设单位负反馈控制系统的开环传递函数
自动控制原理(非自动化)1-3章答案

自动控制原理(非自动化类)教材书后第1章——第3章练习题1。
2 根据题1。
2图所示的电动机速度控制系统工作原理图 (1) 将a ,b 与C,d 用线连接成负反馈系统; (2) 画出系统框图。
解:1)由于要求接成负反馈系统,且只能构成串联型负反馈系统,因此,控制系统的净输入电压△U 与U ab 和U cd 之间满足如下关系: 式中,U ab 意味着a 点高,b 点低平,所以,反馈电压U cd 的c 点应与U ab 的a 点相连接,反馈电压U cd 的d 点应与U ab 的b 点相连接.2)反馈系统原理框图如图所示。
1.3题1.3图所示为液位自动控制系统原理示意图。
在任何情况下,希望液面高度c 维持不变,说明系统工作原理并画出系统框图。
题1.3图第二章 习 题2.1 试求下列函数的拉氏变换,设f<O 时,z(f)=0: (1) (2)(3) (4)2。
2试求下列象函数x(s )的拉氏反变换X (t ): 解:(1) 其中(2)2.3 已知系统的微分方程为式中,系统输入变量r(f )=6(£),并设,,(O)=),(0)=O ,求系统的输出y (£)。
题1.2图2.4 列写题2。
4图所示RLC 电路的微分方程。
其中,u i 为输入变量,u o 为输出变量。
解:根据回路电压方程可知2.5 列写题2。
5图所示RLC 电路的微分方程, 其中,u.为输入变量,u 。
为输出变量。
解:由电路可知, 2。
6设运算放大器放大倍数很大,输入阻抗很大,输出阻抗很小。
求题2。
6图所示运 算放大电路的传递函数。
其中,u i 为输入变量,u o 为输出变量.解:根据运算放大器的特点有2.7 简化题2.7图所示系统的结构图,并求传递函数C (s ) / R (s )。
题2.7图解:根据梅逊公式得: 前向通道传递函数P K :回路传递函数L K :(注意到回路中含有二个负号)特征方程式: 余子式:于是闭环传递函数为:2.8 简化题2.8图所示系统的结构图,并求传递函数C (s ) / R (s )。
自动控制原理复习资料

一、单选题(共20题,40分)1、在伯德图中反映系统抗高频干扰能力的是( )(2.0)A、低频段B、中频段C、高频段D、无法反应正确答案: C2、设单位负反馈控制系统的开环传递函数G(s)=,其中K>0,a>0,则闭环控制系统的稳定性与()o(2.0)A、K值的大小有关B、a值的大小有关C、a和K值的大小有关D、a和K值的大小无关正确答案: D3、关于线性系统稳态误差,正确的说法是:( )(2.0)A、一型系统在跟踪斜坡输入信号时无误差B、C、增大系统开环增益K可以减小稳态误差D、增加积分环节可以消除稳态误差,而且不会影响系统稳定性正确答案: C4、传递函数定义线性定常系统在零初始状态下系统输出拉氏变换与输入拉氏变换之()。
(2.0)A、积B、比C、和D、差正确答案: B5、下列系统中属于不稳定的系统是( )。
(2.0)A、闭环极点为的系统B、闭环特征方程为的系统C、阶跃响应为的系统D、脉冲响应为的系统正确答案: D6、系统开环对数幅频特性L(ω)中频段主要参数的大小对系统的()性能无影响。
(2.0)A、动态B、稳态C、相对稳定性D、响应的快速性正确答案: D7、设控制系统的开环传递函数为,该系统为( )(2.0)A、 0型系统B、Ⅰ型系统C、Ⅱ型系统D、Ⅲ型系统正确答案: B8、确定系统根轨迹的充要条件是()。
(2.0)A、根轨迹的模方程B、根轨迹的相方程C、根轨迹增益D、根轨迹方程的阶次正确答案: C9、高阶系统的主导闭环极点越靠近虚轴,则系统的 ( )(2.0)A、准确度越高B、准确度越低C、响应速度越快D、响应速度越慢正确答案: D10、闭环系统的动态性能主要取决于开环对数幅频特性的( )(2.0)A、低频段B、开环增益C、高频段D、中频段正确答案: D11、Z变换中复变量z的物理含义是什么?(2.0)A、滞后一个采样周期。
B、超前一个采样周期。
C、跟复变量s一样。
D、没有什么物理含义,就是为了计算方便。
自动控制原理第4章 习题及解析

4-2 已知单位负反馈系统的开环传递函数如下,试绘制出相应的闭环根轨迹图。
1)*()(1)(3)K G s s s s =++ 2)*(5)()(2)(3)K s G s s s s +=++解:(1)()(1)(3)*K G s s s s =++① 由G (s )知,n =3,m =0,p 1=0,p 2=–1,p 3=–3。
② 实轴上[0,–1]、[–3,∞]是根轨迹段。
③ 有n –m =3条渐近线,交点3403310-=---=a σ, 夹角︒±=60a ϕ、180°。
④ 实轴上[0、–1]根轨迹段上有分离点d 。
由0)(1=⎥⎦⎤⎢⎣⎡=ds s G ds d 求d :03832=++s d 解得 45.0-=d (分离点) 3742j d --=(舍去) ⑤求根轨迹与虚轴交点,令jw s =代入0)(=s D ,得⎪⎩⎪⎨⎧=+-==+-=03)(Im 04)(Re 312ωωωωωj j j D K j D 解得3±=o ω 20412*K ω==临根轨迹图见图4-2(1)(2) *(5)()(2)(3)K s G s s s s +=++①由 G (s )知, n =3,m =1,p 1=0,p 2=–2,p 3=–3,p 4=–5②实轴上[-2、0],[-5、-3]是根轨迹段 ③有n-m=2条渐近线:0a σ=,夹角ϕa =±90°④实轴上 [-2、0] 根轨迹段上有分离点d , 由1[]0()s dd ds G s ==求d :3232556300s s s +++=,试凑得 s 1=-0.88 是其解,且是分离点。
根轨迹图见图4-2(2)。
4-3 已知单位负反馈系统的开环传递函数如下,试绘制出相应的闭环根轨迹图。
1)*(2)()(12)(12)K s G s s j s j +=+++- 2)*2()(4)(420)K G s s s s s =+++解:(1)*(2)()(12)(12)K s G s s j s j +=+++-根轨迹图见图4-3(1)(2)*2()(4)(420)K G s s s s s =+++① n =4,m =0,p 1=0,p 2=–4,p 3、4=–2±j 4② p 1、p 2连线中点正好是p 3、p 4实部,开环极点分布对称于垂线s=–2,根轨迹也将对称于该垂线。
设单位负反馈控制系统的开环传递函数

习 题4-1 设单位负反馈控制系统的开环传递函数1)(+=s K s G g试判断下列点是否是系统根轨迹上的点。
若是根轨迹上的点,则说明g K 值多大时根轨迹经过它。
a 点)0j 2(+−;b 点)1j 0(+;c 点)2j 3(+−4-2 设单位负反馈控制系统的开环传递函数)12()13()(++=s s s K s G g试用解析法绘出根轨迹增益g K 从+∞→0变化时系统的根轨迹图。
4-3 设单位负反馈控制系统的开环传递函数如下,试概略绘出相应的系统根轨迹图。
(1))15.0)(12.0()(++=s s s K s G g(2))21)(21()2()(j s j s s K s G g −++++= (3))204)(4()(2+++=s s s s K s G g4-4 设单位负反馈控制系统的开环传递函数)258()256(9.6)(22++++=s s s s s s G 试用根轨迹法计算系统闭环极点的位置。
4-5 设单位负反馈系统的开环传递函数如下,试绘出参变量b 从+∞→0变化时的系统根轨迹图。
(1)))(4(20)(b s s s G ++= (2))10()(30)(++=s s b s s G 4-6 设单位负反馈控制系统的开环传递函数)2()1()(+−=s s s K s G g试绘制其根轨迹图,并求出使系统产生重实根和纯虚根的g K 值。
4-7 设控制系统的开环传递函数为)4)(2()1()(2+++=s s s s K s G g k试分别画出正反馈系统和负反馈系统的根轨迹图,并指出它们的稳定情况有何不同?4-8 设单位负反馈控制系统的开环传递函数如下)20)(10()()(2+++=s s s z s K s G g试确定使系统的特征根存在一对共轭纯虚根1j ±时的z 值和g K 值。
4-9 实系数多项式函数a s a s s s A ++++=)6(5)(23试确定参数a 的范围,使0)(=s A 的根皆为实数。
单位负反馈系统校正——自动控制原理课程设计

目录1.设计题目...................................................................... 错误!未定义书签。
2. 摘要 (2)3、未校正系统的分析 (3)3.1.系统分析 (3)3.2.单位阶跃信号下系统输出响应 (4)4、系统校正设计 (7)4.1.校正方法 (7)4.2.设计总体思路 (7)4.3.参数确定 (8)4.4.校正装置 (9)4.5.校正后系统 (10)4.6.验算结果 (11)5、结果 (13)5.1.校正前后阶跃响应对比图 (13)5.2.结果分析 (14)6、总结体会 (15)7、参考文献 (16)1.设计题目设单位负反馈系统的开环传递函数为:))101.0)(1(/()(++=sssKsG用相应的频率域校正方法对系统进行校正设计,使系统满足如下动态和静态性能:1)相角裕度45≥γ;2)在单位斜坡输入下的稳态误差为0625.0≥sse;3)系统的穿越频率大于2rad/s。
要求:1)分析设计要求,说明校正的设计思路(超前校正,滞后校正或滞后- 超前校正);2)详细设计(包括的图形有:校正结构图,校正前系统的Bode图,校正装置的Bode图,校正后系统的Bode图);3)用Matlab编程代码及运行结果(包括图形、运算结果);4)校正前后系统的单位阶跃响应图。
2.摘要用频率法对系统进行超前校正的实质是将超前网络的最大超前角补在校正后系统开环频率特性的截止频率处,提高校正后系统的相角裕度和截止频率,从而改善系统的动态性能。
为此,要求校正网络的最大相位超前角出现在系统的截止频率处。
只要正确地将超前网络的交接频率1/aT和1/T设置在待校正系统截止频率Wc的两边,就可以使已校正系统的截止频率Wc和相裕量满足性能指标要求,从而改善系统的动态性能。
串联超前校正主要是对未校正系统在中频段的频率特性进行校正。
确保校正后系统中频段斜率等于-20dB/dec,使系统具有45°~60°的相角裕量。
自动控制原理第4章习题解——邵世凡

第四章 习题4-1 绘制具有下列开环传递函数的负反馈系统的根轨迹1、()()()()54*++=s s s K s H s G解:首先确定开环传递函数中的零极点的个数各是多少。
由开环传递函数可知 m=0,n=3,n -m=3。
即,有限零点为0个,开环极点为3个。
其中,3个开环极点的坐标分别为:p 1=0,p 2=-4,p 3=-5。
然后,在[s]平面上画出开环极点的分布情况,根据根轨迹方程的幅角条件:首先确定实轴上的闭环系统的根轨迹。
如图所示。
接着再通过所需参数的计算画出比较精确的根轨迹通过画实轴上的根轨迹图可知,有3条闭环根轨迹,分别从p 1=0,p 2=-4,p 3=-5出发奔向无穷远处的零点。
在这一过程中,从p 1=0,p 2=-4两个极点出发的根轨迹在实轴上相遇后进入复平面,因此,有必要进行分离点的坐标计算,渐进线在实轴上的坐标点和渐进线的角度计算,以及与虚轴交点的计算。
根据公式有:渐进线303054011-=----=--=∑∑==mn zp n i mj jiσ()() ,,331212ππππϕ±±=+=-+=k mn k a从p 1=0,p 2=-4两个极点出发的根轨迹在实轴上相遇后将沿着±60º进入复平面,分离点:设:()1=s N ;()()()s s s s s s s D 2095423++=++=;()0'=s N ;()201832'++=s s s D则有:()()()()()0201832''=++-=⋅-⋅s s s D s N s D s N[s ]0201832=++s s解得方程的根为s 1= -4.5275(不合题意舍去);s 2= -1.4725 得分离点坐标:d = -1.4725。
与虚轴的交点:在交点处,s=j ω,同时也是闭环系统的特征根,必然符合闭环特征方程,于是有:()020********=++--=+++*=*K j j K s s sj s ωωωω整理得: 0203=-ωω;092=-*ωK 解得01=ω;203,2±=ω;18092==*ωK 最后,根据以上数据精确地画出根轨迹。
习题答案第3章

t s (2%) 4T
T ,为惯性环节的时间常数。 将已知数据 t s (2%)=15 秒代入上式,求得惯性环节的时间常数 T
则闭环传递函数为
3.75 秒。
WB ( s )
单位反馈系统的开环传递函数为
1 15s 1
WK ( s )
WB ( s) 1 1 WB ( s ) 15s
s0
劳斯表中出现 s 行为全 0 行,且无符号变化,则闭环系统临界稳定,有 2 对对称于原 点的特征根。可通过辅助方程得到。
3
令 F ( s ) 3s 18s 12 0
4 2
解得
3-9 系统如图 P3-4 所示,问 取何值系统方能稳定。
s1, 2 j 0.87 , s 3, 4 j 2.29 10 s ( s 1)
则 令 xc (t ) 0
xc (t ) L1 [ X c ( s )] 1 e t cos(3t )
可得 t m 0.94 s
阶跃响应的最大峰值 根据超调量的定义
x max (t m ) 1.37
%
调节时间 t s (5%)
x max (t m ) xc () 100% 37% x c ( )
0.2 sX c ( s ) 2 X r ( s )
又输入信号为 X r ( s )
1 ,则输出 s
X c ( s ) 10 s2
拉氏反变换后,得单位阶跃响应为
xc (t ) 10t
c (t ) 0.24 x c (t ) (2) 0.04 x
微分方程两侧同时取拉氏变换,得
5 4 3 2
(4) s 4 s 4 s 4 s 7 s 8s 10 0
自动控制原理课后习题

分析稳定性,若稳定计
算性能指标。
G
(
s
)
(
s
1
)
1 (0
0 .
0
1
s
1
)2
1、环节特性分析
2、Bode曲线的绘制 3、性能指标计算 结论:系统稳定。
ωc≈10;
令 得
::(t gωγ111ω)88014128.02013ltt8ggωg01101c100.0c021tωg11 0.ω10c8101100
0
(-1,j0)
已知:Gk
(s)
k s(Ts 1)
得:P
1, q
1
绘制Nyquist曲线
N p 2(a b) 1 2(0 0.5) 2
结论:不稳定,右半平面有两个特征根。
0
(1)T1>T2 (-1,j0)
0 (2) T1<T2
已知:Gk
(s)
k(T2 s 1) , s 2 (T1s 1)
其中:( Ta ) 或( Ta )
2)分析两种情况下系统的稳定性.
3、某最小相位系统的如图所示。
1)求传递函数 2)求剪切频率和相角裕量
G k( s )
k(10s 1)2
s2 s 1(Ts 1)
(10s 1)2
s2 s 1(0.003 s
1)
c 100 , 73.76
4、已知单位反馈系统的
(-1,j0)
0
(2)
(1)
0
(-1,j0)
已知:P 2, q 0
已知:G(s) k , p 1,q 0,绘制Nyquist曲线,系统1: k 1;系统2 : k 1。 (Ts 1)