随机实验与样本空间

合集下载

概率论 随机试验与样本空间

概率论 随机试验与样本空间

考试有技巧,学习无捷径。 平时的学习要注重知识点的掌握,踏踏实实,这 才是方法中的方法。 古人云:“梅花香自苦寒来” “书山有路勤为径”。 相信自己,你会成为河南理工大的传说!
概率论与数理统计
第1章 概率论基础
1.1 随机试验与样本空间 2.2 随机事件及其概率 3.3 古典概型与几何概型 3.4 条件概率与乘法公式 3.5 全概率世纪30年代,前苏联的数学家柯尔莫戈洛夫 以勒贝格的测度论为基础,给出了概率论的公理化体系, 影响颇大。 柯 尔 莫 戈 洛 夫
【概率论简史】
我国的概率论研究起步较晚,从1957年开始,先驱者 是许宝騄先生。1957年暑期许老师在北大举办了一个概率 统计的讲习班,从此,我国对概率统计的研究有了较大的 发展,现在概率与数理统计是数学系各专业的必修课之一 ,也是工科,经济类学科学生的公共课。
许宝騄先生
王梓坤 院士
陈木法 院士
彭 实 戈 院 士
严加安 院士 马 志 明 院 士
关于数理统计 统计学的英文词 statistics 源出于拉丁文,是由 status(状态、国家)和statista(政治家)衍化而来 的,可见起源很早并和国家事务的管理需求有关。
在中国,周朝就设有统计官员18名,5个层次,5个级 别,其官职叫“司书”,东北师范大学校长史宁中先生请该 校历史教授考证:司书就是做统计的官员。
贝叶斯
皮尔逊
现代数理统计作为一门独立学科的奠基人是英国的数 学家费希尔(R.A.Fisher) 1946年,瑞典数学家克拉默(H.Cramer)发表了《统计 学的数学方法》,系统总结了数理统计的发展,标志着现 代数理统计学的成熟。
费希尔
克拉默
图是10马克的德国纸币,纸币上的这个人就是高斯。 而纸币上印有一个函数表达式、还画一个曲线的,这个 函数曲线是正态随机变量的概率密度函数曲线,正态分 布又叫“高斯分布”。没有高斯和正态分布,统计就没 有今天的辉煌。

1.1-1.2随机试验、样本空间

1.1-1.2随机试验、样本空间

确定性现象的特征
条件完全决定结果
2. 不确定性现象
即在一定条件下可能出现也可能不出现的现象 即在一定条件下可能出现也可能不出现的现象 实例1 实例 在相同条件下掷 一枚均匀的硬币, 一枚均匀的硬币,观察 正反两面出现的情况. 正反两面出现的情况
结果有可能出现正 结果有可能出现正 也可能出现反面 出现反面. 面也可能出现反面
试写出下列试验的样本空间
试验1 对同一目标射击 次,考虑击中的 对同一目标射击10次 试验 次数, 次数,则 样本空间S= 样本空间 试验2 朝阳区 朝阳区120急救台一昼夜接受到的 试验 急救台一昼夜接受到的 呼唤次数 样本空间S= 样本空间 试验3 任取一块手机电池, 试验 任取一块手机电池,测试其寿命 样本空间S= 样本空间
试验不同, 对应的样本空间也不同. 说明 1. 试验不同 对应的样本空间也不同 2. 同一试验 , 若试验目的不同,则对应 若试验目的不同 则对应 间也不同. 的样本空 间也不同
建立样本空间,事实上就是建立随机现 象的数学模型. 所以在具体问题的研究 中 , 描述随机现象的第一步就是建立 样本空间.
二、随机事件的概念
1. 基本概念
的子集称 随机事件 随机试验 E 的样本空间 S 的子集称 的随机事件, 简称事件. 为 E 的随机事件 简称事件 用大写字母表示:A,B,C等 用大写字母表示: 等 如:样本空间 S = { HHH , HHT , HTH , THH , HTT , TTH , THT , TTT }. A=“正面出现一次”={HTT,THT,TTH} B=“正面出现两次”={HHT,HTH,THH}
ABC
ABC
AB C
ABC
AU B UC AB U BC U AC

随机试验与样本空间PPT

随机试验与样本空间PPT

概率的概念形成于16世纪,与用投掷骰子的方法进行赌博有密切的关系.
1
1654年,一个名叫德梅尔(De Mere,法)的赌徒就“两个赌徒约定赌若干局,且谁先赢c局便算赢家,若在一赌徒胜a局(a<c),另一赌徒胜b局(b<c)时便终止赌博,问应如何分赌本”为题求教于数学家帕斯卡(Pascal,法,1623-1662),帕斯卡与费玛(Fermat,法,1601-1665)通信讨论了这一问题,并用组合的方法给出了正确的解答.
概率论与数理统计
点击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。
第1章 概率论基础
1.2 随机事件及其概率
1.1 随机试验与样本空间
1.3 古典概型与几何概型
1.4 条件概率与乘法公式
1.5 全概率公式和贝叶斯公式
独立性






第1章 概率论基础
概率论是从数量化的角度来研究现实世界中一类不确定现象(随机现象)规律性的一门数学学科,20世纪以来,广泛应用于工业、国防、国民经济及工程技术等各个领域.本章介绍随机事件与概率、古典概型与几何概型、条件概率与乘法公式等概率论中最基本、最重要的概念和概率计算方法.
随机试验通常用大写字母E表示.
1.1.1 随机试验
随机试验
说明 随机试验简称为试验, 是一个广泛的术语.它包括各种各样的科学实验, 也包括对客观事物进行的 “调查”、“观察”或 “测量” 等.
“抛一枚硬币观察哪一面朝上”:
定义1.1 随机试验的一切可能基本结果组成的集合称为样本空间,记为 = { },其中 表示基本结果,又称为样本点.
【例1.1】下面给出几个随机试验的样本空间.
研究随机现象首先要了解它的样本空间.

概率论基础知识

概率论基础知识

§4 条件概率与乘法公式
一、条件概率: 事件B发生的条件下事件A发生的概率,定义为
P( AB ) P( B ) P( A | B ) 0, P( A | B )
(当 P( B ) 0 时). (当 P( B ) 0 时).
注: (1) 条件概率 P( A | B ) 实际上是在缩小的样本空间 B 上 求 A 发生的概率 : K P( A | B ) AB ; NB 而无条件概率P( A) 是在原样本空间 内求 A 发生的概率 : K P( A) A N
§5 事件的独立性
若一个事件发生的概率不受另一事件发生的影响,
则称这两个事件是相互独立的。或者说,若 P(B|A)=P(B), 则称 A 与 B 相互独立。 注:事件A与 B 相互独立当且仅当 P(AB)=P(A) P(B).
例9 某厂生产的100个零件中有5个次品,采用有放回抽样,求 抽出的第 1 件为正品且第 2 件是次品的概率,及第二次抽到次 品的概率。 解:设 A为第一次抽到的是正品;B为第二次抽到的是次品。
(6) 互不相容事件(互斥事件): 若A ∩ B= ,则称事件A与事件B 是互不相容的。互不相容事件不可能同时发生。 (7) 事件的差:属于事件A 但不属于事件B 的样本点构成的集 合, 称为事件A与事件B 的差,记为 A-B。事件A-B 发生当且 仅当事件A 发生但事件B不发生。 注:A B AB;
概率论基础知识
§1. 概率论中的基本概念
一、随机试验、样本空间和事件
1.随机试验:具有两个或两个以上可能的结果,但事先无法确定会出 现哪个结果的观察或试验。如投掷一枚硬币可能出现正面或反面;明 天的天气可能是阴、晴或雨;每天到达某一商店的顾客数;某商场的 月销售额;某时段到达一个电话交换机的呼叫次数,等等,观察或统 计这些现象的结果,就是在进行随机试验。 2. 样本与样本空间:随机试验可能产生的各个不同结果都称为样本, 由所有样本组成的集合称为该随机试验的样本空间,通常记为。 3. 随机事件(简称事件):样本空间的任一个子集合都称为这个样本 空间上的一个随机事件。当随机事件中所含的任何一个样本出现时, 便称该事件发生了。 注: (1) 整个样本空间作为一个事件,称为必然事件。

§1.1 机事件与样本空间

§1.1 机事件与样本空间

§1.1 随机事件与样本空间随机事件与样本空间是概率论中的两个最基本的概念。

一、 基本事件与样本空间对于随机试验来说,我们感兴趣的往往是随机试验的所有可能结果。

例如掷一枚硬币,我们关心的是出现正面还是出现反面这两个可能结果。

若我们观察的是掷两枚硬币的试验,则可能出现的结果有(正、正)、(正、反)、(反、正)、(反、反)四种,如果掷三枚硬币,其结果还要复杂,但还是可以将它们描述出来的,总之为了研究随机试验,必须知道随机试验的所有可能结果。

1、 基本事件通常,据我们研究的目的,将随机试验的每一个可能的结果,称为基本事件。

因为随机事件的所有可能结果是明确的,从而所有的基本事件也是明确的,例如:在抛掷硬币的试验中“出现反面”,“出现正面”是两个基本事件,又如在掷骰子试验中“出现一点”,“出现两点”,“出现三点”,……,“出现六点”这些都是基本事件。

2、 样本空间基本事件的全体,称为样本空间。

也就是试验所有可能结果的全体是样本空间,样本空间通常用大写的希腊字母Ω表示,Ω中的点即是基本事件,也称为样本点,常用ω表示,有时也用A,B,C 等表示。

在具体问题中,给定样本空间是研究随机现象的第一步。

例1、 一盒中有十个完全相同的球,分别有号码1、2、3……10,从中任取一球,观察其标号,令=i {取得球的标号为i },=i 1,2,3,…,10. 则Ω={1,2,3,…,10},=i ω{标号为i },=i 1,2,3,…,101ω,2ω,…, 10ω为基本事件(样本点)例2 在研究英文字母使用状况时,通常选用这样的样本空间: Ω={空格,A,B,C,…,X,Y,Z}例 1,例 2讨论的样本空间只有有限个样本点,是比较简单的样本空间。

例3讨论某寻呼台在单位时间内收到的呼叫次数,可能结果一定是非负整数而且很难制定一个数为它的上界,这样,可以把样本空间取为Ω={0,1,2,3,…}这样的样本空间含有无穷个样本点,但这些样本点可以依照某种顺序排列起来,称它为可列样本空间。

1-1随机试验随机事件和样本空间

1-1随机试验随机事件和样本空间
23
概率论与集合论有关概念的对应关系
概率论
样本点
样本空间
集合论
元素
全集
记号
e
S
随机事件
基本事件
子集
单点集
A , B , C ……
{e}
不可能事件
空集
Φ
24
北京邮电大学世纪学院
例1、设试验为抛一枚硬币,观察是正面还 是反面,则样本空间为: S={正面,反面} 例2、设试验为从装有三个白球(记为1,2,3号) 与两个黑球(记为4,5号)的袋中任取两个球. (1)观察取出的两个球的颜色,则样本空间为: S={e00, e11, e01} e00 表示“取出两个白球”, e11 表示“取出两个黑球”, e01 表示“取出一个白球与一个黑球”
北京邮电大学世纪学院
五、随机数学简史
古——艺术及文学作品,游戏、决策
古希腊——哲学与宗教的思考 文艺复兴——数学讨论
北京邮电大学世纪学院
15
第一章 概率论的基本概念
§1.1 随机试验、随机事件和样本空间
说明 1. 随机现象揭示了条件和结果之间的非确定性 联系, 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶 然性, 但在大量重复试验或观察中, 这种结果的出现
北京邮电大学世纪学院
19
(2)
试验的所有可能结果:
正面,反面;
(3) 进行一次试验之前不能 故为随机试验. 确定哪一个结果会出现.
同理可知下列试验都为随机试验 1.“抛掷一枚骰子,观察出现的点数”.
2.“从一批产品中,依次任选三 件,记 录出现正品与次品的件 数”.
北京邮电大学世纪学院
20
3. 记录某公共汽车站某

概率论 样本空间、随机事件

概率论 样本空间、随机事件

S4 ={1,2,3,4,5,6}; S5 ={0,1,2…}; S6 ={t | t≥0} t为灯泡寿命; S7 ={(x,y)|T0≤x≤y≤T1},这里x表示最低温度,y 表示最高温度,并设这一地区的温度不会小 于T0,也不会大于T1。 S8 ={(x,y)|x2+y2≤100}, 注意:样本空间的元素是由试验的目的所确 定的。例如,在E2和E3种同是将一枚硬币连 抛三次,由于试验的目的不一样,其样本空 间也不一样。
反之,当且仅当“接点a未闭合”与“接点 b、c都未闭合”二事件中至少有一事件发 生时,指示灯不亮;所以有

这个等式也可以由等式 D= A(B∪C) 利用De Morgan对偶律得到.事实上,我 们有
例7 设A,B,C,D是四个事件,用A,B,C, D的运算关系表示下列事件。 (1)A1:“A,B,C,D中仅有A发生” (2)A2:“A,B,C,D中恰有一个发生” (3)A3:“A,B,C,D中至少有一个发生” (4)A4:“A,B,C,D中至少有两个发生” (5)A5:“A,B,C,D中至多有一个发生” (6)A6:“A,B,C,D中至多有两个发生” (7)A7:“A,B,C,D都不发生” (8)A8:“A,B,C,D不都发生” (9)A9:“A,B,C,D中至多一个发生,但D 不发生” (10)A10:“A,B,C,D中至多一个不发生”
7. 事件的对立
AB , A B
— A 与B 互相对立 A 每次试验 A、 B中 有且只有一个发生 称B 为A的对立事件 (or 逆事件), 记为 B A
注意:“A 与B 互相对立”与 “A 与B 互斥”是不同的概念
B A
运算律
事件 运算 对应 集合 运算
吸收律

随机试验,样本空间,随机事件的关系

随机试验,样本空间,随机事件的关系

在概率论中,随机试验、样本空间和随机事件是三个基本概念,它们之间存在密切的关系。

随机试验是指具有随机性质的实验,其结果是不确定的。

例如,掷一颗骰子、从一堆牌中抽出一张牌等都是随机试验。

样本空间是指随机试验所有可能的结果的集合。

样本空间的元素被称为样本点。

例如,掷一颗骰子的样本空间为{1,2,3,4,5,6}。

随机事件是指在随机试验中出现的某些结果构成的集合。

一个随机事件可以包含一个或多个样本点。

例如,掷一颗骰子,出现偶数的事件可以表示为{2,4,6}。

一个事件发生的条件是其所包含的某个(些)样本点出现在试验结果中。

三者之间的关系可以描述为:随机试验确定了样本空间,而样本空间包含了所有可能的结果;随机事件可以看做是样本空间的子集,每个随机事件都包含样本空间中的一些样本点;同时,随机事件的出现与试验结果有关,即当试验结果为随机事件中的某个元素时,该事件发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章随机事件的概率第一节随机事件
引言
确定性现象条件决定结果
两类现象
随机性现象条件不能决定结果
概率论与数理统计研究的对象:随机现象
1.水在1个大气压下,加热到100度:沸腾确定
2.向上抛硬币:落到地面确定
3.向上抛硬币落到地面:正面向上随机
产生随机性的原因?
一个现象的发生,往往受多个甚至是无数多个因素的影响,其中大量因素的影响是微弱的,时隐时现的,导致现象的结果呈现随机性。

要研究随机现象的特点及性质,需要进行多次试验观测。

如何描述?数学上如何表示?
随机试验与样本空间
1.试验:各种科学实验和对某事物的观测的统称.
2.随机试验下列试验的特点?
E1:掷一粒骰子,观察出现的点数.
E2:抛一枚硬币两次,观察正反面出现的情况.
E3:将一枚硬币连续抛两次,观察正面出现的次数.
E4:记录某大商场一天内进入的顾客人数. E5:在一大批灯管中任选一个,测试其寿命.
具有以下特点的试验称为随机试验.
1)可以在相同的条件下重复进行;
2)可能的结果不止一个,且试验前明确;3)试验之前不能确定哪一个结果会出现.
3. 样本空间Ω:随机试验E的所有可能结果组成的集合.样本点:Ω中的元素,即E的每个结果ω.
例1 写出下列随机试验的样本空间
E1掷一粒骰子,观察出现的点数.
1{1,2,3,4,5,6}
Ω=
E 2抛一枚硬币两次,观察正反面出现的情况.E 3将一枚硬币连续抛两次,观察正面出现的次数.},,,{2TT TH HT HH =Ω}2,1,0{3=ΩE 4:记录某大超市一天内进入的顾客人数4{0,1,2,3,4,}
Ω=
E5: 在一大批灯管中任意抽取一个,测试其寿命.
5{0} t t
Ω=≥
E6: 测量某地某天某时的气温
6{|50} t t
Ω=≤≤
-50
休息,休息一下!。

相关文档
最新文档