一、平移和旋转

合集下载

图形的平移和旋转(经典)

图形的平移和旋转(经典)

DCFE CBA第四讲 图形的平移与旋转【基础知识精讲】一、平移:1.平移的定义——在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动叫图形的平移。

说明:(1)平移是图形的一种运动(变换)(2)平移的要素:①平移方向;②平移距离。

2.平移的性质:①平移前后图形的大小、形状都不改变。

即:平移前后的图形全等形。

②平移前后对应点的连线段平行(或在同一直线上)且相等;对应线段平行(或在同一直线上)且相等;对应角相等。

二、旋转1.旋转的定义——在平面内,把一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫图形的旋转。

说明:(1)旋转是图形的一种运动(变换)(2)旋转的要素: ①旋转中心 ②旋转方向 ③旋转角2.旋转的性质①旋转前后图形的大小、形状都不改变。

即:旋转前后的图形全等形。

②图形上任意点都绕中心沿相同方向转动相同的角度(旋转角); ③对应点到旋转中心的距离相等。

【重难点高效突破】例1.如图,经过平移△ABC 的边AB 移到了EF ,作出平移后的三角形.例2.如图,△ABC 绕C 点旋转后,B 转到了D 处,作出旋转后的三角形。

例3.如图,在长32m 宽20m 的土地上要修筑同样宽的两条“之”字路,路宽2m ,则剩余耕地的面积为 . 例4、如图,E 为正方形ABCD 的边AB 上一点,AE=3,BE=1,P 为AC 上的动点,则PB+PE 的最小值是_________.例5、如图,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BC=12,CF=5,则△DEF 的面积为______________。

例6、如图,在△ABC 中,AB 2=32,∠BAC=45°, ∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求BM+MN 的最小值。

例7、如图,设P 为等边△ABC 内的一点,且PA=3,PB=4,PC=5,能否确定∠APB 的大小?请说明理由。

平移与旋转PPT课件

平移与旋转PPT课件

旋转是将图形绕某一点转动一定的角度,其实质是点的旋转。旋转不改
变图形中各点之间的相对位置关系,但改变其角度。
03
平移与旋转的联系
平移和旋转都是图形在平面内的运动,它们都可以改变图形的位置,但
不改变其形状和大小。在实际应用中,平移和旋转常常结合使用,以实
现图平移
在实际应用中,物体往往同时进行平 移和旋转运动,这种运动称为复合运 动。
旋转运动
旋转运动是围绕一个固定点进行的运 动,物体在平面内以该点为中心进行 旋转,其轨迹是一个圆或一个圆弧。
计算机图形学
计算机图形学是研究计算机生成 和操作图形的科学,它广泛应用 于游戏开发、电影制作、建筑设
计等领域。
平移与旋转是计算机图形学中基 本变换之一,通过这些变换可以
三维平移
总结词
三维平移是指空间内的移动,可以沿 三个方向进行。
详细描述
在三维空间中,三维平移可以表示为在 x轴、y轴和z轴上的三个单位向量的组 合,例如[1,0,0]、[0,1,0]和[0,0,1]。三 维平移会改变物体的位置和方向。
03 旋转的数学表示
一维旋转
总结词
一维旋转是指绕着一条直线进行的旋转。
都有广泛的应用。
THANKS FOR WATCHING
感谢您的观看
总结词
一维平移是指沿一个方向进行的移动。
详细描述
在数学中,一维平移通常表示为在坐标轴上的一个单位向量,例如在x轴上,可 以表示为[1,0,0]。一维平移不改变物体的方向,只改变位置。
二维平移
总结词
二维平移是指平面内的移动,可以沿两个方向进行。
详细描述
在二维坐标系中,二维平移可以表示为在x轴和y轴上的两个单位向量的组合, 例如[1,0]和[0,1]。二维平移会改变物体的位置,但不改变方向。

平移与旋转的性质定理

平移与旋转的性质定理

平移与旋转的性质定理平移和旋转是几何学中常见的基本变换,它们在许多领域中都有广泛的应用。

在本文中,我们将探讨平移和旋转的性质定理,并解释它们在几何学中的重要性。

一、平移的性质定理平移是指在平面或者空间内,将一个图形沿着固定的方向平行地移动一定的距离。

平移具有以下性质定理:1. 平移保持图形的大小和形状不变。

当一个图形通过平移进行变换时,它的每个点都按照相同的方向和距离进行移动,因此图形的大小和形状不会发生改变。

2. 平移保持图形的对称性不变。

如果一个图形具有某种对称性,那么它在平移过程中仍然保持相同的对称性。

例如,如果一个图形是关于某个轴对称的,那么通过平移后,它仍然是关于同一轴对称的。

3. 平移是一个可逆操作。

平移不改变图形的大小、形状和对称性,并且可以通过反向的平移操作将图形恢复到原来的位置。

这意味着平移是可逆的,可以被撤销。

二、旋转的性质定理旋转是指围绕一个点或者轴进行旋转变换,使得图形绕该点或轴进行旋转一定的角度。

旋转具有以下性质定理:1. 旋转保持图形的大小和形状不变。

当一个图形通过旋转进行变换时,它的每个点都绕着旋转中心按照相同的角度进行旋转,因此图形的大小和形状不会发生改变。

2. 旋转保持图形的对称性不变。

如果一个图形具有某种对称性,那么它在旋转过程中仍然保持相同的对称性。

例如,如果一个图形是关于某个点对称的,那么通过旋转后,它仍然是关于同一点对称的。

3. 旋转是一个可逆操作。

旋转不改变图形的大小、形状和对称性,并且可以通过反向的旋转操作将图形恢复到原来的位置。

这意味着旋转是可逆的,可以被撤销。

三、平移和旋转的组合应用平移和旋转经常同时应用于几何学中的问题,它们的组合可以产生更复杂的变换效果。

通过合理地组合平移和旋转,我们可以实现以下应用:1. 对称图形的复制。

通过平移和旋转的组合操作,可以将一个对称图形复制并重叠到其他位置,从而形成新的图形。

2. 分析和解决几何问题。

在解决几何问题时,常常需要进行平移和旋转变换来研究图形的性质和关系。

三年级上册平移和旋转的知识点

三年级上册平移和旋转的知识点

三年级上册平移和旋转的知识点一、平移。

1. 平移的定义。

- 物体或图形在同一平面内沿直线运动,而本身没有发生方向上的改变,这种运动现象就是平移。

例如,在水平的传送带上,物体随着传送带直线移动;或者在电梯里,人随着电梯上下直线运动等都是平移现象。

2. 平移的特点。

- 平移后的图形与原图形的形状和大小完全相同。

例如,将一个正方形沿着水平方向平移一段距离后,得到的新正方形和原来的正方形边长一样,四个角也都是直角。

- 平移后的图形与原图形对应点之间的连线平行(或在同一条直线上)且相等。

比如一个三角形平移后,它原来的顶点和对应平移后的顶点连线是平行且相等的。

3. 平移的方向和距离。

- 方向:平移的方向可以是水平方向(向左或向右)、垂直方向(向上或向下)或者是斜着的方向。

例如,汽车在笔直的公路上向左行驶是水平方向的平移;火箭垂直升空是垂直方向的平移;而一个物体沿着与水平方向成45度角的方向移动就是斜方向的平移。

- 距离:平移的距离是指图形上每个点平移的长度。

可以通过数方格的方法来确定平移的距离,在方格纸上,一个方格的边长可以作为一个单位长度。

例如,一个图形从方格纸的左上角平移到右上角,经过了5个方格,那么平移的距离就是5个单位长度。

二、旋转。

1. 旋转的定义。

- 物体绕着一个点或一个轴做圆周运动的现象就是旋转。

像风车绕着中心轴转动、时钟的指针绕着中心点转动等都是旋转现象。

2. 旋转的特点。

- 旋转后的图形与原图形的形状和大小不变。

例如,一个圆形的表盘不管指针怎么旋转,表盘的形状和大小都不会改变。

- 图形的旋转是由旋转中心、旋转方向和旋转角度决定的。

3. 旋转中心、旋转方向和旋转角度。

- 旋转中心:是物体旋转时所绕着的那个点或轴。

例如,风车的旋转中心就是风车叶片中间固定的那个点;地球的自转是以地轴为旋转中心的。

- 旋转方向:分为顺时针方向和逆时针方向。

顺时针方向是指和时钟指针转动方向相同的方向,逆时针方向则是与时钟指针转动方向相反的方向。

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。

平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。

知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。

旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。

注意:旋转分为顺时针旋转和逆时针旋转。

知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。

轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。

三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。

A.B.C.D.2.在括号中填“平移”或“旋转”。

(1)小明进教室开门时,门的运动是()。

(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。

(3)小红拉开窗帘,窗帘的运动是()。

(4)老师将课桌拖到最后一排,桌子的运动是()。

3.观察下面的图形,然后填空。

(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)飞机向()平移了()格。

4.如图所示。

(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。

(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。

A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。

7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。

用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。

观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。

什么是平移 什么是旋转

什么是平移 什么是旋转

很多同学学习几何时对于一些概念都不是很了解。

那么什么是平移?什么是旋转呢?
平移简介
平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

平移不改变图形的形状和大小。

图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。

它是等距同构,是仿射空间中仿射变换的一种。

它可以视为将同一个向量加到每点上,或将坐标系统的中心移动所得的结果。

即是说,若是一个已知的向量,是空间中一点,平移。

旋转的定义
在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。

这个定点叫做旋转中心,旋转的角度叫做旋转角,如果一个图形上的点A经过旋转变为点A',那么这两个点叫做旋转的对应点。

平移和旋转的区别与联系
1、区别:旋转不改变物体在空间上的位置不发生位移,平移将一个图形上的所有点都按照某个直线方向做相同距离的移动发生了位移。

2、联系:旋转和平移都是物体运动现象,在运动中都没有改变本身的形状、大小与自身性质特征。

以上就是一些有关于平移和旋转的相关信息,供大家参考。

平移和旋转的定律

平移和旋转的定律

平移和旋转的定律平移和旋转是几何学中常用的变换方法,它们在解决实际问题和研究几何性质时起到了重要作用。

本文将分别介绍平移和旋转的定律,并阐述它们的应用。

一、平移的定律平移是指将一个图形沿着直线方向移动一定的距离,保持形状和大小不变。

平移的定律有以下几个要点:1. 平移的性质:平移不改变图形的大小、形状和内部角度。

2. 平移的表示方法:平移可以用向量表示,即将图形上的每个点都沿着同一方向平行地移动相同的距离。

平移向量可以表示为一个有向线段,起点为原点,终点为目标点。

3. 平移的步骤:平移的步骤包括确定平移向量、找到每个点的新位置、绘制新图形。

4. 平移的特点:平移是保持图形相对位置关系的变换,它将原来的图形完全重叠到了新位置上,相当于给原图形“搬家”。

平移的应用非常广泛。

在实际生活中,我们经常可以看到平移的影子。

比如,一辆汽车从一个位置开到另一个位置,这就是一个平移过程。

在建筑设计中,平移可以用来布局房间、道路等。

在数学教学中,平移可以帮助我们理解向量的概念和性质。

二、旋转的定律旋转是指将一个图形围绕一个点或轴线进行转动,使其在平面内改变位置和朝向,但形状和大小保持不变。

旋转的定律有以下几个要点:1. 旋转的性质:旋转不改变图形的大小和内部角度,但改变了图形的位置和朝向。

2. 旋转的表示方法:旋转可以用角度来表示,即将图形上的每个点绕着旋转中心按照一定的角度旋转。

旋转角度可以用度数或弧度来表示。

3. 旋转的方向:旋转可以顺时针或逆时针进行,视旋转角度的正负而定。

4. 旋转的特点:旋转是保持图形形状不变,但改变位置和朝向的变换。

旋转的中心可以是一个点,也可以是一条轴线。

旋转在几何学中有着重要的应用。

在工程设计中,旋转可以用来描述物体的运动轨迹,比如机械零件的旋转运动。

在自然界中,旋转也是普遍存在的,比如地球的自转和公转。

在数学教学中,旋转可以帮助我们理解三角函数的概念和性质。

总结起来,平移和旋转是几何学中常用的变换方法,它们有着许多相似之处,也有着各自独特的特点和应用。

《平移与旋转》课件

《平移与旋转》课件
了变化。
车轮的转动
车轮围绕轴心转动,方向始终保持 一致。
风扇的叶片
风扇叶片围绕中心轴旋转,产生风 力。
平移与旋转的综合实例
游乐场中的云霄飞车
云霄飞车在轨道上先平移再旋转,给乘客带来刺激体验。
陀螺的旋转
陀螺在旋转过程中,整体位置发生变化,既有平移也有旋转。
汽车方向盘的转动
方向盘在转动时,汽车的方向发生了改变,属于旋转运动。
旋转的定义
总结词
旋转是图形绕某一点转动一定的角度。
详细描述
旋转是图形另一种基本变换,它改变了图形与坐标轴的相对位置,但保持了图形 的基本属性和形状。在旋转过程中,图形绕某一点转动一定的角度,并且保持与 原位置的相对距离不变。
平移与旋转的对比
总结词
平移和旋转是两种不同的几何变换,它 们在变换过程中具有不同的特性和表现 。
《平移与旋转》ppt课件
• 平移与旋转的定义 • 平移与旋转的性质 • 平移与旋转的应用 • 平移与旋转的实例 • 平移与旋转的练习题
01 平移与旋转的定义
平移的定义
总结词
平移是图形在平面内沿某一方向直线移动一定的距离。
详细描述
平移是图形的一种基本变换,它保持了图形的基本属性和形状,只是位置发生 了改变。在平移过程中,图形沿某一方向直线移动,并且保持与原位置的相对 距离不变。
平移与旋转在日常生活中的应用
交通工具
平移和旋转在交通工具中有着广 泛的应用,例如汽车、火车和飞 机的移动都涉及到平移,而旋转
则用于描述轮子的转动。
机器零件
在机械制造中,平移和旋转是描 述机器零件的基本运动方式,例 如齿轮的转动、活塞的往复运动
等。
体育项目
平移和旋转在许多体育项目中也 有应用,例如滑冰、自行车和轮 滑等运动中的移动都涉及到平移 ,而旋转则用于描述球类的旋转
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平移和旋转
一、下面的现象中是平移的画“△”,是旋转的画“□”。

(1)索道上运行的观光缆车。

()(2)推拉窗的移动。

()
(3)钟面上的分针。

()(4)飞机的螺旋桨。

()(5)工作中的电风扇。

()(6)拉动抽屉。

()
二、看时钟填空。

(1)指针从“12”绕点A顺时针旋转()0到“2”;
(2)指针从“12”绕点A顺时针旋转(0)到“3”;
(3)指针从“1”绕点A顺时针旋转(0)到“6”;
(4)指针从“3”绕点A顺时针旋转300到“()”;
(5)指针从“5”绕点A顺时针旋转600到“()”;
(6)指针从“7”绕点A顺时针旋转(0)到“12”。

三、先观察右图,再填空。

(1)图1绕点“O”逆时针旋转900到达图()的位置;
(2)图1绕点“O”逆时针旋转1800到达图()的位置;
(3)图2绕点“O”顺时针旋转(0)到达图4的位置;
(4)图2绕点“O”顺时针旋转900到达图()的位置;
四、判断题。

正确的在题后的括号里画“√”,错的画“×”。

(1)正方形是轴对称图形,它有4条对称轴。

()
(2)圆不是轴对称图形。

()
(3)利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案。

()
(4)风吹动的小风车是旋转现象。

()
五、(1)画出三角形AOB 绕O点(2)绕O点顺时针旋转90°(3)绕O点逆时针旋转90°
六、涂色
1、把图形向右平移7格后得到的图形涂上颜色。

2
1
2
3
4、(1)画出三角形向右平移6格后的图形。

(2)画出梯形向下平移5格后的图形。

相关文档
最新文档