考研复习 线性代数选择题解析(十一)

合集下载

2024考研数学一线性代数历年考题详解

2024考研数学一线性代数历年考题详解

2024考研数学一线性代数历年考题详解线性代数是2024考研数学一科目中的一个重要内容,对于考生来说,掌握线性代数的知识点和解题技巧非常关键。

本文将对2024年考研数学一线性代数部分的历年考题进行详解,帮助考生更好地备考。

一、第一节:向量与矩阵1. 2010年考题考题描述:已知向量组\[{\alpha}_1, {\alpha}_2, {\alpha}_3\]线性无关,向量\[{\beta}_1, {\beta}_2, {\beta}_3\]可由向量组\[{\alpha}_1, {\alpha}_2, {\alpha}_3\]线性表示,且\[{\beta}_1 = 2{\alpha}_1 +3{\alpha}_2\],\[{\beta}_2 = 4{\alpha}_1 + 5{\alpha}_2 + {\alpha}_3\],\[{\beta}_3 = 7{\alpha}_1 + 10{\alpha}_2 + 2{\alpha}_3\],则向量组\[{\beta}_1, {\beta}_2, {\beta}_3\]的秩为多少?解题思路:根据题意,我们可以建立如下矩阵:\[A =\begin{bmatrix}2 &3 & 0 \\4 &5 & 1 \\7 & 10 & 2 \\\end{bmatrix}\]然后通过对矩阵进行初等行变换,将其化为行最简形。

最后,行最简形的矩阵中非零行的个数即为矩阵的秩。

在本题中,通过计算可知行最简形为:\[\begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \\\end{bmatrix}\]因此,向量组\[{\beta}_1, {\beta}_2, {\beta}_3\]的秩为3。

2. 2014年考题考题描述:设矩阵\[A =\begin{bmatrix}1 & 0 & 0 \\-2 & 1 & 0 \\3 & 0 & 1 \\\end{bmatrix}\],若矩阵\[B = (A - 2I)^2 - I\],其中\[I\)为单位矩阵,求矩阵\[B\)的秩。

线性代数11答案B201106

线性代数11答案B201106

线性代数11答案A201106一、 填空题(每小题3分,共18分)1.已知四阶行列式D ,其第3列元素分别为1,3,2,2-,它们对应的余子式分别为3,2,1,1-,则行列式D = .52.设A 是3阶矩阵,将A 的第1行与第2行交换得到B ,再把B 的第2行加到第3行得C ,则满足PA C =的可逆矩阵P = . 010100101P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦3.设A 为n 阶可逆方阵,3A =,则()152AA -*+= .13n + 4.设231201()214214x x x f x x x x=,则3x 项的系数为 . 14-5.设,A B 均为n 阶方阵,满足AB A B =+,则()1A E --= .B E -6.设n 维向量(,0,,0,),0Tk k k α=<;矩阵1,TT A E B E kαααα=-=+,其中A 的逆矩阵为B ,则k = . 1- 二、单项选择题(每小题3分,共18分) 1.设123123(,,),(0,0,1),(0,1,0),(1,0,0)T TTB αααααα====,矩阵A 与B 相似,则秩()R A E -=【 A 】A .1;B .2;C .3 ;D .4. 2.设向量组1234,,,αααα线性无关,则下列向量组中①12233441,,,αααααααα---- ; ②12233441,,,αααααααα++++ ③234,,ααα ; ④122331,,αααααα+++线性无关的向量组共有【 C 】A .0B .1; C.2; D .3;3.设A 为三阶矩阵,且矩阵2,23,3A E A E E A -+-均为奇异的,则A 的三个特征值为【 B 】A .312,,23-- ; B .312,,23-; C .312,,23--; D .12,,323-. 4.设A 是三阶实对称阵,若矩阵A 满足322230A A A E +-+=,则二次型T x Ax经正交变换化为标准形是【 A 】A .222123333y y y ---;B .22212333y y y -++;C .222123333y y y ++;D .22212333y y y +-. 5.设123,,ααα是齐次线性方程组0Ax = 的一个基础解系(A 是m n ⨯矩阵),若1122133122,,t t βααβααβαα=+=+=+也为0Ax =的一个基础解系,则【 D 】A .02t t ≠≠且;B .1,2t t ==或;C .0t ≠;D .102t t ≠≠且。

线性代数试题及答案解析

线性代数试题及答案解析

线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。

A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

2. 向量α和向量β线性相关,则下列说法正确的是()。

A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。

3. 对于n阶方阵A,下列说法不正确的是()。

A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。

4. 矩阵A和矩阵B相等,当且仅当()。

A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。

5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。

A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。

6. 矩阵A可逆的充分必要条件是()。

A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。

7. 矩阵A的特征值是()。

A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。

2024考研数学一线性代数历年真题全面解析

2024考研数学一线性代数历年真题全面解析

2024考研数学一线性代数历年真题全面解析一、前言在2024年的考研数学一科目中,线性代数占据着重要的位置。

掌握线性代数的核心概念和解题技巧对于考生来说至关重要。

为了帮助广大考生更好地备考,本文将对2024年考研数学一线性代数部分的历年真题进行全面解析,并分享一些解题技巧和注意事项。

二、基础知识回顾在开始解析之前,先回顾一下线性代数的基础知识是非常必要的。

包括向量、矩阵、行列式、线性空间、线性变换等概念都是线性代数的基本内容。

理解这些基础知识对于解答试题非常有帮助。

三、真题解析接下来,我们将对几道历年真题进行解析,以帮助考生更好地理解线性代数的应用。

1. 2018年真题题目描述:已知矩阵A的特征值为λ1=2,λ2=-3,对应的特征向量分别为X1=(1,2)T,X2=(1,-1)T。

求矩阵A的逆矩阵。

解析:根据线性代数的知识,当一个矩阵存在特征值时,可以通过特征向量组成的矩阵P和特征值组成的对角矩阵D,利用相似矩阵的性质求得矩阵A的逆矩阵。

首先,我们将特征向量X1和X2组成的矩阵P为:2 -1]然后,根据特征值组成的对角矩阵D为:D = [2 00 -3]利用相似矩阵的性质,可以得到:A = PDP^(-1)由此可得:P^(-1) = [1/3 1/32/3 -1/3]最后,计算得到矩阵A的逆矩阵为:A^(-1) = P^(-1)DP2. 2019年真题题目描述:已知矩阵A是n阶方阵,且满足A^2 = -I,其中I为n 阶单位矩阵。

证明A的特征值一定满足λ^2+1=0。

解析:根据已知条件A^2 = -I,可得到:λI^2 = -I再根据特征值的性质,可以得到:进一步推导,可得:(λ^2+1)I = 0因为矩阵A是n阶方阵,所以λ^2+1=0。

证毕。

四、解题技巧和注意事项1. 理清概念:线性代数是一门较为抽象的学科,需要理清概念和定义。

对于一些概念的记忆和理解,可以通过做例题巩固。

2. 多做习题:做大量的习题是掌握线性代数的关键。

考研数学二(线性代数)模拟试卷11(题后含答案及解析)

考研数学二(线性代数)模拟试卷11(题后含答案及解析)

考研数学二(线性代数)模拟试卷11(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设A是m×n阶矩阵,B是n×m阶矩阵,则( ).A.当m&gt;n时,必有|AB|≠0B.当m&gt;n时,必有|AB|=0C.当n&gt;m时,必有|AB|≠0D.当n&gt;m时,必有|AB|=0正确答案:B解析:AB为m阶矩阵,因为r(A)≤min{m,n},r(B)≤min{m,n},且r(AB)≤min{r(A),r(B)},所以r(AB)≤min{m,n},故当m&gt;n时,r(AB)≤n&lt;m,于是|AB|=0,选(B).知识模块:线性代数部分2.设A为m×n阶矩阵,且r(A)=m&lt;n,则( ).A.A的任意m个列向量都线性无关B.A的任意m阶子式都不等于零C.非齐次线性方程组AX=b一定有无穷多个解D.矩阵A通过初等行变换一定可以化为(EmO)正确答案:C解析:显然由r(A)=m)=m,显然A,B有相同的特征值,而r(A)≠r(B),所以(A),(B),(C)都不对,选(D).知识模块:线性代数部分填空题6.设A为三阶正交阵,且|A||A|=-1.|E-ABT|=|AAT-ABT|=|A||(A-B)T|=-|A-B|=|B-A|=-4 知识模块:线性代数部分7.设A,B都是三阶矩阵,,且满足(A*)-1B=ABA+2A2,则B=_______.正确答案:解析:|A|=-3,A*=|A|A-1=-3A-1,则(A*)-1B=ABA+2A2化为AB=ABA+2A2,注意到A可逆,得B=BA+2A或-B=3BA+6A,则=-6A(E+3A)-1,知识模块:线性代数部分8.若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=_______.正确答案:2解析:令P=(α1,α2,α3),因为α1,α2,α3线性无关,所以P可逆,由AP=(Aα1,Aα2,Aα3)=(α1,α2,α3)得知识模块:线性代数部分解答题解答应写出文字说明、证明过程或演算步骤。

考研数学一专题2024线性代数历年题目解析

考研数学一专题2024线性代数历年题目解析

考研数学一专题2024线性代数历年题目解析一、题目解析在数学一专题的考研中,线性代数是一个重要的内容。

掌握线性代数的基本理论和解题方法对于提高数学一专题的得分至关重要。

为了帮助考生更好地备考线性代数部分,本文将对2024年考研数学一专题中的线性代数部分的历年题目进行解析。

二、基础知识回顾在开始解析具体题目之前,我们先来回顾一下线性代数的基础知识。

1. 矩阵和向量矩阵是一个按照长方阵列排列的复数或实数集合。

矩阵可以用来表示线性关系,是线性代数中最基本的概念之一。

向量可以看作是特殊的矩阵,它只有一列。

2. 线性方程组线性方程组是由一组线性方程所组成的方程组。

求解线性方程组是线性代数中的重要问题之一。

3. 矩阵的运算矩阵的运算包括加法、减法、数乘和乘法等。

通过矩阵的运算,我们可以得到矩阵的秩、特征值和特征向量等重要的性质。

4. 矩阵的逆和行列式矩阵的逆是指与原矩阵相乘后得到单位矩阵的矩阵。

行列式是一个常数,它可以用来判断矩阵是否可逆以及矩阵的秩。

三、题目解析接下来我们将对2024年考研数学一专题中的线性代数部分的历年题目进行解析。

以下是几个典型的题目:1. 题目一已知矩阵A是一个n阶方阵,且对任意非零n维列向量x,都有Ax=0。

则矩阵A的秩为多少?解析:根据题目中已知条件,对任意非零n维列向量x,都有Ax=0,这说明矩阵A的列向量都处于同一平面上。

因此,矩阵A的秩为1。

2. 题目二已知矩阵A为3阶方阵,且A的行列式|A|=3,求矩阵A的逆矩阵。

解析:根据矩阵A为3阶方阵,且A的行列式|A|=3,我们可以得知矩阵A是可逆的。

根据矩阵的性质,矩阵A的逆矩阵可以通过下式求得:A^-1 = (1/|A|) * adj(A),其中adj(A)是A的伴随矩阵。

因此,我们可以先求得矩阵A的伴随矩阵,然后再乘以1/3得到矩阵A的逆矩阵。

3. 题目三已知矩阵A和矩阵B都是2阶方阵,且A+B=2I,其中I是2阶单位矩阵。

线代期末复习线性代数试卷附讲解

线性代数试卷一、 (12分)单项选择题1. 如果n 阶矩阵A 满足条件,ij ij A a = 其中ij A 是元素ij a 的代数余子式,n j i ,,2,1, =,那么矩阵A 的•A 伴随矩阵等于 C()A A . ()AB -. ()T AC . ()T AD -.注:TTnn n n n n T nn n n n n A a a a a a a a a a A A A A A A A A A A =⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= 212222111211212222111211*本题所用的知识点:1) 矩阵的转置。

P43定义5。

2) 矩阵的伴随。

P48定义3。

2. 设A 是m ⨯n 矩阵,0Ax =是非齐次线性方程组b Ax =对应的齐次方程 组,那么下列叙述正确的是 D (A ) 如果0Ax =只有零解,那么b Ax =有唯一解. (B ) 如果0Ax =有非零解,那么b Ax =有无穷多个解. (C ) 如果b Ax =有无穷多个解, 那么0Ax =只有零解. (D ) 如果b Ax =有无穷多个解, 那么0Ax =有非零解. 注: 令()b A A =~。

(A)错,当)~()(A r A r ≠时,b Ax =可能无解。

(B)错,当)~()(A r A r ≠时,b Ax =可能无解。

(C)错,b Ax =有无穷多个解nA r A r <=)~()(0=有非零解 本题所用的知识点:P80定理2及其注释。

3.,=,秩且,阶方阵为设3)(4)(4,B r A r B A =B A 和的伴随矩阵为**B A 和,)(**B A r 则是 A (A) 1; (B) 2; (C) 3; (D) 4注:由于4)(=A r ,因而0≠A 。

由伴随矩阵的基本性质可知: 0**≠===nA E A AA A A因而0*≠A , 于是A *可逆。

进而r(A *B *)=r(B *)。

考研线性代数习题集(带答案)

考研线性代数习题集(带答案)第一部分专项同步练习第一章行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数10323211112)(x x x xx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9.已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-0100002000010 n n .7.行列式=--001)1(2211)1(111 n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211 ,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001031002112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是. 18.若齐次线性方程组=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a x a a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++ ; 10. 2 10001200000210001210001211.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a . 2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ;12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-;2. )(233y x +-;3. 1,0,2-=x ;4.∏-=-11)(n k ka5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

考研数学一线性代数历年真题全解2024

考研数学一线性代数历年真题全解2024线性代数是数学的一个分支,是研究向量空间和线性变换的理论。

在考研数学一科目中,线性代数占据了一定的比重,因此熟练掌握线性代数的知识是非常重要的。

本文将针对考研数学一线性代数部分历年真题进行全面解析,以帮助考生更好地备考。

第一部分:向量空间向量空间是线性代数中的重要概念,也是线性代数的基础知识之一。

在考研数学一中,向量空间的相关知识经常会出现在选择题和计算题中。

下面我们将从历年真题中选取一些典型题目,进行详细解析。

题目1:已知向量空间V中的两个非零向量a,b满足a+b和2a-3b线性相关,求向量a和向量b的线性相关关系。

解析:根据已知条件,可以得到方程组:k1(a+b) + k2(2a-3b) = 0化简可得:(2k1+k2)a + (k1-3k2)b = 0由于a和b非零,所以方程组只有零解。

即:2k1+k2=0k1-3k2=0解得k1=3,k2=-6所以,向量a和向量b的线性相关关系为:3a-6b=0。

题目2:设V是数域K上的线性空间,W是V的子空间。

证明:W和V/W的维数之和等于V的维数。

解析:设V的维数为n,W的维数为m,V/W的维数为k。

由定义可知,W是V的子空间,所以m≤n。

而V/W的维数k的定义是:V中所有代表元素的集合构成的集合的维数。

所以,V中任意一组代表元素的集合都可以作为V的一组基,维数为n。

而V中所有代表元素的集合的元素个数为k,所以k≤n。

综上所述,m+k≤n,并且n=m+k。

第二部分:线性变换线性变换在线性代数中扮演着重要的角色,在考研数学一线性代数部分也是一道重要的考点。

线性变换的相关内容通常会涉及到矩阵、特征值等知识。

下面我们将通过历年真题来进行详细解析。

题目3:设A是n阶方阵,证明:矩阵A与其伴随矩阵A*相乘的结果为A的行列式的n次方。

解析:根据定义,矩阵的伴随矩阵满足以下性质:AA*=|A|E其中,|A|为A的行列式,E为单位矩阵。

考研数学二(线性代数)历年真题试卷汇编9(题后含答案及解析)

考研数学二(线性代数)历年真题试卷汇编9(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(11)设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为A.α1,α3.B.α1,α2.C.α1,α2,α3.D.α2,α3,α4.正确答案:D解析:首先,4元齐次线性方程组A*x=0的基础解系所含解向量的个数为4-r(A*),其中r(A*)为A*的秩,因此求r(A*)是一个关键.其次,由Ax=0的基础解系只含1个向量,即4-r(A)=1,得r(A)=3,于是由r(A*)与r(A)的关系,知r(A*)=1,因此,方程组A*x=0的基础解系所含解向量的个数为4-r(A*)=3,故选项(A)、(B)不对.再次.由(1,0,1,0)T是方程组Ax=0或x1α1+x2α2+x3α3+x4α4=0的解,知α1+α3=0,故α1与α3线性相关,于是只有选项(D)正确.知识模块:线性方程组2.(15)设矩阵A=,若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为A.B.C.D.正确答案:D解析:对方程组的增广矩阵施行初等行变换(化成阶梯形):由于方程组有无穷多解,当然不能有唯一解,所以有(a-1)(a-2)=0,即a=1或a=2,此时系数矩阵的秩为2,由有解判定定理知,当且仅当a∈Ω且d∈Ω,所以选(D).知识模块:线性方程组3.(05分)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是A.λ1≠0B.λ2≠0C.λ1=0D.λ2=0正确答案:B解析:由λ1≠λ2及特征值的性质知α1,α2线性无关.显然,向量组{α1,A(α1+α2)}={α1,λ1α1+λ2α2}等价于向量组{α1,λ2α2}.当λ2≠0时,它线性无关,当λ2=0时,它线性相关,故α1,A(α1+α2)线性无关λ2≠0.知识模块:矩阵的特征值和特征向量填空题4.(01)设方程组有无穷多个解,则a=______.正确答案:-2解析:对方程组的增广矩阵作初等行变换:由此可见:(1)当a≠1且a ≠-2时,r(A)==3,方程组有唯一解;(2)当a=1时,r(A)=1,=2,方程组无解;(3)当a=-2时,r(A)==2<3,方程组有无穷多解.故当且仅当a=-2时方程组有无穷多解.知识模块:线性方程组5.(02)矩阵A=的非零特征值是______.正确答案:4解析:由A的特征方程=λ(λ-4)=λ2(λ-4)=0 知识模块:矩阵的特征值和特征向量解答题解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研复习线性代数选择题解析(十一)
对于考研的同学们来说,考研数学史决定考研成败的关键因素之一,而线性代数又是数学中的绝对重点,凯程教育小编为大家整理了线性代数考研习题的相关信息,希望对各位同学的复习有所帮助!
考研复习线性代数选择题解析(十二)
对于考研的同学们来说,考研数学史决定考研成败的关键因素之一,而线性代数又是数学中的绝对重点,凯程教育小编为大家整理了线性代数考研习题的相关信息,希望对各位同学的复习有所帮助!
凯程教育:
凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。

凯程考研的宗旨:让学习成为一种习惯;
凯程考研的价值观口号:凯旋归来,前程万里;
信念:让每个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构;
激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

如何选择考研辅导班:
在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。

判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。

还要深入了解教师的学术背景、资料著述成就、辅导成就等。

凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。

而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。

对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。

在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。

在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。

对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。

最好的办法是直接和凯程老师详细沟通一下就清楚了。

建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。

例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。

有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。

凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。

此外,最好还要看一下他们的营业执照。

相关文档
最新文档