;5.比较OE与OG的大小,若OE>OG,则EF是长轴,GH是短轴;若OE<OG,则EF是短轴,GH是长轴(图1中OE<OG,所以EF是短轴,GH是长轴);6.以E为圆心,OG为半径作圆,与直线l2交于F1、F2两点,则F1、F2就是椭圆的两个焦点.备注若点A恰好是椭圆的顶点,则该圆与椭圆只有两个交点(其中一个是点A),此时,可对点A进行调整,使得点A不是椭圆的顶点.下面给出该作法的证明.证明如图1,不妨设椭圆的方程为x2a2+y2b2=1(a>b>0),点A的坐标为x0,y0,其中x0≠±a且x0≠0,于是圆的方程为x2+y2=x20+y20.由于椭圆和圆都关于x轴、y轴、原点对称,所以点B、C的坐标分别为x0,-y0、-x0,-y0,于是直线AB、AD的方程分别为x=x0、y=y0,所以直线l1、l2的方程分别为x=0、y=0,所以直线l1、l2就是椭圆的两条对称轴.因为OE=b,EF1=a,所以OF1=EF12-OE2=a2-b2=c,同理,OF2=c,于是F1、F2是椭圆的两个焦点.2 找出已知双曲线的对称轴、顶点和焦点步骤如下:图21.利用文[2]的方法找到双曲线的中心O;2.如图2,在双曲线上任找一点A(不是双曲线的顶点),以O为圆心,OA为半径作圆,该圆与双曲线的其余三个交点分别为B、C、D;3.连接AB、AD,过点O分别作AB、AD的平行线,得到直线l1、l2,则直线l1、l2就是双曲线的两条对称轴;4.直线l2与双曲线交于E、F两点,则E、F是双曲线的两个顶点;5.以O为圆心,OE为半径作圆C1;6.过点D,利用文[3]的方法作双曲线的切线l3,与C1交于点G;7.过点G作l3的垂线,交l2于点F2,作点F2关于直线l1的对称点F1,则点F1、F2就是双曲线的两个焦点.备注若点A恰好是双曲线的顶点,则以O为圆心,OA为半径的圆与双曲线只有两个交点(其中一个是点A),此时,可对点A进行调整,使得点A不是双曲线的顶点.关于双曲线的顶点、对称轴的证明方法与椭圆的证明类似,此处不再赘述.下面证明F1、F2是双曲线的两个焦点.证明如图2,不妨设双曲线的方程为x2a2-y2b2=1(a>0,b>0),点D的坐标为x0,y0,其中x0≠±a,点G的坐标为m,n.因为点D在双曲线上,所以x20a2-y20b2=1,即x20=a2+a2y20b2………①.点G在圆C1上,所以m2+n2=a2………②.切线l3的方程为x0xa2-y0yb2=1,而点G在l3上,所以mx0a2-ny0b2=1,即b2mx0-a2ny0=a2b2,两边平方,化简可得2mnx0y0a2b2=b4m2x20+a4n2y20-a4b4………③.因为GF2⊥l3,所以直线GF2的斜率为-a2y0b2x0,所以直线GF2的方程为y-n=-a2y0b2x0x-m,令y=0,可得点F2的横坐标为xF2=b2nx0+a2my0a2y0,平方可得x2F2=b4n2x20+a4m2y20+2mnx0y0a2b2a4y20,将③式代入该式子,可得x2F2=b4n2x20+a4m2y20+b4m2x20+a4n2y20-a4b4a4y20=b4m2+n2x20+a4m2+n2y20-a4b4a4y20.将②式代入,可得x2F2=a2b4x20+a6y20-a4b4a4y20.将①式代入,可得x2F2=a2b4a2+a2y20b2+a6y20-a4b4a4y20=a4b4+a4b2y20+a6y20-a4b4a4y20=a4b2y20+a6y20a4y20=a2+b2=c2,所以xF2=c,于是点F2是双曲线的右焦点,从而点F1是双曲线的左焦点.3 找出已知抛物线的焦点步骤如下:1.利用文[2]的方法找到抛物线的顶点O和对称轴l;2.如图3,在抛物线上任找一点A(不是抛物线的顶点),过A作AB⊥l于点B,作点B关于顶点O的对称点C,连接AC;3.过点A作AD⊥AC,交对称轴l于点D;4.取CD中点为F,则点F就是抛物线的焦点.下面给出该作法的证明.图3证明不妨设抛物线的方程为y2=2px(p>0),点A的坐标为x0,y0,其中x0≠0,则点B 的坐标为x0,0,点C的坐标为-x0,0.于是直线AC的斜率为y0-0x0--x0=y02x0,直线AD的方程为y-y0=-2x0y0x-x0.令y=0,可得x=x0+p,所以点D的坐标为x0+p,0,所以CD中点F 的坐标为p2,0,所以点F就是抛物线的焦点.参考文献[1] 张伟.使用几何画板如何找出已知椭圆的中心[J].中学数学杂志,2014(7):23.[2] 黄伟亮.使用几何画板找出双曲线的中心和抛物线的焦点[J] .中学数学杂志,2015(3):65.[3] 黄伟亮.双曲线、抛物线切线的尺规作法[J].数学通报.2004(12):26作者简介黄伟亮,男,1979年生,广东肇庆人,中学数学一级教师.研究方向是中学数学课堂教学与解题研究、高考试题分析.发表文章50多篇,主编参编教辅资料10本.。

几何画板生成椭圆曲线八种方法

几何画板生成椭圆曲线八种方法
三、同心圆法。
选择“文件”→“新绘图”,选择“图表”→“建立坐标轴”,用“圆”工具作两圆心为原点的同心圆(外圆半径长就是最终椭圆的长半轴长a,内圆半径长就是最终椭圆的短半轴长b),选中点B和圆周上的点C和D,按Ctrl+H键隐藏。
选择“显示”→“线型”→“虚线”,在外圆圆周上任取一点E,按住shift键,同时选中点A和点E,按Ctrl+L作出线段AE,同时选中线段AE和内圆圆周,按Ctrl+I键作出交点F。
2.按住shift键,先后选中点F,选择“显示”→“追踪点”,同样选中点G和点C,选择“显示”→“追踪点”。
按住shift键,先后选中点C和线段AB,选择“编辑”→“操作类按钮”→“动画”,弹出“匹配路径”对话框,选择“双向”、“沿着线段j”、“慢慢地”,按“动画”按钮完成设置。这时,绘图板上会出现一个“动画”按钮,双击“动画”按钮,就会自动画出椭圆。完成,存盘退出。
同时选中点A和点D,按Ctrl+L键作线段AD。再同时选中垂线k和线段AD定值。
选中点F,按Ctrl+T键追踪点F。选中点D和圆周,选择“编辑”→“操作类按钮”→“动画”,弹出“匹配路径”对话框,选择“单向”、“绕圆c1”、“正常地”,按“动画”按钮完成设置。这时,绘图板上会出现一个“动画”按钮,双击“动画”按钮,就会自动画出椭圆(如图4)。另外您也可以同时选中点F和点D,选择“作图”→“轨迹”也可以作出该椭圆。完成,存盘退出
二、准线法(到定点的距离与到定直线的距离之比为常数e)
打开一个新的绘图板,选择“图表”→“建立坐标轴”。
用“线段”工具作线段CD,在线段CD上任取一点E。同时选中点C和点E,选择“度量”→“距离”,量出CE的长。同样量出CD的长。
按住shift键,选中量出的CE和CD的距离,按鼠标右键弹出对话框,选择“度量”→“计算”。在打开的计算器中选择“数值”→“距离(C到E)”。选择“/”→“距离(C到D)”→“确定”。在绘图板上就会出现CE和CD的比值。用“文本工具”双击该值,弹出“度量值格式”对话框,选择“T文本格式”。 将“距离(C到E)/距离(C到D)”改成“e”,确定,完成改变。选中点B,按Ctrl+H键隐藏,在X轴上取点F(F为椭圆的一个焦点)。作线段GH,在其上取点I。用上面的方法量出GI的距离,并将其距离名称改为c。选中c和e的值,打开计算器,将c除以e的值求出,并将其名改为a。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论根挽::点Pl是两圆的交点,.’.点P1到F1与F2的距离的差等于两圆 的半径的差,
即}IPF.1一』PF。l f—I彳cI—I口cI=lAB}=2a.

、、、,、
,tj,
∥遐嘛 \。,磊N’+7 ?Z
、,

K、
少弋,,Biblioteka ’画法2:1.以坐标原点0为圆心,分别以a、b(a,b>0)为半径画两个圆: 2.圆OA与x轴的正方向交于点C,过C作x轴的垂线, 3.在圆OA上取一点P,连接OP,直线OP与过点c且和X轴垂直的直 线交于点Ⅳ'过点Ⅳ作x轴的平行线NM; 4.过点P作PR垂直于OP,交X轴于点R:
学教师的“好伙伴”所以自己在数学教学实践不断地总结和探索以提高教 学效果,即使如此也难免有疏漏之处望批评指正。 参考文献:
[1] 《几何画板实例教程》,清华大学出版社2002版. [2] 《数学通报》,998年第12期上.
万方数据
年唪捷博览;43
,/^ y
黔i。 / }
1.,,。.。.一一矿
岁一 。。。f, 迄 \ 、、、~——一一
一.椭■的西法: 画法1: 1.在x轴上取两点F,、E,使】OF,I=l OF2I,用它们作为两个焦点 2.在图形外作一条线段,使它的长度为2a,(2口>f,.‘1): 3.以,I为圆心,2口为半径作圆,在圆上任取一点P;
5.过点R在x轴的垂线交直线NM于点M: 6.分别选中点M和点尸,用“作图”菜单中的“轨迹”功能,画出 双曲线。 理论根据:设么xOP=中, 则IORl=IOP sec中=asec咖,lKMI=NC『=lOC【tg中=btg由, 根据双曲线的参数方程知,点M的轨迹是一个双曲线。 笔者虽然使用《几何画板》的时间不长,但体会到《几何画板》是数
向上作射线C’c,并用“作图”菜单中的“对象E的点”功能在c’C一1- 作点C:
5.分别以F.、只为圆心,用lBCl、}ACl为半径作圆,两圆相交于 P、、P.,两点:同样方法分别以,.、只为圆心,用lACl、IBCI为半径作圆, 两圆相交于P。、P。两点:并将这四个点定义为“追踪点”:
6.依次选中点C、点P,(或点C、点P,, 或点C、点P,,或点C、 点P。),用“作图”菜单中的“轨迹”功能,作出双曲线。
¨j.,/隶彩、、≮
j‘、≯冬。tJj
=.双曲线的西法 画法1:
1.在x轴卜取两点,.、E,使OF.=l∞,l,用它们作为两个焦点:
2.在图形外作一条线段AB,使AB=2a,(jABI<I,.只1): 3.以0为中心,在X轴上取两点A.、A,,使】爿.A。|=j ABI:
4.在AB延长线上分别取f,使IBC l=IA,F.i:在肚C的延长线方
4.连接PF.、PF。,作P只的中垂线与PF,交于点M连接』帆:
5.将点M定义为“追踪点”,分别选中点M、点P,用“作图”菜 单中的“轨迹”功能画出椭圆。
理论根据: 点M在PF。的中垂线上,.‘..1zP=I^矿,I,.‘.【^珉】+}Mt?,2I=I朋EI -4-j^护|={只P|=2a.即点M到两个定点F,和F。的距离的和等于定长。点 M的轨迹是一个椭圆。 画法2: 1.以坐标原点D为圆心,分别以a、6(口>6>0)为半径画两个圆: 2.在大圆上取一点A,连接OA与小圆交于点B: 3.过点爿作AN垂直于Ox轴,垂足为Ⅳ:作BM垂直于AⅣ,垂足为肘: 4.分别选中点M和点A,用“作图”菜单中的“轨迹”功能,画出 椭圆。 理论根据: {ONl=acos中,【NMl=bsin由,根据椭圆的参数方程知,点M的轨迹 是一个椭圆。
中图分类号:018
应用几何画板作椭圆和双曲线
梁荣军
(黑龙江省富锦市第一中学 黑龙江 富锦 156100)
文献标识码:A
文章编号:t009—914X(2009)9(b)一0043一叭
教霄时至
M●l
“几何画板”是全国中小学计算机教育研究中心在CAI中推广使用的软 件之一。利用“几何画板”可以方便地开发出具有实用性的课件,它能为 师生提供观察、探索几何图形和曲线方程内在关系的环境。“几何画板” 可为学习者提供动手实践的机会和友好的人机交互情境,使学生在一种轻松、 和谐的学习氛围中学习,对于调动学生学习的积极性和主动性,挖掘学生个人 潜能有着特殊重要的意义。尤其是在圆锥曲线的教学中,如果能用几何画板 作出相应的图形,那么就能够使学生直接感受到图形的形成过程,使学生对知 识理解的更好,也有了更加深厚的学习兴趣。下面笔者结合自己的教学经验, 介绍几种用几何画板作椭圆和双曲线的方法
相关文档
最新文档