自动控制原理开环传递函数

合集下载

自动控制原理_第5章_3

自动控制原理_第5章_3
5.3 控制系统的频率特性
在绘制各个典型环节频率特性的基础上, 可以绘制控制系统的频率特性。
5.3.1 控制系统开环频率特性的Nyquist图
一个控制系统的开环传递函数可以写成典型
环节的连乘积形式。
1
举例 一个开环传递函数为
K ( s 1) G( s) 2 2 s(T1s 1)(T2 s 2 T2 s 1)
27
2
对于非单位反馈系统, 在其开环频率特性幅值
G( j)H ( j) 很大的频段内, 闭环频率特性
1 ( j ) H ( j )
即近似等于反馈环节频率特性的倒数。
对于开环放大倍数 K 很大的闭环系统,在低频段
具有这个特点。
28
3
对于非单位反馈系统, 一般来说, 其开环
频率特性的高频段幅值很小。在这一频段内, 闭环
1
当 0 时,放大环节、惯性环节、振荡环节、
一阶微分环节、二阶微分环节的幅角均为 00 。
。 只有积分环节, 0 时,相角为 900 当
如果开环传递函数中含有 v 个积分环节,开环频率 特性的Nyquist图在 0 的起始处幅角为 v 900 。


6
2
当 0 时, 放大环节的幅值为 K ,
21
[例5-5] 控制系统的开环传递函数为
10( s 1) G( s) s(2.5s 1)(0.04s 2 0.24s 1)
绘制系统的渐近开环对数幅频特性和相频特性。
22
100 Magnitude (dB)
Asymptotic Bode Diagram
-20dB/dec
50
20
频率特性近似等于系统前向通道的频率特性。 一般来说,闭环系统在高频段内显示这一性质。 在工程实践中, 当开环幅频特性

自动控制原理第二版课后答案

自动控制原理第二版课后答案

自动控制原理第二版课后答案X.2- 2由牛顿第二运动定律,在不计重力时,可得/;(x.-x0)-/2x0=rnx整理得"等十⑺S字" d\将上式拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得[亦+(人+/2)$]血0)=人迟⑸于是传递函数为疋($)恥 + /; +/2②其上半部弹簧与阻尼器之间,取辅助点A,并设A点位移为无,方向朝下; 而在其下半部工。

引出点处取为辅助点B。

则由弹簧力与阻尼力平衡的原则,从A和B两点可以分别列出如下原始方程:K](兀-x) = /(x-x c)消去中间变量X,可得系统微分方程佔+心)牛+ K心0 = 牛at at对上式取拉氏变换,并计及初始条件为零,得系统传递函数为K ⑸一/(&+£)$+&瓦③以引出点作为辅助点,根据力的平衡原则,可列出如下原始方程: 蜀(兀-X)+ /(乙-对)=丘%移项整理得系统微分方程/贽+ (陌+ 0)心=令+瓦兀对上式进行拉氏变换,并注意到运动由静止开始,即X r(。

) = X0(。

)= °则系统传递函数为X。

(£)_ fz K\ 兀G) 一冷+ (K]+0)2-3r 並'C 2s=1 (&C°s 十 1)一 1 {T.S + 1)・・・——(T.s + 1)所以.5(s)_ S _ C“ -_⑺s + l)®s + l)'5(s) Z 1 + Z 2 尽 |1(匚「J 尽C Q S + ^S + I)込s + 1)T 、s +1 C 2s 2(b) 以幻和fl 之间取辅助点A,并设A 点位移为方向朝下;根据力的平 衡原则,可列出如下原始方程:解:(a):利用运算阻抗法得:Z] =R 』R.——1 _ C\s泾尽+丄R 】 RiGs +1+1K2(X.-X0)+ f2(x. - x0) = /;(x0 -x) (1)A:1x = /;(x(> -x) (2)所以K2(x i-X0)4-/2(X,--X0)=K x x (3)対(3)式两边取微分得恳2(乙—攵。

自动控制原理公式汇总松鼠学长

自动控制原理公式汇总松鼠学长

自动控制原理公式汇总松鼠学长
自动控制原理涉及到很多公式,下面是一些常见的公式汇总:1.开环传递函数:G(s) = Y(s)/U(s)
- G(s)表示系统的传递函数
- Y(s)表示输出信号的Laplace变换
- U(s)表示输入信号的Laplace变换
2.闭环传递函数:T(s) = Y(s)/R(s)
- T(s)表示闭环系统的传递函数
- Y(s)表示输出信号的Laplace变换
- R(s)表示参考输入信号的Laplace变换
3.系统的单位反馈闭环传递函数:T(s) = G(s)/(1 + G(s)H(s)) - T(s)表示闭环系统的传递函数
- G(s)表示开环系统的传递函数
- H(s)表示单位反馈的传递函数
4.闭环系统的稳定性判据:若开环传递函数G(s)的所有极点的实部都小于零,则闭环系统是稳定的。

5. PID控制器输出信号:u(t) = Kp*e(t) + Ki*∫[0,t] e(τ) dτ + Kd*de(t)/dt
- u(t)表示PID控制器的输出信号
- Kp是比例增益
- Ki是积分增益
- Kd是微分增益
- e(t)是误差信号,等于参考输入信号与实际输出信号之差
这些公式只是自动控制原理中的一小部分,实际上自动控制原理是一个庞大的学科,涉及到许多不同的理论和方法。

它还包括了传感器和执行器的动态特性、控制器的设计和调节、系统的鲁棒性等方面的内容。

在实际应用中,根据具体问题的要求,可能还需要考虑动态特性的影响、非线性系统的建模和控制、多变量系统的控制等更高级的内容。

因此,适当拓展自动控制原理的公式是必要的。

自动控制原理题目(含答案)

自动控制原理题目(含答案)

《自动控制原理》复习参考资料一、基本知识 11、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。

2、闭环控制系统又称为反馈控制系统。

3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。

4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。

5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。

6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。

7、两个传递函数分别为 G1(s)与 G2(s)的环节,以并联方式连接,其等效传递函数为G(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。

18、系统前向通道传递函数为 G (s),其正反馈的传递函数为 H (s),则其闭环传递函数为G(s) /(1-G(s) H(s) )。

9、单位负反馈系统的前向通道传递函数为 G (s),则闭环传递函数为G(s) /(1+ G(s) )。

10 、典型二阶系统中,ξ=0.707 时,称该系统处于二阶工程最佳状态,此时超调量为 4.3%。

11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。

12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。

13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。

14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。

15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。

16 、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。

17 、对于典型二阶系统,惯性时间常数 T 愈大则系统的快速性愈差。

18 、应用频域分析法,穿越频率越大,则对应时域指标 ts越小,即快速性越好19 最小相位系统是指 S 右半平面不存在系统的开环极点及开环零点。

20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、补偿校正与复合校正四种。

自动控制原理_王万良(课后答案7

自动控制原理_王万良(课后答案7

⎧ ⎪ ⎪
20 lg 5 × 1 ω1 a
验证
Hg ∗

− 10
=
⎪ ⎨

20 lg 5 × 1 ω12 a
⎪⎪20 lg ⎩
ω12
5 × 0.5ω1
×
1 a
ω1 < 1 1 < ω1 < 2
ω1 > 2
ω1 = 1.32
φ′( jω1) = −1780 > −1800
满足幅值裕量条件,所以
G′(s)
拓宽频率。即
G1 (s)
=
s(0.2s
40 + 1)(0.00625s
+ 1)
L (ω
)
=
⎧ ⎪ ⎪⎪ ⎨ ⎪ ⎪⎪⎩20
lg
20
lg
40 ω
20
lg
ω
40 × 0.2ω
40
ω × 0.2ω × 0.00625ω
ω <5 5 < ω < 160
ω > 160
γ

= 1800
− 900

arctg
(0.2ω
φG ( jω2 ) = arctg(0.088ω2 ) − 90 − arctg(0.2ω2 ) − arctg(0.00625ω2 ) − arctg(0.035ω2 ) = −155.50 > −1
校正后系统满足幅值裕量的条件。 7.2 设开环传递函数
G(s) =
K
s(s + 1)(0.01s + 1)
γ ′′ > γ ∗
ωc″ > ωc∗
T = 1/(ωc″ a ) = 0.067

《自动控制原理》第5章习题答案

《自动控制原理》第5章习题答案


期望极点
期望极点
− p3
j
600
j0.58
− p2
-1
− p1
0 -j
-3
-2
σ
-2
19.150 -1
40.880 0.33 0
119.640
校核相角条件: 根据在图中主导极点位置的近似值-0.33 ± j 0.58 和开环极点的位置, 作由各开环极点到期望主导极点的向量,
Φ = -119.640 -40.880 -19.150 = -179.670≈-1800
− p2
-10 -5
− p1
0
σ
②计算期望主导极点位置。
超调量σ% ≤ 20%,调整时间 ts ≤ 0.5s
4
ζω n
= 0.5s , ζω n = 8
σ%=e

ζπ
1−ζ 2
= 0.2 , ζ = 0.45 , θ = 63.2 0
故,期望主导极点位置, s1, 2 = −8 ± j15.8
期望极点
Gc ( s ) =
4,控制系统的结构如图 T5.3 所示,Gc(s)为校正装置传递函数,用根轨迹法设计校正装置,
使校正后的系统满足如下要求,速度误差系数 Kv ≥ 20,闭环主导极点 ω n = 4 ,阻尼系数 保持不变。
R(s)
+ -
Gc(s)
4 s ( s + 2)
Y(s)
图 T5.3
解:①校核原系统。
14
+20
0dB
1
Φ (ω ) 度
900 00
5
ω rad/s
ω rad/s
2,控制系统的结构如图 T5.1 所示,试选择控制器 Gc(s), 使系统对阶跃响应输入的超调量

自动控制原理知识点总结1~3章

自动控制原理知识点总结1~3章

自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。

2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量.3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。

4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入.5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较.反送到输入端的信号称为反馈信号。

6、负反馈:反馈信号与输人信号相减,其差为偏差信号.7、负反馈控制原理:检测偏差用以消除偏差。

将系统的输出信号引回插入端,与输入信号相减,形成偏差信号.然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。

8、自动控制系统的两种常用控制方式是开环控制和闭环控制 .9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。

10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。

主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。

11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础. (2)、快速性:动态过程时间要短,振荡要轻。

(3)、准确性:稳态精度要高,误差要小。

12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。

第二章1、控制系统的数学模型有: 微分方程、传递函数、动态结构图、频率特性。

2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图.对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。

4、结构图的变换与化简化简方框图是求传递函数的常用方法。

自动控制原理习题及其解答 第三章

自动控制原理习题及其解答 第三章

第三章例3-1 系统的结构图如图3-1所示。

已知传递函数 )12.0/(10)(+=s s G 。

今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。

试确定参数K h 和K 0的数值。

解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。

一阶系统的过渡过程时间t s 与其时间常数成正比。

根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。

例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。

解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。

例3-3 设控制系统如图3-2所示。

试分析参数b 的取值对系统阶跃响应动态性能的影响。

解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。

动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。

解毕。

例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。

试确定系统的传递函数。

解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

负反馈控制系统的开环传递函数为
(1)、)3)(1()()(++=s s s K
s H s G
(2)、)3)(1()
2()()(+++=s s s s K s H s G
做系统根轨迹图。

解(1):传递函数已为标准零极点令
0)3)(1(=++s s s
可得开环极点为
00=p
11-=p
32-=p
则3=n ,0=m ,有3=-m n 条根轨迹终止于无穷远处
极点将实轴分为四个区间,仅有区间)3,(--∞和)0,1(-有根轨迹因为)0,1(-两端均为极点,则存在分离点为:
0])
()(1[=ds
s H s G d
03832=++s s 解出 45.01-=s 22.22-=s
根据实轴上根轨迹确定方法可知2s 不在根轨迹上,1s 为该系统的分离点。

与实轴的交点为3
4
3310321-=--=-++=
m n p p p a σ
与实轴正方向的夹角为:
0=h , 6031801801==-=
m n ϕ 1=h ,
180180)12(2=-+=
m
n ϕ 2=h ,
300180)122(3=-+⨯=
m
n ϕ 根轨迹与虚轴的焦点w 和对应的临界增益c k 值,由开环传递函数可
知,系统的闭环特征方程为
034)3)(1(23=+++=+++k s s s k s s s
令jw s =,上式变为
0)(3)(4)(23=+++k jw jw jw
实部与虚部分别为零,即
042=+-k w 033=+-w w
解得
3±=w 12=k
根据以上结果。

绘制出大概的根轨迹图形如下
Mutlab 绘根轨迹图
G=tf(1,[conv([1,1],[1,3]),0]); rlocus (G); grid
解(2):)3)(1()
2()()(+++=s s s s K s H s G
传递函数已为标准零极点令
0)3)(1(=++s s s
可得开环极点为
00=p
11-=p
32-=p
三条分支中一条终止于开环零点2-=z ,则3=n ,1=m ,有2=-m n 条根轨迹终止于无穷远处
极点将实轴分为四个区间,仅有区间)3,(--∞和)0,1(-有根轨迹因为)0,1(-两端均为极点,则存在分离点为:
0])
()(1[=ds
s H s G d
061611223=+++s s s 解出
45.01-=s 25.22-=s
根据实轴上根轨迹确定方法可知2s 为系统的会和点,1s 为该系统的分离点。

与实轴的交点为12
2
3101321-=+--=--++=
m n z p p p a σ
与实轴正方向的夹角为:
0=h , 9021801801==-=
m n ϕ 1=h ,
270180)12(2=-+=
m
n ϕ 2=h ,
450180)122(3=-+⨯=
m
n ϕ 根轨迹与虚轴的焦点w 和对应的临界增益c k 值,由开环传递函数可
知,系统的闭环特征方程为
02)3(4)2()3)(1(23=++++=++++k s k s s s k s s s
其劳斯行列表为
3s 1 k +3 2s 4
k 2
1s 23k + 0
0s
k 2
使第一列中1
s 项等于零的k 值,就是临界c k ,有方程
023=+
k
6-=c k
再求解由2s 行得到辅助方程
0242=+k s 3j w ±=
Mutlab绘根轨迹图:den=[conv([1,1],[1,3]),0]; num=[1,2];
G=tf(num,den);
rlocus (G);
grid。

相关文档
最新文档