《复数》练习题
复数练习题附答案

复数练习题附答案复数是数学中的一个基本概念,它拓展了实数的概念,允许我们处理像-1的平方根这样的数。
复数可以表示为a + bi的形式,其中a和b是实数,i是虚数单位,满足i^2 = -1。
下面是一些复数的练习题,以及它们的答案。
练习题1:计算以下复数的加法:\[ (3 + 4i) + (1 - 2i) \]答案1:首先分别将实部和虚部相加:\[ 3 + 1 = 4 \]\[ 4i - 2i = 2i \]所以,结果是 \( 4 + 2i \)。
练习题2:计算以下复数的乘法:\[ (2 + 3i) \times (1 - 4i) \]答案2:使用分配律:\[ 2 \times 1 + 2 \times (-4i) + 3i \times 1 + 3i \times (-4i) \]\[ = 2 - 8i + 3i - 12i^2 \]由于 \( i^2 = -1 \),所以:\[ = 2 - 5i + 12 \]结果是 \( 14 - 5i \)。
练习题3:求复数 \( z = 3 - 2i \) 的共轭复数。
答案3:共轭复数是将虚部的符号改变得到的数,所以:\[ \bar{z} = 3 + 2i \]练习题4:求复数 \( z = 2 + i \) 的模(magnitude)。
答案4:复数的模定义为:\[ |z| = \sqrt{a^2 + b^2} \]其中 \( a \) 和 \( b \) 分别是复数的实部和虚部。
所以:\[ |2 + i| = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5} \] 练习题5:求复数 \( z = 1 + i \) 的逆。
答案5:复数的逆通过公式 \( \frac{1}{z} =\frac{\bar{z}}{|z|^2} \) 计算。
首先求模:\[ |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \]然后求共轭复数:\[ \bar{z} = 1 - i \]最后求逆:\[ \frac{1}{1 + i} = \frac{1 - i}{2} \]因为 \( |1 + i|^2 = 2 \)。
复数练习题(有答案)

一、复数选择题1.复数21i=+( ) A .1i -- B .1i -+C .1i -D .1i +2.复数11z i=-,则z 的共轭复数为( ) A .1i -B .1i +C .1122i + D .1122i - 3.在复平面内,复数534ii-(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3-C .43,55⎛⎫-⎪⎝⎭ D .43,55⎛⎫-⎪⎝⎭ 4.212ii+=-( ) A .1B .−1C .i -D .i5.已知i 为虚数单位,则复数23ii -+的虚部是( ) A .35B .35i -C .15-D .15i -6.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上 A .直线12y x =-B .直线12y x =C .直线12x =-D .直线12y7.满足313i z i ⋅=-的复数z 的共扼复数是( ) A .3i - B .3i --C .3i +D .3i -+8.若(1)2z i i -=,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.若1m ii+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1D10.若1i iz ,则2z z i ⋅-=( )A .B .4C .D .811.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4B .2C .0D .1-12.已知i 是虚数单位,a 为实数,且3i1i 2ia -=-+,则a =( ) A .2B .1C .-2D .-113.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3B .5C .6D .814.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( )A .10B .9C .8D .715.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( ) A .第四象限B .第三象限C .第二象限D .第一象限二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2i B .|z |=5C .12z i =+D .5z z ⋅=17.已知复数122z =-+(其中i 为虚数单位,,则以下结论正确的是( ).A .20zB .2z z =C .31z =D .1z =18.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2i19.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( ) A .2ωω=B .31ω=-C .210ωω++=D .ωω>20.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >21.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z22.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 23.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为224.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn nz i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .22z z = B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =- D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数25.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =28.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=29.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模30.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.C 【分析】根据复数的除法运算法则可得结果. 【详解】 . 故选:C 解析:C 【分析】根据复数的除法运算法则可得结果. 【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-.故选:C2.D 【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.因为,所以其共轭复数为. 故选:D.解析:D 【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果. 【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.3.D 【分析】运用复数除法的运算法则化简复数的表示,最后选出答案即可. 【详解】 因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为. 故选:D解析:D 【分析】运用复数除法的运算法则化简复数534ii-的表示,最后选出答案即可. 【详解】因为55(34)15204334(34)(34)2555i i i i i i i i ⋅+-===-+--+, 所以在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为43,55⎛⎫- ⎪⎝⎭. 故选:D4.D 【分析】利用复数的除法运算即可求解. 【详解】 , 故选:D解析:D利用复数的除法运算即可求解. 【详解】()()()()2221222255121212145i i i i i ii i i i i +++++====--+-, 故选:D5.A 【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是. 故选:A.解析:A 【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部. 【详解】 因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.6.C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为,所以复数对应的点是,所以在直线上. 故选:C. 【点睛】本题考查复数的乘方和除法运解析:C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上.【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-.7.A【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,复数的共扼复数是, 故选:A解析:A 【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】因为313i z i ⋅=-, 所以()13133iz i i i i-==-=+-, 复数z 的共扼复数是3z i =-, 故选:A8.B 【分析】先求解出复数,然后根据复数的几何意义判断. 【详解】 因为,所以,故对应的点位于复平面内第二象限. 故选:B. 【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计解析:B 【分析】先求解出复数z ,然后根据复数的几何意义判断. 【详解】因为(1)2z i i -=,所以()212112i i i z i i +===-+-, 故z 对应的点位于复平面内第二象限.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.9.C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题是纯虚数, 为纯虚数, 所以m=1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题1m ii+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.10.A 【分析】化简复数,求共轭复数,利用复数的模的定义得. 【详解】 因为,所以, 所以 故选:A解析:A 【分析】化简复数z ,求共轭复数z ,利用复数的模的定义得2i z z --. 【详解】因为1111i z i i i+==+=-,所以1z i =+,所以()()211222z z i i i i i ⋅-=-+-=-= 故选:A11.A 【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b . 【详解】 , 故选:A解析:A 【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+ 3,1a b ==,4a b +=故选:A12.B 【分析】 可得,即得. 【详解】 由,得a =1. 故选:B .解析:B 【分析】可得3(2)(1)3ai i i i -=+-=-,即得1a =. 【详解】由23(2)(1)223ai i i i i i i -=+-=-+-=-,得a =1. 故选:B .13.D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】 ,故 则 故选:D解析:D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D14.D 【分析】根据复数的模的性质求模,然后可解得. 【详解】 解:,解得. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.解析:D 【分析】根据复数的模的性质求模,然后可解得a . 【详解】解:()()()()24242422221212501111i i i i aai ai++++====+--,解得7a =. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R =+∈,则z =模的性质:1212z z z z =,(*)nnz z n N =∈,1122z z z z =. 15.A 【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果. 【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.二、多选题16.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】12z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.18.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解. 【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=22w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-1=2w ∴===-.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.19.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.20.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.21.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 22.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于23.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围24.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确;对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 332z i ππ=+=+,则12z =,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.25.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-; 因为2422,2z i z =-=-,所以()5052020410102zz ==-,2211z z i i i z +=-++=-=.故选:ACD .本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.26.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 27.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.28.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 29.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模30.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.。
复数练习题含答案

复数练习题含答案一、单选题1.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( )A .15-B .15C .1i 5-D .1i 52.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆. 3.复数(2i 的虚部为( ) A .2 B.C.2-D .04.复数 21(1)i 1z a a =+--是实数,则实数a 的值为( ) A .1或-1 B .1 C .-1D .0或-15.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i +B .24i -C .33i +D .24i +6.下列命题正确的是( )①若复数z 满足2z ∈R ,则z R ∈; ②若复数z 满足i R z∈,则z 是纯虚数;③若复数12,z z 满足12=z z ,则12=±z z ; ④若复数12,z z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .①③7.设i为虚数单位,则)10i 的展开式中含2x 的项为( )A .6210C x - B .6210C x C .8210C x -D .8210C x8.已知m 为实数,则“1m =”是“复数()211i z m m =-++为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.若复数z 在复平面内对应的点为(1,1),则其共轭复数z 的虚部是( ) A .iB .i -C .1D .1-11.在复平面内O 为坐标原点,复数()1i 43i z =-+,27i z =+对应的点分别为12,Z Z ,则12Z OZ ∠的大小为( )A .3π B .23π C .34π D .56π12.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限13.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件14.若复数4i1iz =-,则复数z 的模等于( ) AB .2C .D .415.已知复数z 满足(34i)5(1i)z +⋅=-,则z 的虚部是( ) A .15-B .75-C .1i 5-D .7i 5-16.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件17.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件18.若复数z 对应的点在直线y =2x 上,且|z |z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i19.已知复数324i 1iz +=-,则z =( )ABC.D.20.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( )A .-2B .-1C .1D .2二、填空题21.复数121i,22i z z =+=-,则12_________.z z -=22.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12z z =_______. 23.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________24.已知复数2z =+i ,其中i 为虚数单位,那么复数()2z ·z 所对应的复平面内的点在第________象限25.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 26.复数2i z a =+,a ∈R ,若13i i+-z为实数,则=a ________. 27.若()1i 1i z +=-,则z =_______ 28.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 29.已知复数i 3i z =+(i 为虚数单位),则z =__________.30.若复数2(1i)34iz +=+,则z =__________.31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.32.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 33.计算cos 40isin 40cos10isin10________.34.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.35.方程()()2223256i 0x x x x --+-+=的实数解x =________.36.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________. 37.已知z =22022z z z ++⋅⋅⋅+=___________. 38.若a ∈R ,且i2ia ++是纯虚数,则a =____. 39.若i 是虚数单位,则复数310i3i =-________.(写成最简结果) 40.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________. 三、解答题41.已知关于x 的方程2(4i)4(1)i 0()x x a a --+-+=∈R 有实数根. (1)求实数a 的值;(2)设2i z a =+,求223z z -+的值.42.已知复数13i z m =-,212i()z m R =+∈. (1)若12z z 是实数,求m 的值;(2)若复数12zz 在复平面内对应的点在第三象限,且15z ≥,求实数m 的取值范围.43.已知复数()()()22232i R z m m m m m =--++-∈,. (1)若0z >,求m 的值; (2)若z 是纯虚数,求z z ⋅的值.44.在复数集C 内方程610x -=有六个根分别为123456ωωωωωω,,,,, (1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A ,B ,C ,D ,E ,F ;求多边形ABCDEF 的面积 .45.(1)设复数z 满足24(1i)(12i)z --=-,求复数z ; (2)若复数z 满足(2i)(1i)1z z ⋅+=⋅-+,求复数z ;(3)已知复数()2256215i m m m m +++--z=,当实数m 为何值时,复数z 对应的点Z 在第四象限.【参考答案】一、单选题1.A 2.D 3.C 4.C 5.A 6.B 7.A 8.C 9.D 10.D 11.C 12.D 13.A 14.C 15.B 16.A 17.B 18.D 19.B 20.A 二、填空题2122.12i -##2i+1-23.12或12##12-或12 24.四 25.四 26.3- 27.i28.2930.825i 625-31.i -32.-1+2i##2i -13312i34 35.2 36.③ 37.0 38.12-##0.5- 39.13i +##3i 1+ 40.9 三、解答题41.(1)1a = (2)2- 【解析】 【分析】(1)由已知,方程2(4i)4(1)i 0()x x a a --+-+=∈R 有实数解,可列出关于x 和a 方程组,解方程即可完成求解;(2)将第(1)问计算出的a 带入2i z a =+中,然后直接计算223z z -+即可. (1)由2(4i)4(1)i 0x x a --+-+=,整理得()244(1)i 0x x x a -++--=,则244010x x x a ⎧-+=⎨--=⎩,解得21x a =⎧⎨=⎩. 所以实数a 的值为1. (2)由(1)可得12z i =+.223z z -+2(12i)2(12i)3=+-++34i 24i 3=-+--+2=-.42.(1)32m =- (2)46m ≤< 【解析】 【分析】(1)由复数的除法法则化简后根据复数的定义计算;(2)由对应点所在象限求得参数范围,再由模求得参数范围,两者结合可得.(1)123i (3i)(12i)6(23)i 12i (12i)(12i)5z m m m m z -----+===++-,它是实数,则(23)0m -+=,32m =-; (2)由(1)12z z 对应点坐标为623(,)55m m -+-,它在第三象限, 则6052305m m -⎧<⎪⎪⎨+⎪-<⎪⎩,解得362m -<<,又15z =,4m ≤-或4m ≥, 综上,46m ≤<. 43.(1)2m =- (2)4或100 【解析】 【分析】(1)根据复数0z >,可知z 为实数,列出方程,解得答案;(2)根据z 是纯虚数,列出相应的方程或不等式,再结合共轭复数的概念以及复数的乘法运算,求得答案. (1)因为0z >,所以R z ∈,所以220m m +-=,所以2m =-或1m =. ①当2m =-时,50z =>,符合题意; ②当1m =时,40z =-<,舍去. 综上可知:2m =-. (2)因为z 是纯虚数,所以2223020m m m m ⎧--=⎨+-≠⎩,所以1m =-或3m =,所以2i z =-,或10i z =,所以2i 2i 4z z ⋅=-⨯=或10i (10i)100z z ⋅=⨯-=, 所以4z z ⋅=或100. 44.(1)12345611111,1,2222ωωωωωω==-=-=-=+=-【解析】 【分析】(1)原式可因式分解为22(1)(1)(1)(1)0x x x x x x -+++-+=,令21=0x x ++,设i,,x a b a b R =+∈可求解出21=0x x ++的两个虚根,同理可求解21=0x x -+的两个虚根,即得解;(2)六个点构成的图形为正六边形,边长为1,计算即可 (1)由题意,610x -=22(1)(1)(1)(1)0x x x x x x ∴-+++-+=当21=0x x ++时,设i,,x a b a b R =+∈故222(i)i 1=+1(2)i=0a b a b a b a ab b ++++-+++, 所以22+1=2=0a b a ab b -++ 解得:13,22a b =-=±,即13i 22x =-± 当21=0x x -+时,设i,,x c d c d R =+∈ 故222(i)i 1=1(2)i=0c d c d c d c cd d +--+--++- 所以221=2=0c d c cd d --+- 解得:13,22c d ==±,即13i 22x =±故:123456131313131,1,i,i,i,i 22222222ωωωωωω==-=-+=--=+=- (2)六个根对应的点分别为A ,B ,C ,D ,E ,F , 其中13131313(1,0),(1,0),(,),(,),(,),(,)22222222A B C D E F ----- 在复平面中描出这六个点如图所示:六个点构成的图形为正六边形,边长为1故261S ==45.(1)2;(2)21i 3z =-;(3)25m -<<. 【解析】 【分析】(1)根据复数的四则运算及复数的摸公式即可求解;(2)利用复数的四则运算、两个复数相等及共轭复数即可求解;(3)复数的几何意义得出点Z 的坐标,再根据点在第四象限的特点即可求解. 【详解】(1)()()()()242i 42i 12i 4(1i)10i2i 12i 12i 12i 12i 5z +++--=====---+,∴2z =(2)设i z a b =+()R a ∈、b ,则()()()i 2i i (1i)1a b a b +⋅+=-⋅-+, 化简得(2)(2)i (1)()i a b a b a b a b -++=-+-+,根据对应相等得:212a b a b a b a b-=-+⎧⎨+=--⎩,解得1a =,23b =-,所以21i 3z =-.(3)由()2256215i m m m m +++--z=,得()2256,215m m m m ++--Z ,因为Z 对应的点在第四象限,所以225602150m m m m ⎧++>⎨--<⎩,解得:25m -<<,故而当25m -<<时,复数Z 对应的点在第四象限.。
复数练习题(有答案)

复数练习题(有答案)1.复数选择题1.若复数 $z=1+i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1-i$。
答案:C2.若复数 $z=1-i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1+i$。
答案:D3.在复平面内,复数 $z=3+4i$ 对应的点的坐标为()解析:$z$ 对应的点的坐标为 $(3,4)$。
答案:A4.已知复数 $z=\frac{1}{1+i}$,则 $z$ 的共轭复数为()解析:$\bar{z}=\frac{1}{1-i}=\frac{1+i}{2}$。
答案:B5.已知复数 $z=\frac{3-2i}{5}$,则 $z$ 的虚部是()解析:$z$ 的虚部为$\operatorname{Im}(z)=\frac{-2}{5}$。
答案:C6.已知复数 $z$ 满足 $z(1+i)=1-i$,则复数 $z$ 对应的点在直线 $y=-\frac{1}{2}x$ 上。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=\frac{-1}{2}+\frac{1}{2}i$,对应的点在直线 $y=-\frac{1}{2}x$ 上。
答案:A7.已知复数 $z$ 满足 $z^2=2i$,则 $z\cdot\bar{z}$ 的值为$4$。
解析:$z\cdot\bar{z}=|z|^2=2$,$z^2\cdot\bar{z}^2=(2i)(-2i)=-4$,因此 $z\cdot\bar{z}=\sqrt{-4}=2i$,$|z\cdot\bar{z}|=2$,所以 $z\cdot\bar{z}=4$。
答案:B8.已知复数 $z$ 满足 $z(1-i)=2i$,则在复平面内 $z$ 对应的点位于第二象限。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=-\frac{2}{2i}-i=-1-i$,对应的点在第二象限。
答案:B9.满足 $i^3\cdot z=1-3i$ 的复数 $z$ 的共轭复数是 $3+i$。
高考数学《复数》真题练习含答案

高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。
复数练习题(有答案)

复数练习题(有答案)一、单选题1.已知12z i =-,则(i)z z -的模长为( )A .4BC .2D .10 2.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)-B .(1,2)C .(2,1)-D .(1,2)--3.已知复数z 满足()2i 32i +=+z 则||z =( )AB C D 4.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆. 5.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .AB C =B .A B =C .()S A B ⋂=∅D .SSABC6.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2- B .1- C .1 D .2 7.2243i 4i a a a a --=+,则实数a 的值为( )A .1B .1或4-C .4-D .0或4-8.若复数()()2i ,z a b a b =+-∈R ,在复平面内对应的点在直线20x y --=上,则a b -=( )A .4-B .0C .2D .4 9.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( ) A .一 B .二 C .三 D .四 10.复数2i z =-(i 为虚数单位)的虚部为( )A .2B .1C .iD .1-11.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1B .1-C .iD .i -12.已知复数z 满足()21i 68i z -=+,其中i 为虚数单位,则z =( )A.10B .5CD .13.已知复数()()31i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ). A .()3,1- B .()1,3- C .()1,+∞ D .(),3-∞14.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限15.若复数z 满足1i 1i 2z +=+,则z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限16.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件17.已知复数z 满足(2i)43i z +=-(i 为虚数单位),则z =( )A .2+iB .2-iC .1+2iD .1-2i18.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3C .D .919.若复数z 对应的点在直线y =2x 上,且|z |z =( )A .1+2iB .-1-2iC .±1±2iD .1+2i 或-1-2i20.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( )A .1B .15C .3D .16 二、填空题21.若复数2(1i)34iz +=+,则z =__________.22.已知复数z 满足24(1i)(12i)z --=-,则||z =________.23.设i 为虚数单位,若复数(1i)(i)a -+的实部与虚部相等,其中a 是实数,则|1i |-+=a ________.24.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________. 25.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 26.已知复数20202023i i z =+(i 为虚数单位),则z 在复平面内对应的点位于第________象限.27.已知复数2z =+i ,其中i 为虚数单位,那么复数()2z ·z 所对应的复平面内的点在第________象限28.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 29.设复数i 12z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为________.30.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________.31.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________.32.已知复数z =(,a b ∈R 且0,0a b ≠≠)的模等于1,则12b a b++的最小值为______.33.若存在复数z 同时满足i 1z -=,33i z t -+=,则实数t 的取值范围是_______.34.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 35.若2z =,arg 3z π=,则复数z =________.36.将复数1+i 对应的向量顺时针旋转45°,则所得向量对应的复数为________.37i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.38.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________ 39.i 是虚数单位,则1i1i+-的值为__________. 40.写出一个在复平面内对应的点在第二象限的复数z =__________. 三、解答题41.在复平面内,复数()2(1)2i z m m m =-+--表示的点Z ,求出满足下列条件的复数z .(1)若点Z 在虚轴上,求复数z 的共轭复数z ; (2)若点Z 在直线2y x =上,求复数z 的模z .42.已知复平面内的点A ,B 对应的复数分别是21sin i z θ=+,22cos icos2z θθ=-+,其中()0,θπ∈.设AB 对应的复数是z .(1)求复数z ;(2)若复数z 对应的点P 在直线12y x =,求θ的值. 43.(1)设复数z 满足24(1i)(12i)z --=-,求复数z ; (2)若复数z 满足(2i)(1i)1z z ⋅+=⋅-+,求复数z ;(3)已知复数()2256215i m m m m +++--z=,当实数m 为何值时,复数z 对应的点Z 在第四象限.44.已知复数()()222343i z m m m m =--+-+(m R ∈)在复平面上对应的点为Z ,求实数m 取什么值时,点Z : (1)在实轴上; (2)在虚轴上; (3)在第一象限. 45.求数列{}n a :112n n na a a ++=-的周期.【参考答案】一、单选题 1.B 2.D 3.A 4.D 5.D 6.B 7.C 8.B 9.B 10.D 11.B 12.B13.A 14.D 15.D 16.A 17.B 18.C 19.D 20.B 二、填空题 21.825i 625- 22.223 24.25.1 26.四 27.四 2829.()34-,30.9 31.2i -+ 32.7 33.[]4,634.-1+2i##2i -1 35.11+ 3637.1-+1- 38.()0,3 39.140.1i -+(答案不唯一) 三、解答题41.(1)2i ;【解析】 【分析】(1)求出m 的值即得解;(2)根据点Z 在直线2y x =上,求出m 的值即得解. (1)解:因为点Z 在虚轴上,所以10,1m m -=∴=. 所以2i z =-,所以复数z 的共轭复数2i z =. (2)解:因为点Z 在直线2y x =上,所以222(1)m m m --=-, 解之得0m =或3m =. 所以12i z =--或24z i =+,所以复数z 的模z 42.(1)()2112sin i z θ=-+-(2)6πθ=或56πθ=【解析】 【分析】根据复数的几何意义即可求解. (1)因为点A ,B 对应的复数分别是21sin i z θ=+,22cos icos2z θθ=-+,所以点A ,B 的坐标分别是()2sin ,1A θ,()2cos ,cos2B θθ-,所以()()()()22222cos ,cos 2sin ,1cos sin cos 211,2sin AB θθθθθ,θθ=--=---=--所以()2112sin i z θ=-+-.(2)由(1)知点P 的坐标是()21,2sin θ--,代入12y x =,得212sin 2θ-=-,即21sin 4θ=,所以1sin 2θ=±,又因为()0,θπ∈,所以1sin 2θ=, 所以6πθ=或56πθ=. 43.(1)2;(2)21i 3z =-;(3)25m -<<.【解析】 【分析】(1)根据复数的四则运算及复数的摸公式即可求解;(2)利用复数的四则运算、两个复数相等及共轭复数即可求解;(3)复数的几何意义得出点Z 的坐标,再根据点在第四象限的特点即可求解. 【详解】(1)()()()()242i 42i 12i 4(1i)10i2i 12i 12i 12i 12i 5z +++--=====---+,∴2z =(2)设i z a b =+()R a ∈、b ,则()()()i 2i i (1i)1a b a b +⋅+=-⋅-+, 化简得(2)(2)i (1)()i a b a b a b a b -++=-+-+,根据对应相等得:212a b a b a b a b-=-+⎧⎨+=--⎩,解得1a =,23b =-,所以21i 3z =-.(3)由()2256215i m m m m +++--z=,得()2256,215m m m m ++--Z ,因为Z 对应的点在第四象限,所以225602150m m m m ⎧++>⎨--<⎩,解得:25m -<<,故而当25m -<<时,复数Z 对应的点在第四象限. 44.(1)1m =或3m = (2)1m =-或3m = (3)1m <-或3m > 【解析】 【分析】(1)由题意可得2430m m -+=,从而可求出m 的值, (2)由题意可得2230m m --=,从而可求出m 的值,(3)由题意可得22230430m m m m ⎧-->⎨-+>⎩,解不等式组可求得结果(1)点Z 在实轴上,即复数z 为实数,由2430m m -+=得1m =或3m =, ∴当1m =或3m =时,点Z 在实轴上; (2)点Z 在虚轴上,即复数z 为纯虚数或0,由2230m m --=得1m =-或3m =,∴当1m =-或3m =时,点Z 在虚轴上; (3)点Z 在第一象限,即复数z 的实部虚部均大于0,由22230430m m m m ⎧-->⎨-+>⎩,即1313m m m m ⎧-⎪⎨⎪⎩或或,解得1m <-或3m >,∴当1m <-或3m >时,点Z 在第一象限. 45.周期为6. 【解析】 【分析】根据通项公式,写出特征方程为210x x -+=,由方程根的情况求出数列{}n a 的周期. 【详解】 因为112n n na a a ++=-,所以特征方程为210x x -+=, 因为Δ14130=-⨯=-<,解得:m k == 所以2arg 36a mc a kc ππ-⎛⎫==⎪-⎝⎭, 所以函数()f x 的迭代周期为6T =. 所以数列{}n a 有周期6T =,。
复数练习题(有答案)

复数练习题(有答案)1.复数选择题1.若复数 $z=\frac{1}{1-i}$,则 $z$ 的共轭复数为()。
A。
$\frac{1+i}{2}$ B。
$\frac{1-i}{2}$ C。
$\frac{-1+i}{2}$ D。
$\frac{-1-i}{2}$2.已知复数 $z=\frac{11+22i}{1-i(m-m^2i)}$ 为纯虚数,则实数 $m=$()。
A。
$1$ B。
$-1$ C。
$i$ D。
$-i$3.若复数 $z=(2+i)i$(其中 $i$ 为虚数单位),则复数$z$ 的模为()。
A。
$5$4.复数 $z=\frac{3i}{5-2i}$ 的虚部是()。
A。
$\frac{15}{29}$ B。
$\frac{3}{29}$ C。
$-\frac{3}{29}$ D。
$-\frac{15}{29}$5.已知 $2i+1=z\cdot5\left(5-\frac{1}{z}\right)$,则$z=$()。
A。
$1$ B。
$3$ C。
$2$ D。
$-2$6.复数 $z$ 满足 $i\cdot z=1-2i$,$z$ 是 $z$ 的共轭复数,则 $z\cdot z=$()。
A。
$5$ B。
$-5$ C。
$5i$ D。
$-5i$7.已知 $i$ 是虚数单位,则复数 $\frac{4i}{1+i}$ 在复平面内对应的点在()。
A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限8.已知 $i$ 为虚数单位,若复数 $z=5+3i$,则$\frac{z}{i}=$()。
A。
$-3+5i$ B。
$5-3i$ C。
$-5+3i$ D。
$3+5i$9.若复数 $z=\frac{a+i}{1-i}$,$a\in R$,为纯虚数,则$z+a=$()。
A。
$1+2i$ B。
$2i-1$ C。
$2+2i$ D。
$-2i+1$10.已知复数 $z$ 满足 $\frac{z}{2+i}=2-i$,则复数 $z$ 在复平面内对应的点在()。
复数练习题(有答案)

复数练习题(有答案)一、单选题1.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( )A .(1,2)-B .(1,2)C .(2,1)-D .(1,2)--3.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .AB C =B .A B =C .()S A B ⋂=∅D .SSABC4.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i + B .24i - C .33i + D .24i + 5.已知x ,R y ∈,i 为虚数单位,且()2i 2y y x ++=-,则x y +的值为( ) A .1 B .2 C .3 D .4 6.复数3i(43i )-在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限7.下列命题正确的是( )①若复数z 满足2z ∈R ,则z R ∈; ②若复数z 满足i R z∈,则z 是纯虚数;③若复数12,z z 满足12=z z ,则12=±z z ; ④若复数12,z z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .①③8.下列命题:①若i 0a b +=,则0a b ;②i 22i 2x y x y +=+⇔==;③若y R ∈,且()()211i 0y y ---=,则1y =.其中正确命题的个数为( )A .0个B .1个C .2个D .3个 9.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( )A .2-B .2C .i -D .1-10.若复数()()2i ,z a b a b =+-∈R ,在复平面内对应的点在直线20x y --=上,则a b -=( )A .4-B .0C .2D .411.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3C .D .912.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( )A .-2B .-1C .1D .213.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i --B .22i +C .22i -+D .22i +或22i -+14.已知复数z 满足()1i 2i z -=(其中i 为虚数单位),则z =( ) AB.2C .12D .215.2021i 1i-=( )A .11i 22+ B .11i 22-- C .11i 22-+ D .11i 22-16.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限17.已知34i z =+,则()i z z -=( ) A .1117i + B .1917i + C .1117i - D .1923i +18.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 19.设向量OP ,PQ ,OQ 对应的复数分别为z 1,z 2,z 3,那么( )A .z 1+z 2+z 3=0B .z 1-z 2-z 3=0C .z 1-z 2+z 3=0D .z 1+z 2-z 3=020.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i -- B .2i -+ C .2i - D .2i +二、填空题21.若z 1=a +2i ,z 2=3-4i ,且12z z 为纯虚数,则实数a 的值为________.22.设i 为虚数单位,若复数(1i)(i)a -+的实部与虚部相等,其中a 是实数,则|1i |-+=a ________.23.已知复数zi =,i 为虚数单位,则z =______ 24.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________ 25.复数2i z a =+,a ∈R ,若13i i+-z 为实数,则=a ________.26.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________.27.已知复数()()211i z a a =-+-()a R ∈是纯虚数,则=a ___________.28.已知复数z 为纯虚数且满足1-3z =|z |+3i ,则z =________29.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12zz=_______. 30.若存在复数z 同时满足i 1z -=,33i z t -+=,则实数t 的取值范围是_______.31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.32.已知23iz-=-i ,则复数z =________. 33.若2z =,arg 3z π=,则复数z =________.34.已知4cosisin1212z ππ⎛⎫=+ ⎪⎝⎭,则1z 的辐角主值为________. 35.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.36.已知复数21ii z +=,则z =______. 37.设复数20211i 1iz -=-(i 为虚数单位),则z 的虚部是_______.38.计算:112i2i-=+___________. 39.设i是虚数单位,复数z =,则z =___________. 40.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________. 三、解答题41.已知复数z满足||z =z 2的虚部为2. (1)求复数z ;(2)设22,,z z z z -在复平面上的对应点分别为A 、B 、C ,求△ABC 的面积.42.在复平面内,若复数()()22232i z m m m m -+-=-+对应的点满足下列条件.分别求实数m 的取值范围. (1)在虚轴上; (2)在第二象限; (3)在直线y =x 上.43.如图,向量OZ 与复数1i -+对应,把OZ 按逆时针方向旋转120°,得到OZ .求向量OZ '对应的复数(用代数形式表示).44.已知1z ,2z ∈C ,13z 22z 1222z z +=12z z -. 45.计算:(1)8cos isin 2cos isin 6644ππππ⎛⎫⎛⎫+⋅+ ⎪ ⎪⎝⎭⎝⎭;))32cos 240isin 240cos 60isin 60⎡⎤︒-︒÷︒+︒⎢⎥⎣⎦.【参考答案】一、单选题 1.D 2.D 3.D 4.A 5.B 6.B 7.B 8.B 9.D10.B 11.C 12.A 13.D 14.A 15.C 16.D 17.B 18.A 19.D 20.B 二、填空题 21.832223.124.12或12##12-或12 25.3- 26.9 27.1- 28.i29.12i -##2i+1- 30.[]4,6 31.i - 32.3+2i33.11+ 34.2312π35 3637.038.43i -##3i 4-+39.40.1##1+三、解答题41.(1)1i z =+或1i z =-- (2)1 【解析】 【分析】(1)设()i ,R z x y x y =+∈,根据已知条件列方程求得,x y ,由此求得z . (2)求得,,A B C 的坐标,从而求得三角形ABC 的面积. (1)设()i ,R z x y x y =+∈,222x y +=①,2222i z x y xy =-+的虚部为2,所以22,1xy xy ==②,由①②解得11x y =⎧⎨=⎩或11y x =-⎧⎨=-⎩. 所以1i z =+或1i z =--. (2)当1i z =+时,22i z =,21i z z -=-, 所以()()()1,1,0,2,1,1A B C -,2AC =,所以三角形ABC 的面积为11212⨯⨯=. 当1i z =--时,22i z =,213i z z -=--, 所以()()()1,1,0,2,1,3A B C ----,2AC =,所以三角形ABC 的面积为12112⨯⨯=.42.(1)m =2或m =-1; (2)-1<m <1; (3)m =2. 【解析】 【分析】(1)由题可得220m m --=,即求;(2)由题可知2220320m m m m ⎧--<⎨-+>⎩,进而即得;(3)由题可得222=32m m m m --+-,即得.(1)∵复数()()22232i z m m m m -+-=-+对应的点为()222,32m m m m ---+,由题意得220m m --=, 解得m =2或m =-1. (2)由题意得2220320m m m m ⎧--<⎨-+>⎩∴1212m m m -<<⎧⎨⎩或,∴-1<m <1. (3)由题得222=32m m m m --+-, ∴m =2. 43.1313i 22-+- 【解析】 【分析】复数的旋转用相应的三角函数公式即可. 【详解】如上图,将Z 逆时针旋转到'Z ,即是向量'OZ 对应的复数:()()()1313131i cos120isin1201i 2︒︒⎛⎫-+-++=-+-= ⎪ ⎪⎝⎭, 1313-+. 442 【解析】 【分析】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=,利用余弦定理可得6cos 4OAC ∠=-,再利用余弦定理即可得出答案. 【详解】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=, 则222(22)(2)(3)23OAC =+-∠, 解得6cos OAC ∠= ∴6cos AOB ∠=2212(2)(3)223cos 2z z BA AOB ∴-==+-⨯⨯∠.45.(1)(462462i +; 62i 【解析】 【分析】利用三角函数诱导公式以及特殊角的三角函数值代入化简两式,然后利用复数乘除法运算法则计算即可. (1)31228cos isin 2cos isin 16i 462462i 66442ππππ⎫⎛⎫⎛⎫+⋅+==+⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭(2))))3332cos 240isin 240cos 60isin 602cos 60isin 60i 4⎡⎤⎫︒-︒÷︒+︒=-︒+︒÷⎪⎢⎥⎪⎣⎦⎝⎭()()26i 33i 26332226i 6i 2i 2433i 33i 33i -⎛⎫⎫-+=÷== ⎪⎪ ⎪⎪++-⎝⎭⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《复数》练习题
一.基本知识:复数的基本概念
(1)形如a + b i的数叫做复数(其中);复数的单位为i,它的平方等于-1,即.其中a叫做复数的实部,b叫做虚部
实数:当b = 0时复数a + b i为实数
虚数:当时的复数a + b i为虚数;
纯虚数:当a = 0且时的复数a + b i为纯虚数
(2)两个复数相等的定义:
(3)共轭复数:的共轭记作;
(4)复平面:,对应点坐标为;(象限的复习)
(5)复数的模:对于复数,把叫做复数z的模;
二.复数的基本运算:设,
(1)加法:;
(2)减法:;
(3)乘法:特别。
(4)幂运算:
三.复数的化简
(是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:
四.例题分析
【例1】已知,求
(1)当为何值时z为实数(2)当为何值时z为纯虚数
(3)当为何值时z为虚数(4)当满足什么条件时z对应的点在复平面内的第二象限。
【变式1】若复数为纯虚数,则实数的值为
A. B. C D.或
【例2】已知;,求当为何值时
【例3】已知,求,;
【变式1】复数z满足,则求z的共轭
【变式2】已知复数,则=
A. B.
【例4】已知,
(1)求的值;(2)求的值;(3)求.
【变式1】已知复数z满足,求z的模.
【变式2】若复数是纯虚数,求复数的模.
【例5】若复数(i为虚数单位),
(1)若z为实数,求的值
(2)当z为纯虚,求的值.
【变式1】设是实数,且是实数,求的值..
【变式2】若是实数,则实数的值是 .
【变式3】是虚数单位,等于 ( )
A.i B.-i C.1 D.-1
【变式4】已知=2+i,则复数z=()
(A)-1+3i (B)1-3i (C)3+i (D)3-i
【变式5】i是虚数单位,若,则乘积的值是
(A)-15 (B)-3 (C)3 (D)15
【例6】复数= ()
(A)(B)(C)(D)
【变式1】已知是虚数单位,()
ABCD.
【变式2】.已知是虚数单位,复数= ()
A B C D
【变式3】已知i是虚数单位,复数()
(A)1+i (B)5+5i (C)-5-5i (D)-1-i
【变式4】.已知是虚数单位,则()
(A) (B)1 (C) (D)
练习题
1.设复数,则为纯虚数的必要不充分条件是____________。
2.已知复数,那么当a=_______时,z是实数;当a__________________时,z是虚数;当a=___________时,z是纯虚数。
3.已知,则实数
4.若复数a满足,则复数a=___________。
5.已知,则复数必位于复平面的第_____象限。
6.复数在复平面对应的点在第_______象限。
7.设是虚数单位,计算________.
8.复数的共轭复数是__________。
9. 如果复数是实数,则实数____________.
10. 设为实数,且,则。
11.已知复数,求实数使
答案: 1. a=0 2. 3.
+2i 5. 第四 6. 第二 8. +m3=0,m=-1 10. x+y=4。
11. 【答案】。