31图形的平移3
第01讲 图形的平移(知识解读+达标检测)(原卷版)

第01讲图形的平移【题型1生活中的平移现象】【题型2图形的平移】【题型3利用平移的性质求面积】【题型4利用平移的性质求长度】【题型5利用平移的性质求角度】【题型6利用平移解决实际问题】【题型7平移作图】考点:平移1.定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移。
2.平移三要素:图形的原来位置、平移的方向、平移的距离。
3.平移的性质(1)对应点的连线平行(或共线)且相等(2)对应线段平行(或共线)且相等;(3)对应角相等,对应角两边分别平行,且方向一致。
4.平移作图的步骤和方法:平行线法、对应点连线法、全等图形法(1)找关键点;(2)过每个关键点作平移方向的平行线,截取与之相等的距离,标出对应点(3)连接对应点。
将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形【题型1生活中的平移现象】【典例1】(2023秋•道里区校级期中)在下列实例中,属于平移过程的有()①时针运行的过程;②电梯上升的过程;③地球自转的过程;④小汽车在平直的公路行驶.A.1个B.2个C.3个D.4个【变式1-1】(2023春•林州市期末)下列运动属于平移的是()A.荡秋千的小朋友B.转动的电风扇叶片C.正在上升的电梯D.行驶的自行车后轮【变式1-2】(2023春•富川县期末)一个图形,经过平移后,改变的是()A.颜色B.形状C.大小D.位置【变式1-3】(2023春•呼伦贝尔期末)在下列现象中,属于平移的是()A.小亮荡秋千运动B.升降电梯由一楼升到八楼C.时针的运行过程D.卫星绕地球运动【题型2图形的平移】【典例2】(2023春•罗山县期末)如图所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【变式2-1】(2023春•启东市期末)“水是生命之源,滋润着世间万物”国家节水标志由水滴,手掌和地球变形而成.寓意:像对待掌上明珠一样,珍惜每一滴水!以下通过平移节水标志得到的图形是()A.B.C.D.【变式2-2】(2023春•扎赉特旗期末)如图,将图中的冰墩墩通过平移可得到图为()A.B.C.D.【变式2-3】(2023春•琼海期末)如图所示的各组图形中,表示平移关系的是()A.B.C.D.【题型3利用平移的性质求面积】【典例3】(2023春•惠城区校级期中)如图,长为50m,宽为30m的长方形地块上,有纵横交错的几条小路,宽均为1m,其它部分均种植草坪,则种植草坪的面积为()A.1344m2B.1421m2C.1431m2D.1341m2【变式3-1】(2023春•凉山州期末)如图在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A.70m2B.60m2C.48m2D.18m2【变式3-2】(2023春•南陵县期末)如图,小红家楼梯长3m,高2m,宽1m,若想铺上地毯,则所需地毯的面积()A.2m2B.3m2C.5m2D.6m2【变式3-3】(2023秋•滨州期中)如图,将Rt△ABC沿着点B到点C的方向平移到△DEF 的位置,平移距离为7,AB=13,DO=6,则图中阴影部分的面积为()A.70B.48C.84D.96【题型4利用平移的性质求长度】【典例4】(2022秋•芝罘区期末)如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.22cm C.20cm D.24cm【变式4-1】(2022秋•桓台县期末)如图,△ABC沿射线BC方向平移到△DEF(点E在线段BC上).若BF=10cm,EC=4cm,则平移距离为()A.3cm B.4cm C.6cm D.10cm【变式4-2】(2023春•南山区期末)如图,将直角△ABC沿边AC的方向平移到△DEF的位置,连结BE,若CD=6,AF=14,则BE的长为()A.4B.6C.8D.12【变式4-3】(2023春•唐县期末)如图,直角三角形ABC的周长为22,在其内部有5个小直角三角形,这5个小直角三角形都有一条边与BC平行,则这5个小直角三角形的周长为()A.11B.22C.33D.44【题型5利用平移的性质求角度】【典例5】(2023春•霸州市期末)如图,点B,C在直线l上,直线l外有一点A,连接AB,AC,∠BAC=45°,∠ACB是钝角,将三角形ABC沿着直线l向右平移得到三角形A1B1C1,连接AB1,在平移过程中,当∠AB1A1=2∠CAB1时,∠CAB1的度数是()A.15°B.30°C.15°或45°D.30°或45°【变式5-1】(2023春•丰满区期末)将△ABC沿AB方向平移到△EFD的位置,若∠1=31°,∠2=57°,则∠D的度数为()A.91°B.90°C.92°D.105°【变式5-2】(2023春•凤翔县期中)如图,∠1=70°,∠2=160°直线a平移后得到直线b,则∠3=()A.20°B.30°C.40°D.50°【变式5-3】(2023春•遂川县期末)如图(1),将一副直角三角板两斜边摆放在同一直线上,且点A,D重合,固定含45°角的三角板ABC,将含角的三角板DEF从图(1)的位置,沿射线BA平移至图(2)的位置,则平移过程中,根据两个三角板的摆放位置,下列钝角:100°,105°,120°,135°,150°,165°,170°,沿三角板的边缘能直接画出的有()A.1个B.2个C.3个D.4个【题型6利用平移解决实际问题】【典例6】(2023春•南宁月考)如图,粗线A→C→B和细线A→D→E→F→G→H→B是公交车从少年宫A到体育馆B的两条行驶路线.(1)比较两条线路的长短:粗线①细线②;(填“>”、“<”或“=”)(2)如果这段路程长4.7千米,小丽坐出租车从体育馆B到少年宫A,假设出租车的收费标准为:起步价为7元,3千米以后每千米1.7元,小丽身上有10元钱,够不够坐出租车从体育馆到少年宫呢?说明理由.【变式6-1】(2022秋•路北区期末)如图,有一块长为20米,宽为10米的长方形土地,现在将三面留出宽都是x米的小路,中间余下的长方形部分做草坪(阴影部分).(1)用含字母x的式子表示:草坪的长a=米,宽b=米;(2)请求出草坪的周长;(3)当小路的宽为1米时,草坪的周长是多少?【变式6-2】(2022春•婺城区校级期中)如图是某一长方形闲置空地,宽为3a米,长为b 米,为了美化环境,准备在这个长方形空地的四个顶点处分别修建一个半径为a米的扇形花圃(阴影部分),然后在花圃内种花,中间修一条长b米,宽a米的甬路,剩余部分种草.(提示:π取3)(1)甬路的面积为平方米;种花的面积为平方米.(2)当a=2,b=10时,请计算该长方形场地上种草的面积.(3)在(2)的条件下,种花的费用为每平方米30元,种草的费用为每平方米20元,甬路的费用为每平方米10元.那么美化这块空地共需要资金多少元?【变式6-3】(2023春•莱州市期末)如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.【题型7平移作图】【典例7】(2022秋•蚌山区期末)已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标.A1;B1;C1;(3)求出△ABC的面积.【变式7-1】(2023秋•崇左期中)如图,在平面直角坐标系中,点A(﹣1,4),B(﹣2,1),C(﹣4,1),将△ABC向右平移3个单位再向下平移2个单位得到△A1B1C1,点A、B、C的对应点分别为点A1、B1、C1.(1)在图上画出△A1B1C1,并写出点A1,B1,C1的坐标;(2)设点P(m,n)为△ABC内一点,经过平移后,请写出点P在△A1B1C1内的对应点P1的坐标.【变式7-2】(2023秋•铜陵期中)如图,在正方形网格中有一个格点三角形ABC(△ABC 的各顶点都在格点上).(1)画出△ABC中AB边上的高CD;(2)将△ABC先向上平移3格,再向右平移4格,画出平移后的△A′B′C′;(3)在图中画出一个锐角格点三角形ABP,使得其面积等于△ABC的面积,并回答满足条件的点P有多少个.【变式7-3】(2023秋•蚌山区期中)如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(3,1),C(0,2),将△ABC先向左平移2个单位,再向上平移3个单位得到△A'B'C'.(1)在图中画出平移后的△A'B'C';(2)求△ABC的面积.一.选择题(共10小题)1.(2023春•高邮市期中)下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.2.(2023秋•长汀县期中)小芳和小明在手工课上各自制作楼梯模型,他们用的材料如图,则()A.一样多B.小明多C.小芳多D.不能确定3.(2022春•当涂县期末)下列生活现象中,属于平移现象的是()A.急刹车时汽车在地面滑行B.足球在草地上跳动C.投影片的文字经投影转换到屏幕上D.钟摆的摆动4.(2023秋•金安区校级月考)将点P(﹣3,2)先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()A.(﹣1,﹣4)B.(﹣1,﹣2)C.(﹣5,﹣4)D.(﹣5,﹣2)5.(2022•陵水县二模)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48B.96C.84D.42 6.(2022•定海区校级模拟)如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为()A.3B.4C.5D.6 7.(2022春•甘井子区校级期末)线段CD是由线段AB平移得到的,点A(3,﹣1)的对应点C的坐标是(﹣2,5),则点B(0,4)的对应点D的坐标是()A.(5,﹣7)B.(4,3)C.(﹣5,10)D.(﹣3,7)8.(2022春•古城区期末)如图,图1与图2中的三角形相比,图2中的三角形发生的变化是()A.向左平移3个单位长度B.向左平移1个单位长度C.向上平移3个单位长度D.向下平移1个单位长度9.(2022春•淮南期末)线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C (2,﹣1),则点B(1,1)的对应点D的坐标为()A.(﹣1,﹣3)B.(5,3)C.(5,﹣3)D.(0,3)10.(2022春•曲靖期末)如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为()A.5050m2B.5000m2C.4900m2D.4998m2二.填空题(共6小题)11.(2021•鞍山)如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为.12.(2022春•兴庆区期末)将点A(﹣2,﹣3)先向右平移3个单位长度再向上平移2个单位长度得到点B,则点B所在象限是第象限.13.(2020春•德州期末)某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为.14.(2022春•清河县期末)如图,把边长为3cm的正方形ABCD先向右平移1cm,再向上平移1cm,得到正方形EFGH,则阴影部分的面积为.15.(2022春•连平县校级期末)如图,长方形ABCD的边AB=6,BC=8,则图中五个小长方形的周长之和为.16.(2023春•康巴什期末)如图,将三角形ABE向右平移1cm得到三角形DCF,如果三角形ABE的周长是10cm,那么四边形ABFD的周长是.三.解答题(共3小题)17.(2022春•饶平县校级月考)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,求买地毯至少需要多少元?18.(2022秋•大祥区期末)如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.19.(2022春•上海期末)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.;(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC=S四边形ABDC?若存在这样一点,(2)在y轴上是否存在一点P,连接PA,PB,使S△P AB求出点P的坐标;若不存在,试说明理由;(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.。
初一平移的定义及三要素知识点

初一平移的定义及三要素知识点一、初一平移的定义平移是指在平面上保持形状不变的情况下,通过将每一个点沿着同一方向移动相同的距离,来改变图形的位置。
在初中数学中,我们学习了平移的概念和相关的知识点。
二、初一平移的三要素平移作为一种几何变换,有三个要素:平移向量、平移前的图形和平移后的图形。
1. 平移向量平移向量是指平移的方向和距离。
在平面上,平移向量通常用箭头来表示,箭头的长度表示平移的距离,箭头的方向表示平移的方向。
例如,如果一个平移向量是向右平移2个单位,那么我们可以用一个向右的箭头表示,箭头的长度为2个单位。
2. 平移前的图形平移前的图形是指进行平移操作前的原始图形。
它可以是任意形状的图形,比如矩形、三角形、多边形等。
在进行平移操作时,我们需要明确平移前的图形是什么样的。
3. 平移后的图形平移后的图形是指经过平移操作后得到的新图形。
它与平移前的图形形状相同,只是位置发生了改变。
平移后的图形与平移前的图形之间的关系是位置上的改变,而形状、大小等方面保持不变。
三、平移的示例和应用平移在日常生活和数学中都有广泛的应用。
以下是一些平移的示例和应用:1. 平面地图平面地图是平移的典型应用之一。
当我们需要将地图上的一个城市或地区平移到另一个位置时,可以使用平移操作来完成。
这样可以保持地图上其他地点的相对位置不变,只改变平移的目标地点的位置。
2. 图像处理在图像处理领域,平移也是一种常见的操作。
通过对图像进行平移,可以实现图像的移动效果。
比如在电影中,我们经常看到图像在屏幕上平移的效果,这就是通过对图像进行平移操作来实现的。
3. 几何证明在几何证明中,平移也是一种常用的工具。
通过将图形进行平移,可以改变图形的位置,从而使得证明过程更加简化和清晰。
平移还可以用来证明一些几何定理和性质,例如平行线的性质、三角形的性质等。
总结:初一平移是指在平面上保持形状不变的情况下,通过将每一个点沿着同一方向移动相同的距离,来改变图形的位置。
三年级的平移知识点

三年级的平移知识点平移是数学中一个重要的概念,尤其在几何学中,它指的是在平面上将一个图形沿着某一方向移动一定距离,而图形的形状和大小保持不变。
对于三年级的学生来说,理解平移的概念和特点,以及如何应用平移来解决实际问题是非常重要的。
首先,让我们从平移的基本定义开始。
平移是一种几何变换,它将一个图形沿着直线方向移动,而不改变图形的形状和大小。
这种移动可以是水平的,也可以是垂直的,甚至是斜向的。
接下来,我们来看平移的三个主要特点:1. 方向性:平移有一个明确的方向,比如向左、向右、向上或向下。
2. 距离性:平移有一个确定的距离,即图形移动的远近。
3. 不变性:在平移过程中,图形的形状和大小不会发生改变。
现在,让我们通过一些例子来更好地理解平移。
假设我们有一个正方形,我们想要将它向右平移3个单位。
在这个过程中,正方形的每个顶点都会沿着水平方向向右移动3个单位,但正方形的形状和大小仍然保持不变。
此外,平移在解决实际问题中也非常有用。
例如,在拼图游戏中,我们可以通过平移来确定各个拼图片的位置;在地图上,我们可以通过平移来确定从一个地点到另一个地点的最短路径。
为了帮助三年级的学生更好地掌握平移,我们可以进行一些实践活动。
比如,让学生用纸片剪出不同的形状,然后让他们尝试将这些形状沿着不同的方向平移,并观察图形的变化。
通过这样的活动,学生可以更直观地理解平移的概念和应用。
最后,为了巩固学生对平移的理解,我们可以设计一些练习题,让学生通过解决实际问题来加深对平移的认识。
例如,可以让学生画出一个图形平移后的图形,或者计算图形平移的距离等。
通过这些教学方法和实践活动,三年级的学生可以逐步建立起对平移概念的深刻理解,并能够灵活地应用平移来解决各种问题。
图形的平移与旋转

解 如图,OA=3,PA=4,
∵线段OP绕点O逆时针旋转90°到OP′位置,
∴OA 旋转到 x 轴负半轴 OA′ 的位置, ∠P′A′O =
∠PAO=90°,OA′=OA=3,P′A′=PA=4,
A.把△ABC向左平移4个单位,再向下平移2个单位
B.把△ABC向右平移4个单位,再向下平移2个单位
C.把△ABC向右平移4个单位,再向上平移2个单位
D.把△ABC向左平移4个单位,再向上平移2个单位
2.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边
形ABFD的周长为( C )
∵PB= 22+32= 13, 90π· 13 13 ∴点 B 运动的最短路径长= 180 = 2 π.
【变式4】 (2017· 盐城)如图,在边长为1的小正方形网格中,将△ABC 13 π 绕某点旋转到△A′B′C′的位置,则点B运动的最短路径长为_______. 2
解
答案
解题要领
旋转变换是几何证明题中一种很重要的解题技巧,在同一平
剖析
正确解答
分析与反思
错误答案展示 解:在AM、MN、NB中,MN是一个定值,因此AM+MN +NB的最小值就是求AM+NB的最小值.如图,连接AB交河岸边为M, 过M作MN垂直于河岸的另一边,则MN为最佳的造桥位置.
剖析
正确解答
分析与反思
剖析 虽然A、B两点在河两侧,但连接AB的线段不垂直于河岸,由于 MN是一个定值,要求出AM+MN+NB最短,关键在于使AM+BN最 短,根据“两点之间线段最短”,为此,最有效的办法还是把它们移 到一起讨论,利用平行四边形的特征可以实现这一目的. 正确解答 解:如图,作BB′垂直于河岸GH,使BB′等于河宽,连接 AB′,与河岸EF交于点M,作MN⊥GH, 则MN∥BB′,MN=BB′, ∵MNBB′为平行四边形,∴NB=MB′. 根据“两点之间线段最短”可知,AB′最短,
专题3 图形的平移-重难点题型(举一反三)(学生版)

专题1.5 图形的平移-重难点题型【知识点1 平移的定义】1.图形的平移必须具备两个要素:平移的方向与平移的距离.其中,平移的方向是平移前图形上的某一点到其对应点所指的方向;平移的距离是平移前图形上的某一点到其对应点之间的距离.2.平移只改变位置,形状与大小都不改变。
【题型1 平移的定义】【例1】(2021春•扬州期末)下列图形中哪一个图形不能由平移得到()A.B.C.D.【变式1-1】(2021春•临西县期末)下列各组图形可以通过平移互相得到的是()A.B.C.D.【变式1-2】(2021春•包河区期末)下列几种运动中属于平移的有()①水平运输带上砖的运动;②笔直的铁路上行驶的动车(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.4种B.3种C.2种D.1种【变式1-3】(2021春•龙岗区期末)在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④温度计中,液柱的上升或下降;⑤钟摆的摆动.属于平移的是()A.①B.①②C.①②③D.①②③④【知识点2 平移的性质】(1)平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等;对应角相等;对应点的连线平行(或共线)且相等;(2)“将一个图形沿某一个方向移动一定的距离”意味着“图形上的每一个点都沿同一方向移动了相同的距离”。
【题型2 利用平移的性质解长度问题】【例2】(2021春•西城区校级期中)如图所示:某公园里有一处长方形风景欣赏区ABCD,AB长50米,BC宽25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小明同学在假期沿着小路的中间行走(图中虚线),则:小明同学所走的路径长约为()米.(小路的宽度忽略不计)A.150米B.125米C.100米D.75米【变式2-1】(2021春•伍家岗区期末)如图是一段台阶的截面图,高BC为5米,直角边AC为12米,现打算在台阶上铺上一整张防滑毯,至少需防滑毯的长为()A.12米B.13米C.17米D.18米【变式2-2】(2021春•含山县期末)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥(图中虚线),若荷塘周长为900m,且桥宽忽略不计,则小桥的总长为m.【变式2-3】(2021春•炎陵县期末)如图,从甲地到乙地有三条路线:①甲→A→D→乙;②甲→B→D→乙;③甲→B→C→乙,在这三条路线中,走哪条路线近?答案是()A.①B.①②C.①③D.①②③【题型3 利用平移的性质解周长问题】【例3】(2021秋•市中区期末)如图,三角形ABC中,AB=2cm,AC=3cm,BC=3.5cm,将三角形ABC沿BC 方向平移2cm,连接AD,则四边形ACFD的周长是.【变式3-1】(2021秋•江夏区期中)如图,将△ABC向右平移acm(a>0)得到△DEF,连接AD,若△ABC的周长是36cm,则四边形ABFD的周长是()A.(36+a)cm B.(72+a)cm C.(36+2a)cm D.(72+2a)cm【变式3-2】(2021春•庐江县期中)如图,将△ABC沿CB向左平移3cm得到△DEF,AB,DF相交于点G,如果△ABC的周长是12cm,那么△ADG与△GBF周长之和为()A.12cm B.15cm C.18cm D.24cm【变式3-3】(2021•宁波模拟)如图,所有角均为直角,所有线段均不相等,若要知道该图形周长,至少需要知道几条线段的长()A.3条B.4条C.5条D.6条【题型4 利用平移的性质解面积问题】【例4】(2021秋•海阳市期末)如图,将Rt△ABC沿着点B到点C的方向平移到△DEF的位置,已知AB=6,HD=2,CF=3,则图中阴影部分的面积为()A.12B.15C.18D.24【变式4-1】(2021春•市中区期末)如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是5,则图中阴影部分的面积为()A.25B.50C.35D.70【变式4-2】(2021春•和平区校级月考)如图,一块形状为长方形ABCD的场地,长AB=98米,宽AD=46米,A、B两处入口E小路宽都为1米,两小路汇合处路口宽2米,其余部分种植草坪,那么草坪的面积为()A.4320平方米B.4410平方米C.4416平方米D.4508平方米【变式4-3】(2021春•洪洞县期末)如图,将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,连接AE,若△ABC的面积为2,则△ACE的面积为()A.2B.4C.8D.16【题型5 利用平移作图】【例5】(2021春•高邮市期中)如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)连接AA′、CC′,那么AA′与CC′的关系是;(3)△ABC的面积是.【变式5-1】(2021春•江都区期中)如图,在方格纸中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点就是小正方形的格点,将△ABC向右平移3个单位长度再向下平移1个单位长度,得到△A′B′C′.(1)在格中画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两段线段的关系是;(3)用直尺作出平移后△A′B′C′高线A′D′;(4)△ABC的面积是.【变式5-2】(2021春•江都区月考)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,将△ABC先向右平移5格,再向上平移2格得△A1B1C1.(1)画出平移后的△A1B1C1;(2)画出△ABC的高BH(借助格点,留下作图痕迹);(3)图中AC与A1C1的关系是;(4)平移中线段AC扫过部分的面积是.【变式5-3】(2021春•兴化市期末)如图,方格纸中每个小正方形的边长都是1,△ABC是格点三角形(三个顶点都在格点上).△ABC经过平移后得到△A'B'C',点B恰好落在点B'处,(1)请画出平移后的△A'B'C';(2)△A'B'C'的面积等于;(3)在线段PQ上是否存在格点M,使得△MA'C'的面积是△MA'B'面积的2倍?若存在,请画出所有这样的格点M1,M2,…,若不存在,请说明理由.【题型6 平移中几何综合问题】【例6】(2021秋•吉林期末)如图,点C、M、N在射线DQ上,点B在射线AP上,且AP∥DQ,∠D=∠ABC =80°,∠1=∠2,AN平分∠DAM.(1)试说明AD∥BC的理由;(2)试求∠CAN的度数;(3)平移线段BC.①试问∠AMD:∠ACD的值是否发生变化?若不会,请求出这个比值;若会,请找出相应变化规律;②若在平移过程中存在某种位置,使得∠AND=∠ACB,试求此时∠ACB的度数.【变式6-1】(2021春•吉林月考)如图,AM∥BN,线段CD的两个端点C,D分别在射线BN,AM上,且∠A=∠BCD=108°,E是线段AD上一点(不与点A、D重合),BD平分∠EBC.(1)求∠ABC的度数;(2)请在图中找出与∠ABC相等的角,并说明理由;(3)若平行移动CD,那么∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.【变式6-2】如图,已知直线AB∥CD,∠A=∠C=100°,E、F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)求∠DBE的度数.(2)若平行移动AD,那么∠BFC:∠BDC的比值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.【变式6-3】(2021春•奉化区校级期末)如图,AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E (不与B,D点重合),∠ADC=70°.设∠BED=n°.(1)若点B在点A的左侧,求∠ABC的度数;(用含n的代数式表示)(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理。
冀教版三年级上册数学教案-3.1 图形的运动(一) 平移 |

三1:图形的运动(一) 平移 (36—37)
课时
1
教
学
目
标
1、结合具体事例,初步感受、认识平移现象的过程。
2、能找出生活中的平移现象,能辨认简单图形平移后的图形。
3、经历平移现象的过程,在对物体平移运动的探索过程中发展初步的空间观念
4、感受数学与日常生活的密切联系,体会数学活动的乐趣。
重点
难点
重点:认识平移现象,能辨认简单图形平移后的图形。
学生按要求完成。
学生发表自己的见解:从书包中拿出书是平移,在桌面上摆书也是平移。
生列举生活中的平移:玩滑梯、滑沙、电梯、拉动窗户的玻璃窗、小孩堆积木等。
生:电梯门的开、关是平移
生:推拉窗的开、关是平移
生:电梯的上、下是平移
生:溜滑梯是平移
生:滑沙是平移
生:上下移动。
生:左右移动。
学生思考后得出:平移就直着的运动,只是位置变了,但没有转动。
在生活中,你看到过哪些平移现象?
师:看来生活中平移现象很常见。
2、认识平移现象
师:那么,这些平移现象是怎样的移动?什么叫平移?你能举例说明吗?
3、师:我们说了那么多的平移现象,请大家闭上眼睛想一想,到底什么是平移?平移现象有什么特点?
4、小结
平移有什么特点?
师:位置变了,但没有转动。
师:你能用我们学到的平移的知识说明我们拿出书本,在桌面上摆放书本是平移吗?
5、辨认简单图形平移后的图形。
师:想一想,我们在方格纸上写字,一个字写五遍,这个过程是不是平移?
教学平移格数问题。
6、组织学生完成37页“小动物怎样才能吃到线表示出来。
交流答案。
三、实践应用。
组织学生在方格纸上画出一个长方形或三角形,并按要求平移。
小学数学冀教版三年级上册《31图形的课件:平移现象》教学课件

平移
这些运动都是平移现象
生活中的平移
生活中的平移
生活中的平移
生活中的平移
1、沿直线运动——位置改变
2、物体本身的大小、方 向不发生变化
两只蝴蝶之间连、一两连只。 小乌龟之间为什么不 能连线呢?
2. 下面的哪些图形可以通过平移相互重合?
两只蝴蝶、两只小乌 龟的方向不同。
把通过平移拼成的 火箭圈起来。
3. 哪个火箭是由 、 、 、 通过平移拼成的?
哪些小鱼通过平移后能与方框 中的小鱼重合。请你圈出来。
①
②
③
④
⑤ ⑥
要准确判断哪些图形可以互相重合,首先依据平 移的特点,使图形沿着一个方向移动,并且移动前后 物体本身的方向不发生改变 请在下面的( )里画“√”。
6.下面的哪些图形通过平移可以互相重合?用线 连起来。
— —
物体的运动是平移的画“ ”,不是的画“ ”。
—
—
—
你能用学具画一排 小汽车吗?画的时 候应该注意什么?
1. 用学具画一排小汽车。
小汽车的大小和 方向不变。
我们在学习美术时, 也能用到平移。
我们在学习美术时, 也能用到平移。
作业:第33页练习七,第4题。
八年级数学上册第四章图形的平移第3课时用坐标表示点在坐标系中的一次平移习题pptx课件鲁教版五四制

【答案】 A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
12. [母题·教材P84做一做]如图,△ ABC 的顶点坐标分别为
A (-2,3), B (-3,0), C (-1,-1).将△ ABC 平移后
得到△ A ' B ' C ',且点 A 的对应点是 A '(2,3),点 B , C
∴ OC =3.∴△ OAB 沿 x 轴向右平移的距离为3.
∴点 D 是由点 A (3,5)向右平移3个单位长度得到的.
∴点 D 的坐标为(6,5).
1
2
3
4
5பைடு நூலகம்
6
7
8
9
10
11
12
13
14
练点2 上下平移的点的坐标变化规律
5. 若把点 M ( a , b )的纵坐标加上2,则点 M 实现了(
A. 向上平移2个单位长度
∴ CF = CC1+ C1 C2+ C2 E + EF =3+3+5+6=
17(cm).
【答案】 B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
10. [2024·滨州期末]如图,△ OAB 的边 OB 在 x 轴的正半轴
上,点 B 的坐标为(6,0),把△ OAB 沿 x 轴向右平移4个
单位长度,得到△ CDE ,连接 AC , DB ,若△ DBE 的
∵∠ CAB =90°, BC =5,∴ AC =4,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业布置
? 课本3.3习题
2019 SUCCESS
POWERPOINT
2018 年12月12日星期三 13
2019 SUCCESS
THANK YOU
2018 年12月12日星期三 14
(x , y+a) (x , y-a)
口答练习: 在坐标系中,将坐标作如下变化时,图形将怎 样变化?
1. (x,y)(x,y+4)
2. (x,y)?(x,y-2) 3. (x,y) ?(x-1 , y)
4. (x,y)?(3+x , y)
思考:5. (x,y)?(x-1 , y+4)
例1、
口答练习:
第三章 图形的平移与旋转
3.1 图形的平移(三)
回顾
1、一个图形沿 x轴方向平移 a(a>0)个单位长度 :
(x , y)
向右平移a个单位 向左平移a个单位
(x+a , y) (x-a , y)
2、一个图形沿 y轴方向平移 a(a>0)个单位长度 :
(x , y)
向上平移a个单位 向下平移a个单位
在坐标系中,将坐标作如下变化时,图形将怎 样变化? (x,y) ? (x-1 , y+4)
例2、
平移小结
1.纵坐标不变,横坐标分别增加(减少) a个单 位时,图形 向右(向左)平移 a个 单位; 2.横坐标不变,纵坐标分别增加(减少) a个单 位时,图形 向上(向下)平移a个单位;
3.横坐标分别增加(减少) a个单位、纵坐标分 别增加(减少) b个单位时,图形是怎样平移的? 请你与同学交流,并总结有哪几种平移方式。