专题训练坐标系中的轴对称
备考2021年中考数学复习专题:图形的变换_关于坐标轴对称的点的坐标特征,综合题专训及答案

1.答案: 2.答案:
3.答案:
4.答案: 5.答案:
6.答案: 7.答案: 8.答案:
9.答案:
10.答案:
11.答案:
12.答案: 13.答案:
14.答案:
15.答案:
(1) 求抛物线C1,C2的函数表达式; (2) 求A,B两点的坐标;
(3) 在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A,B,P,Q四点为顶点 的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.
13、
(2019越秀.中考模拟) (2019九上·兰州期末) 如 、 、 、 .
(1) 填空: ________;
(2) 点P是抛物线上一点,点P的横坐标大于1,直线 交直线 于点Q.若
,求点P的坐标;
(3) 点E在直线 上,点E关于直线 对称的点为F,点F关于直线 对称的点为G,连接 .当点F在x轴上时
,直接写出 的长.
15、
(2020北京.中考模拟) 在平面直角坐标系 中,直线 为一、三象限角平分线,点 关于 轴的对称点称为 的一
(1) 判断该函数图象的另一支所在的象限,并求m的取值范围; (2) 如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求 m的值.
12、 (2017陕西.中考真卷) 在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴 交于A,B两点,其中点A在点B的左侧.
(1) 求出△ABC的面积.
(2) 在图中作出△ABC关于y轴的对称图形△A1B1C1. (3) 写出点A1,B1,C1的坐标. 8、
第13章轴对称含辅助线证明题专题训练1 人教版数学八年级上册

人教版数学八年级上册第十三章轴对称含辅助线证明题专题训练11.如图所示,等边△ABC中,AD⊥BC于D,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC,垂足为点E,过点E作EF⊥AC,垂足为点F.(1)求证:2BD=2CF+BE;(2)若AB=4,过F作FQ⊥AB,垂足为Q,PQ=1,求BP的长.2.如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.3.已知等边△ABC的边长为4cm,点P,Q分别是直线AB,BC上的动点.(1)如图,当点P从顶点A沿AB向B点运动,点Q同时从顶点B沿BC向C点运动时,它们的速度都为1cm/s,到达终点时停止运动.设它们的运动时间为t秒,连接AQ,PQ.(i)当t=2时,求∠AQP的度数;(ii)当t为何值时,△PBQ是直角三角形?(2)如图,当点P在BA的延长线上,Q在BC上时,若PQ=PC,请探究AP,CQ和AC之间的数量关系,并说明理由.4.如图,在直角坐标系中,△ABC的三个顶点都在坐标轴上,A,B两点关于y轴对称,点C是y轴正半轴上一个动点,AD是角平分线.(1)如图1,若∠ACB=90°,直接写出线段AB,CD,AC之间数量关系;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图2,若∠ACB=100°,求证:AB=AD+CD.5.如图,∠ABC=∠BCD=90°,AB=BD,BD平分∠ABC,AE⊥BD于E,P为线段AD上一动点.(1)求∠DAE;(2)当P到BD的距离为1,到AB的距离为2时,求AE的长;(3)当P运动至CE延长线上时,连结BP,求证:BP⊥AD.6.如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8,求AD的长.7.如图,△ABC中,AB=AC,点D为△ABC外一点,DC与AB交于点O,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)作AM⊥CD于M,求证:BD+DM=CM.8.如图,△ABC是等边三角形,D、E为AC上两点,且AE=CD,延长BC至点F,使CF=CD,连接BD.(1)如图1,当D、E两点重合时,求证:BD=DF;(2)延长BD与EF交于点G.①如图2,求证:∠BGE=60°;②如图3,连接BE,CG.若∠EBD=30°,BG=4,则△BCG的面积为______.9.已知:如图,在△ABC中,∠ABC的平分线BP与AC边的垂直平分线PQ交于点P,过点P分别作PD⊥AB于点D,PE⊥BC于点E,若BE=10cm,AB=6cm,求CE的长.10.(12分)在ΔABC中,∠B=60∘,D是BC上一点,且AD=AC.(1)如图1,延长BC至E,使CE=BD,连接AE.求证:AB=AE;(2)如图2,在AB边上取一点F,使DF=DB,求证:AF=BC;(3)如图3,在(2)的条件下,P为BC延长线上一点,连接PA,PF,若PA=PF,猜想PC与BD的数量关系并证明.11.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1)等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE的长.2)已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为___(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ 交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)12.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结OB,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.13.已知,在等边△ABC中,E为BC上一点,连接AE并延长,在AE的延长线取一点D,连接BD、CD,使得∠BDC=120°.(1)如图1,求证:DA平分∠BDC;(2)如图2,在AC上取点F,使得CE=AF,连接BF交AD于点G,点M为GD 的中点,当ME=FG时,BD=8,求AD的长.14.如图,在四边形ABCD中,∠BAD=α,∠BCD=180∘−α,BD平分∠ABC.(1)如图,若α=90∘,根据教材中一个重要性质直接可得DA=CD,这个性质是_______(2)问题解决:如图,求证AD=CD;(3)问题拓展:如图,在等腰ΔABC中,∠BAC=100∘,BD平分∠ABC,求证:BD+AD=BC.15.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图,若BC=BD,求证:CD=DE;(2)如图,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.16.已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°(1)如图1,若∠ABE=63°,∠BAC=45°,求∠FAC的度数;(2)如图1请探究线段EF和线段AD有何数量关系?并证明你的结论;(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G 为线段EF的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.第10页,共1页。
初中数学专题复习(轴对称-最短距离问题)

初中数学专题复习(轴对称-最短距离问题)一.轴对称-最短路线问题1.(2020•荆门)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2B.2C.6D.3解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD=+,∴要求AC+BD的最小值,相当于在x轴上找一点P(n,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,如图1中,作点M关于x轴的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P ′M+P′N的最小值=P′N+P′Q=NQ==2,∴AC+BD的最小值为2.故选:B.2.(2020•贵港)如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为()A.﹣1B.+1C.D.+1解:作点E关于DC的对称点E',设AB的中点为点O,连接OE',交DC于点P,连接PE,如图:∵动点M在边长为2的正方形ABCD内,且AM⊥BM,∴点M在以AB为直径的圆上,OM=AB=1,∵正方形ABCD的边长为2,∴AD=AB=2,∠DAB=90°,∵E是AD的中点,∴DE=AD=×2=1,∵点E与点E'关于DC对称,∴DE'=DE=1,PE=PE',∴AE'=AD+DE'=2+1=3,在Rt△AOE'中,OE'===,∴线段PE+PM的最小值为:PE+PM=PE'+PM=ME'=OE'﹣OM=﹣1.故选:A.3.(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,故选:B.4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB 交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1D.解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴=,即=,解得,PO=故选:B.5.(2020•西宁)如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF是腰AC 的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为18.解:如图,作AH⊥BC于H,连接AM,∵EF垂直平分线段AC,∴MA=MC,∴DM+MC=AM+MD,∴当A、D、M共线时,DM+MC的值最小,∵等腰△ABC的底边BC=20,面积为120,AH⊥BC,∴BH=CH=10,AH==12,∴DH=CH﹣CD=5,∴AD===13,∴DM+MC的最小值为13,∴△CDM周长的最小值=13+5=18,故答案为18.6.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15.解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′作A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.7.(2020•毕节市)如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是.解:如图,连接CE交BD于点P,连接AP,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AP=CP,∴AP+EP=CP+EP=CE,此时AP+PE的最小值等于CE的长,∵正方形ABCD的边长为4,点E是边AB的中点,∴BC=4,BE=2,∠ABC=90°,∴CE==,∴AP+PE的最小值是,故答案为:.8.(2020•黑龙江)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴EG=CD,EG∥CD,连接ED∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=AD=,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×CD=.故答案为:.9.(2020•日照)如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.(1)证明:∵Rt△ABC中,∠C=90°,DF⊥CB,∴∠C=∠DFB=90°.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90°,∵∠DBF+∠ABC=90°,∠CAB+∠ABC=90°,∴∠DBF=∠CAB,∴△ABC≌△BDF(AAS);(2)解:∵△ABC≌△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.10.(2019•西藏)如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A.2B.2C.3D.解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=6,AE=2+2=4,∴BE===2,即PA+PB的最小值为2.故选:A.11.(2019•聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB 的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.12.(2019•黑龙江)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为4.解:如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC都是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵S△P AB=S△PCD,∴×4×x=××4×(6﹣x),∴x=2,∴AM=2,DM=EM=4,在Rt△ECD中,EC==4,∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC≥4,∴PD+PC的最小值为4.13.(2019•陕西)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.解:如图所示,以BD为对称轴作N的对称点N',连接PN',延长PN′交BC于M,根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.14.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.15.(2019•德阳)如图,在四边形ABCD中,BC∥AD,BC=AD,点E为AD的中点,点F为AE的中点,AC⊥CD,连接BE、CE、CF.(1)判断四边形ABCE的形状,并说明理由;(2)如果AB=4,∠D=30°,点P为BE上的动点,求△PAF的周长的最小值.解:(1)四边形ABCE是菱形,理由如下:∵点E是AD的中点,∴AE=AD.∵BC=AD,∴AE=BC.∵BC∥AD,即BC∥AE.∴四边形ABCE是平行四边形∵AC⊥CD,点E是AD的中点,∴CE=AE=DE,∴四边形ABCE是菱形(2)由(I)得,四边形ABCE是菱形.∴AE=EC=AB=4,且点A、C关于BE对称∵点F是AE的中点,AF=AE=2∴当PA+PF最小时,△PAF的周长最小即点P为CF与BE的交点时,△PAF的周长最小,此时△PAF的周长=PA+PF+AF=CF+AF,在Rt△ACD中,点E是AD的中点,则CE=DE,∠ECD=∠D=30°,∠ACE=90°﹣30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,CF⊥AE∴CF==2△PAF的周长最小=CF+AF=2.。
直角坐标系中的轴对称

直角坐标系中的轴对称目标:1、能理解平面直角坐标系中,与已知点关于x 轴或y 轴对称点的坐标的规律;2、能作出一个图形关于x 轴或y 轴对称的图形。
重点:用坐标表示点关于坐标轴对称的点的坐标。
难点:找对称点的坐标之间的关系、规律。
教学过程:一、创设情境承上启下动手画一画:已知点A 和一条直线l ,你能画出这个点关于已知直线的对称点吗?二、探索新知1.若A 点在直角坐标系中,且A 点坐标是(-2,3),你能作出A 点关于x 轴对称点'A 吗?能求'A 的坐标吗?能发现点A 与'A 的坐标的关系吗?猜测(,)P a b 关于x 轴对称点'P 的坐标吗?2.在上题中能作出A 点关于y 轴对称点''A 吗?能发现点A 与''A 坐标关系吗?能猜测 (,)P a b 关于于y 轴对称点''P 的坐标吗?三、新课归纳:点(x, y )关于x 轴对称的点的坐标为______;点(x, y )关于y 轴对称的点的坐标为_________。
· A l四、巩固新知3.填表4.如下图,△ABC 关于x 轴对称,点A 的坐标为(1,-2),写出点B 的坐标。
5. 四边形ABCD 的四个顶点的坐标分别为A (-5,1)、B (-2,1)、 C (-2,5) 、D (-5,4),分别作出四边形关于x 轴与y 轴对称的图形。
(1)(2)四、课后练习6.如图(2),利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC 关于x 轴和y 轴对称的图形.7.已知点P(2a+b,-3a)与点P`(8,b+2).(1)若点p 与点p`关于x 轴对称,则a=_____ b=_______.(2)若点p 与点p`关于y 轴对称,则a=_____ b=_______.五、拓展延伸9.分别作出点△ABC 关于直线x=1(记为m)和直线y=-1(记为n)对称的图形.10. 你能发现它们的对应点的坐标之间分别有什么关系吗?A B C Dm n。
中考数学复习《轴对称》专题训练-带含有参考答案

中考数学复习《轴对称》专题训练-带含有参考答案一、选择题1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)3.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,线段AB 的顶点均在格点上.在图中画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N均为格点,这样的线段能画()条.A.2 B.3 C.5 D.64.如图,在△ABC中,DE是AC的垂直平分线AB=5cm,BC=8cm,则△ABD的周长为()A.10cm B.13cm C.15cm D.16cm5.等腰三角形的周长为11,其中一边长为3,则该等腰三角形的底边长为()A.3B.5C.4或5D.3或56.如图,在Rt△ABC中∠ACB=90°,∠B=15°,AB的垂直平分线交AB于点E,交BC于点D,且BD=12cm,则AC的长是()A.12cm B.6cm C.4cm D.6√3cm7.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G,F,若FG=3,ED=6,则EB+DC的值为()A.7 B.8 C.9 D.108.如图,已知ΔABC是正三角形,D是BC边上任意一点,过点D作DF⊥AC于点F,ED⊥BC交AB于点E,则∠EDF等于()A.50°B.65°C.60°D.75°二、填空题9.某车标是一个轴对称图形,有条对称轴.10.在平面直角坐标系中,点M(a,3)与点N(5,b)关于y轴对称,则a﹣b=.11.如图,在△ABC中,边AB的垂直平分线分别交BC于点D,交AB于点E.若AE=3,△ADC的周长为8,则△ABC的周长为.12.如图,在△ABC中,AB=AC,AD=BD,∠A=36°,则图中等腰三角形的个数是.13.如图,在△ABC中AB=AC,∠C=30°,AB⊥AD,AD=6,BC的长是.三、解答题14.图①、图②均是由边长为1的小正方形组成的网格,每个小正方形的顶点称为格点,点A、B、C均在格点上.请用无刻度的直尺按下列要求在网格中作图.(1)在图①中,连接AC,以线段AC为腰作一个等腰直角三角形ACD;(2)在图②中确定一个格点D,并画出以A、B、C、D为顶点的四边形.使其为轴对称图形.15.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.16.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点△A1B1C1的坐标.17.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.18.如图,在△ABC中AB=AC,点D在△ABC内BD=BC,∠DBC=60°点E在△ABC外∠BCE=150°,∠ABE=60° .(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8求AD的长.参考答案1.B2.A3.C4.B5.D6.B7.C8.C9.310.﹣811.1412.313.1814.(1)解:如图①所示(2)解:如图②所示15.(1)解:∵、分别是的垂直平分线∴∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.16.(1)解:S△ABC= 12×5×3=152(或7.5)(平方单位)(2)解:如图.(3)解:A1(1,5),B1(1,0),C1(4,3). 17.(1)证明:∵AB=AC∴∠B=∠C在△FBD与△DCE中{BF=CD∠B=∠CBD=CE∴△FBD≌△DCE.∴DF=ED,即△DEF是等腰三角形(2)解:∵AB=AC,∠A=56°∴∠B=∠C= 12(180°−56°)=62°.∴∠EDF=∠B=62°.18.(1)解:∵BD=BC,∠DBC=60°∴△DBC是等边三角形,∴DB=DC,∠BDC=∠DBC=∠DCB=60°在△ADB和△ADC中{AB=ACAD=ADDB=DC∴△ADB≌△ADC,∴∠ADB=∠ADC,∴∠ADB= 12(360°﹣60°)=150°.(2)解:结论:△ABE是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE在△ABD和△EBC中{AB=EB∠ADB=∠BCE=150°∠ABD=∠CBE∴△ABD≌△EBC ∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)解:连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°∴∠EDC=30°,∴EC= 12DE=4,∵△ABD≌△EBC,∴AD=EC=4.。
专题133关于坐标轴对称的点的坐标特征-2021-2022学年八年级数学上(解析版)【人教版】

2021-2022学年八年级数学上册尖子生同步培优题典【人教版】专题13.3关于坐标轴对称的点的坐标特征姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共9小题,每小题3分,共27分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•拱墅区期末)若点A的坐标为(﹣3,4),则点A关于y轴的对称点的坐标为()A.(3,4)B.(3,﹣4)C.(﹣3,﹣4)D.(4,3)【分析】直接利用关于y轴对称点的性质得出答案.【解析】∵点A的坐标为(﹣3,4),∴点A关于y轴的对称点的坐标为(3,4).故选:A.2.(2020秋•芝罘区期末)已知点A(m,2)与点B(4,n)关于x轴对称,则m,n的值分别是()A.4,﹣2B.0,4C.4,2D.4,0【分析】直接利用关于x轴对称点的性质得出m,n的值.【解析】∵点A(m,2)与点B(4,n)关于x轴对称,∴m=4,n=﹣2,∴m,n的值分别是:4,﹣2.故选:A.3.(2021•萧山区二模)在平面直角坐标系中,点A(m,2)与点B(3,n)关于x轴对称,则()A.m=3,n=﹣2B.m=﹣3,n=2C.m=3,n=2D.m=﹣2,n=3【分析】直接利用关于x轴对称点的性质得出答案.【解析】∵点A(m,2)与点B(3,n)关于x轴对称,∴m=3,n=﹣2,故选:A.4.(2021•下城区模拟)在平面直角坐标系中,点A(m﹣1,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣2,n=3C.m=2,n=3D.m=﹣2,n=2【分析】直接利用关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即可得出答案.【解析】∵点A(m﹣1,2)与点B(3,n)关于y轴对称,∴m﹣1=﹣3,n=2,解得:m=﹣2,故选:D.5.(2021春•东湖区期中)在平面直角坐标系中,将点A(﹣2,﹣3)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标为()A.(0,﹣3)B.(2,﹣3)C.(4,﹣3)D.(0,3)【分析】直接利用平移的性质得出B点坐标,再利用关于x轴对称点的性质得出对应点坐标.【解析】∵将点A(﹣2,﹣3)向右平移2个单位长度得到点B,∴B(0,﹣3)则点B关于x轴的对称点C的坐标为(0,3).故选:D.6.(2020秋•太原期末)已知点P(2,﹣4)与点Q(6,﹣4)关于某条直线对称,则这条直线是()A.x轴B.y轴C.过点(4,0)且垂直于x轴的直线D.过点(0,﹣4)且平行于x轴的直线【分析】根据轴对称的性质解决问题即可.【解析】点P(2,﹣4)与点Q(6,﹣4)的位置关系是关于直线x=4对称,故选:C.7.(2020•巨野县模拟)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【分析】首先根据题意建立坐标系,然后再确定根据轴对称图形的定义确定位置.【解析】如图:小莹放的位置所表示的点的坐标是(﹣1,1).故选:B.8.(2020秋•郑州期末)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A 坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【分析】观察图形可知每四次对称为一个循环组依次循环,用2021除以4,然后根据商和余数的情况确定出变换后的点A所在的象限,然后解答即可.【解析】点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).故选:C.9.(2019秋•赣县区期末)在平面直角坐标系中,若点E关于M的对称点为F,则点M是线段EF的中点.如图,已知A(1,﹣1),B(﹣1,﹣1),C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点为P2,P2关于C的对称点为P3,P3关于A的对称点为P4,…,则点P2019的坐标是()A.(4,0)B.(﹣2,2)C.(2,﹣4)D.(﹣4,2)【分析】根据题意可得前6个点的坐标,即可发现规律每6个点一组为一个循环,根据2019÷6=336…3,进而可得点P2019的坐标.【解析】∵A(1,﹣1),B(﹣1,﹣1),C(0,1),点P(0,2)关于点A的对称点P1,∴1=0+x2,﹣1=2+y2,解得x=2,y=﹣4,所以点P1(2,﹣4);同理:P1关于点B的对称点P2,所以P2(﹣4,2)P2关于点C的对称点P3,所以P3(4,0),P4(﹣2,﹣2),P5(0,0),P6(0,2),…,发现规律:每6个点一组为一个循环,∴2019÷6=336…3,所以P2019与P3重合,所以点P2019的坐标是(4,0).故选:A.二、填空题(本大题共9小题,每小题3分,共27分)请把答案直接填写在横线上10.(2021春•沙坪坝区校级月考)已知点M (a ,﹣4)与点N (6,b )关于x 轴对称,那么a ﹣b 等于 2 .【分析】关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.据此可得a ,b 的值,进而得出a ﹣b 的值.【解析】∵点M (a ,﹣4)与点N (6,b )关于x 轴对称,∴a =6,b =4,∴a ﹣b =6﹣4=2,故答案为:2.11.(2020秋•沂南县期末)点P (﹣1,2021)关于y 轴对称的点的坐标为 (1,2021) .【分析】直接利用关于y 轴对称点的性质得出答案.【解析】点P (﹣1,2021)关于y 轴对称的点的坐标为(1,2021).故答案为:(1,2021).12.(2021•东莞市二模)已知点P (3,1)关于y 轴的对称点Q 的坐标是(a ,﹣1﹣b ),则ab 的值为 6 .【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案.【解析】∵点P (3,1)关于y 轴的对称点Q 的坐标是(a ,﹣1﹣b ),∴a =﹣3,﹣1﹣b =1,解得:b =﹣2,则ab 的值为:﹣3×(﹣2)=6.故答案为:6.13.(2021春•南岗区校级月考)已知点A (3x ﹣6,4y +15),点B (5y ,x )关于x 轴对称,则xy 的值是 9 .【分析】直接利用关于x 轴对称点的性质得出关于x ,y 的方程组,进而得出答案.【解析】∵点A (3x ﹣6,4y +15),点B (5y ,x )关于x 轴对称,∴{3x −6=5y 4y +15+x =0, 解得:{x =−3y =−3, 故xy =9.故答案为:9.14.(2020秋•平舆县期中)在平面直角坐标系中,点P (4,2)关于直线y =﹣1的对称点的坐标是 (4,﹣4) .【分析】利用图象法求解即可.【解析】如图,观察图象可知,点P关于直线y=﹣1的对称点Q的坐标为(4,﹣4),故答案为(4,﹣4).15.(2020秋•未央区期中)在平面直角坐标系中,点A(1,﹣1)和B(1,1)关于x轴对称.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可对称结论.【解析】点A(1,﹣1)和B(1,1)关于x轴对称,故答案为x.16.(2020秋•即墨区期末)如图,在直角坐标系中,长方形OABC的长为2,宽为1,将长方形OABC沿x 轴翻转1次,点A落在A1处,翻转2次,点A落在A2处,翻转3次,点A落在A3处(点A3与点A2重合),翻转4次,点A落在A4处,以此类推…,若翻转2021次,点A落在A2021处,则A2021的坐标为(3034,2).【分析】探究规律,利用规律解决问题即可.【解析】由题意A1(3,2),A2(A3)(5,0),A4(6,1),•,发现4次一个循环,∵2021÷4=505.....1,∴A2021的纵坐标与A1相同,横坐标=505×6+4=3034,∴A2021(3034,2),故答案为:(3034,2).17.(2020秋•双流区校级期中)嘉嘉和淇淇下棋,嘉嘉执圆形棋子,淇淇执方形棋子,如图,棋盘中心的圆形棋子的位置用(﹣1,1)表示,右下角的圆形棋子用(0,0)表示,淇淇将第4枚方形棋子放入棋盘后,所有棋子构成的图形是轴对称图形.则淇淇放的方形棋子的位置是(﹣1,2).【分析】首先确定平面直角坐标系,再根据轴对称图形的定义画出淇淇放的方形棋子的位置,即可解决问题.【解析】平面直角坐标系如图所示,淇淇放的方形棋子的位置如图,坐标为(﹣1,2),故答案为(﹣1,2).18.(2020•黄冈模拟)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是.A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.【解析】棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置是(﹣1,1)时构成轴对称图形.故答案为:B.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•昌图县期末)已知点A(a﹣5,1﹣2a),解答下列问题:(1)若点A到x轴和y轴的距离相等,求点A的坐标;(2)若点A向右平移若干个单位后,与点B(﹣2,﹣3)关于x轴对称,求点A的坐标.【分析】(1)直接利用点A在第一象限或第三象限或点A在第二象限或第四象限,分别得出答案;(2)直接利用平移的性质结合关于x轴对称点的性质得出答案.【解析】(1)若点A在第一象限或第三象限,则a﹣5=1﹣2a,解得:a=2,则a﹣5=1﹣2a=﹣3,∴点A的坐标为(﹣3,﹣3),若点A在第二象限或第四象限,则a﹣5+1﹣2a=0,解得a=﹣4,则a﹣5=﹣9,1﹣2a=9,∴点A的坐标为(﹣9,9),综上所述,点A的坐标为(﹣3,﹣3)或(﹣9,9);(2)∵若点A向右平移若干个单位,其纵坐标不变为(1﹣2a),又∵点A向右平移若干个单位后与点B(﹣2,﹣3)关于x轴对称,∴1﹣2a+(﹣3)=0,a=﹣1,a﹣5=﹣1﹣5=﹣6,1﹣2a=1﹣2×(﹣1)=3,即点A的坐标为(﹣6,3).20.(2020秋•兰州期中)已知点A (a ﹣1,5)和B (2,b ﹣1),试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ∥x 轴.【分析】(1)关于y 轴对称,纵坐标不变,横坐标变为相反数,据此可得a ,b 的值.(2)关于x 轴对称,横坐标不变,纵坐标变为相反数,据此可得a ,b 的值.(3)AB ∥x 轴,即两点的纵坐标相同,横坐标不相同,据此可得a ,b 的值.【解析】(1)A 、B 两点关于y 轴对称,则a ﹣1=﹣2,b ﹣1=5,∴a =﹣1,b =6;(2)A 、B 两点关于x 轴对称,则a ﹣1=2,b ﹣1=﹣5,∴a =3,b =﹣4;(3)AB ∥x 轴,则b ﹣1=5,a ﹣1≠2,∴b =6,a ≠3.21.(2020秋•麻城市期中)已知点A (2a ﹣b ,5+a ),B (2b ﹣1,﹣a +b ).(1)若点A ,B 关于x 轴对称,求a ,b 的值;(2)若点A ,B 关于y 轴对称,求(4a +b )2019的值.【分析】(1)根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求解即可;(2)根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数;”列方程组求出a 、b 的值,然后代入代数式进行计算即可得解.【解析】(1)∵点A ,B 关于x 轴对称,∴{2a −b =2b −15+a =−(−a +b), 解得{a =−8b =−5. (2)∵点A ,B 关于y 轴对称,∴{2a −b =−(2b −1)5+a =−a +b, 解得{a =−1b =3,∴(4a+b)2019=[4×(﹣1)+3]2019=﹣1.22.(2019秋•苍南县期末)在4×4的正方形网格中建立如图1、2所示的直角坐标系,其中格点A,B的坐标分别是(0,1),(﹣1,﹣1).(1)请图1中添加一个格点C,使得△ABC是轴对称图形,且对称轴经过点(0,﹣1).(2)请图2中添加一个格点D,使得△ABD也是轴对称图形,且对称轴经过点(1,1).【分析】(1)根据题意画出满足条件的点C即可.(2)根据题意画出满足条件的点C即可.【解析】(1)如图,点C即为所求.(2)如图,点D即为所求.23.(2019秋•咸丰县期末)如图,在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(﹣a,0),其中0<a<3,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.【分析】(1)根据关于y 轴对称点的坐标特点是横坐标互为相反数,纵坐标相同可以得到△A 1B 1C 1各点坐标,又关于直线l 的对称图形点的坐标特点是纵坐标相同,横坐标之和等于3的二倍,由此求出△A 2B 2C 1的三个顶点的坐标;(2)P 与P 1关于y 轴对称,利用关于y 轴对称点的特点:纵坐标不变,横坐标变为相反数,求出P 1的坐标,再由直线l 的方程为直线x =3,利用对称的性质求出P 2的坐标,即可得出PP 2的长.【解析】(1)△A 2B 2C 2的三个顶点的坐标分别是A 2(4,0),B 2(5,0),C 2(5,2);(2)如图1,当0<a <3时,∵P 与P 1关于y 轴对称,P (﹣a ,0),∴P 1(a ,0),又∵P 1与P 2关于l :直线x =3对称,设P 2(x ,0),可得:x+a 2=3,即x =6﹣a ,∴P 2(6﹣a ,0),则PP 2=6﹣a ﹣(﹣a )=6﹣a +a =6.24.(2020秋•武汉期中)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC向右平移五个单位,再向下平移四个单位,则平移后点A的对应点的坐标是(3,﹣1).(2)将△ABC沿x轴翻折,则翻折后点A的对应点的坐标是(﹣2,﹣3).(3)求点A关于直线y=x(即第一、第三象限的角平分线)的对称点D的坐标;请画图并说明理由.【分析】(1)让横坐标加5,纵坐标减4即可得到所求点的坐标;(2)让横坐标不变,纵坐标互为相反数可得所求点的坐标;(3)画出相关图形,可得点D的坐标.【解析】(1)平移后点A的对应点的横坐标为﹣2+5=3,纵坐标为3﹣4=﹣1,故答案为(3,﹣1);(2)翻折后点A的对应点的横坐标为﹣2,纵坐标为﹣3,故答案为(﹣2,﹣3);(3)由图中可以看出点D的坐标为(3,﹣2).。
15.1 第2课时 平面直角坐标系中的轴对称

解:如图所示:
y
A (0,4)
B (2,4)
C' (3,1)
O
C (3,-1) x
A' (0,-4)
B' (2,-4)
14
例2 已知点A(2a-b,5+a),B(2b-1,-a+b).
(1)若点A、B关于x轴对称,求a、b的值;
(2)若A、B关于y轴对称,求(4a+b)2016的值.
解:(1)∵点A、B关于x轴对称,
象限,求a的取值范围.
解:依题意得P点在第四象限,
a+1>0 2a 1<0.
解得 1<a< 1 2
即a的取值范围是 1<a< 1
2
方法总结:解决此类题,一般先根据点的坐标关于坐
标轴对称,判断出点或对称点所在的象限,再由各象
限内坐标的符号,列不等式(组)求解. 16
当堂练习
1.平面直角坐标系内的点A(-1,2)与点B(-1,-2)
2
如图,是一幅老北京城的 示意图,其中西直门和东 直门是关于中轴线对称的. 如果以天安门为原点,分 别以长安街和中轴线为x轴 和y轴建立平面直角坐标系. 根据如图所示的东直门的 坐标,你能说出西直门的 坐标吗?
3
讲授新课
一 用坐标表示轴对称
互动探究
问题1:已知点A和一条直线MN,你能画出这
个点关于已知直线的对称点吗?
殊点(如多边形的顶点)的对应点的坐标,描出并连接 这些点,就可以得到这个图形的轴对称图形.
(一找二描三连)
12
针对训练: 平面直角坐标系中,△ABC的三个顶点坐标分别为 A(0,4),B(2,4),C(3,-1). (1)试在平面直角坐标系中,标出A、B、C三点; (2)若△ABC与△A'B'C'关于x轴对称,画出 △A'B'C',并写出A'、B'、C'的坐标.
八年级数学一次函数之轴对称最值问题(人教版)(专题)(含答案)

一次函数之轴对称最值问题(人教版)(专题)一、单选题(共7道,每道15分)1.如图,在平面直角坐标系中,已知点A(2,3),点B(-2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标( )A.(0,0)B.(0,1)C.(0,-1)D.(-1,0)答案:D解题思路:1.思路分析:2.解题过程:如图,作点A关于x轴的对称点C,连接BC,则直线BC与x轴的交点即为使点P到A,B两点的距离之和最小的点.设点B,C所在直线的表达式是y=kx+b,∵B(-2,1),C(2,-3),在直线y=kx+b上,∴,∴,∴,∴当y=0时,x=-1,∴图象与x轴交于点(-1,0).故选D.试题难度:三颗星知识点:略2.已知点M(1,2)和点N(5,6),点P是y轴上的一个动点,当△PMN的周长最小时,点P 的坐标是( )A.(0,)B.(0,1)C.(,0)D.(-1,0)答案:A解题思路:1.思路分析:C△PMN=PM+PN+MN,MN的长度固定,可转化为PM+PN最小2.解题过程:如图,作点M关于y轴的对称点M′,连接M′N,则直线M′N与y轴的交点即为使PM+PN最小的点.设点M′,N所在直线的表达式是y=kx+b,∵M′(-1,2),N(5,6)在直线y=kx+b上,∴,∴,∴,∴当x=0时,y=,∴图象与y轴交于点(0,).故选A.试题难度:三颗星知识点:略3.如图,已知A(1,3),B(5,1),长度为2的线段PQ在x轴上平行移动,当AP+PQ+QB 的值最小时,点P的坐标为( )A. B.C.(1,0)D.(5,0)答案:B解题思路:1.思路分析2.解题过程通过题意可知,PQ的长固定,所以若要AP+PQ+QB的值最小,则AP+BQ最小即可.如图,BQ向左平移两个单位到,此时就转化为要求即可.作出点关于x轴的对称点,此时连接,与x轴的交点即为所求的点P.根据题意可得,点的坐标为(3,-1),∴的直线解析式为:,∴点P的坐标为.故选B试题难度:三颗星知识点:略4.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A,B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E,F为边OA上的两个动点,且EF=2,则当四边形CDEF的周长最小时,点F的坐标为( )A. B.C. D.答案:B解题思路:1.思路分析2.解题过程通过题意可知,EF和CD的长固定,所以若要四边形CDEF的周长最小,则DE+CF最小即可.如图,CF向左平移两个单位到,此时就转化为要求即可.作出点D关于x轴的对称点,此时连接,与x轴的交点即为点E.根据题意可得,点的坐标为(1,4),点的坐标为(0,-2),∴的直线解析式为:,∴点E的坐标为,∴点F的坐标为.故选B试题难度:三颗星知识点:略5.如图,当四边形PABN的周长最小时,a的值为( )A. B.1C.2D.答案:A解题思路:1.思路分析2.解题过程通过题意可知,PN和AB的长固定,且PN=2,所以若要四边形PABN的周长最小,则AP+BN最小即可.如图,BN向左平移两个单位到,此时就转化为要求即可.作出点关于x轴的对称点,此时连接,与x轴的交点即为点P.根据题意可得,点的坐标为(2,-1),∴的直线解析式为:,∴点P的坐标为,∴.故选A试题难度:三颗星知识点:略6.如图,在平面直角坐标系中,已知A(0,1),B(3,-4),在x轴上有一点P,当的值最大时,点P的坐标是( )A. B.(0,0)C.(-1,0)D.(3,0)答案:C解题思路:1.思路分析2.解题过程故选C试题难度:三颗星知识点:略7.如图,已知直线是第一、三象限的角平分线,A,B两点的坐标分别为,B(1,2),在直线上找一点P,使的值最大,则此时点P的坐标是( )A.(-1,-1)B.C.(-2,-2)D.答案:A解题思路:1.思路分析2.解题过程故选A试题难度:三颗星知识点:略第11页共11页。