数字信号处理 第七章
数字信号处理第七章

数字信号处理第七章第七章数字滤波器设计7.1:无限脉冲响应滤波器的阶数估计q7.1用mattab确定一个数字无限冲激响应低通滤波器所有四种类型的最低阶数。
指标如下:40khz的抽样率,,4khz的通带边界频率,8khz的阻带边界频率,0.5db的通带波纹,40db的最小阻带衰减。
评论你的结果。
答:标准通带边缘角频率wp是:标准阻带边缘角频率WS为:理想通带波纹rp是0.5db理想阻带波纹rs是40db1.使用这些值,巴特沃斯低通滤波器的最低阶数为n=8,相应的标准通带边缘频率wn 为0.24692.使用这些值得到切比雪夫1型低通滤波器最低阶数n=5,相应的标准通带边缘频率wn是0.2000.3/使用这些值,切比雪夫2型低通滤波器n=5的最低阶数和相应的标准通带边缘频率wn为0.40004.使用这些值得到椭圆低通滤波器最低阶数n=8,相应的标准通带边缘频率wn是0.2000.从以上结果中观察到椭圆滤波器的阶数最低,并且符合要求。
问题7。
2.用MATLAB确定四种数字无限冲激响应高通滤波器的最低阶数。
指标如下:3500hz采样率、1050hz通带边界频率、600Hz阻带边界频率、1dB通带纹波和50dB最小阻带衰减。
对结果的评论a:标准通带边缘角频率WP为:标准阻带边缘角频率ws是:理想通带纹波RP为1dB,理想阻带纹波RS为50dB1.使用这些值得到巴特沃斯高通滤波器最低阶数n=8,相应的标准通带边缘频率wn是0.5646.2.使用这些值,切比雪夫1高通滤波器的最低阶数为n=5,相应的标准通带边缘频率wn为0.60003.使用这些值得到切比雪夫2型高通滤波器最低阶数n=5,相应的标准通带边缘频率wn是0.3429.4.使用这些值,椭圆低通滤波器的最低阶数n=4,相应的标准通带边缘频率wn为0.6000。
从上述结果可以看出,椭圆滤波器的阶数最低,满足要求。
q7.3用matlab确定一个数字无限冲激响应带通滤波器所有四种类型的最低阶数。
数字信号处理第七章有限单位冲激响应FIR数字滤波器的设计方法(共95张PPT)

线性相位分析
H (z)z (N 2 1 )N n 0 1h (n ) 1 2Z (n (N 2 1 )) 1 2Z (n (N 2 1 ))
H (ej)e e j j(( N )2 1) N n 0 1 h( n) c o s(n (N 2 1 ) ) (1) H ()
m 0
即 H (z) z (N 1 )H (z 1 )
H (z) z (N 1 )H (z 1 )
所以有: h (z) 1H (z) z (N 1 )H (z 1 ) 2
1N 1h (n )z nz (N 1 )zn 2n 0
z (N 2 1 )N n 0 1 h (n ) 1 2Z (n (N 2 1 )) 1 2Z (n (N 2 1 ))
m1
(N 1)/2a(n)con s)(
n0
其中: a ( 0 ) h (N 1 ),a ( n ) 2 h ( n N 1 ),( n 1 )
2
2
由于con s对 0,,2
是偶对称的。
因此,H()对0,,2
为偶对称。
线性相位滤波器的幅度特点
2、h(n)偶对称,N为偶数
对(1)式与如上合并项,注意到由于N为偶数, h(N 1) 项即为0,则
四种线性相位滤波器
偶对称单位冲激响应
h (n ) =h (N- 1-n )
相位响应
( ) N 1 2
情
况
( )
1
o
- N( - 1)
N为 奇 数 h (n )
0 a (n )
N- 1 n
0
N 1
n
2
( N 1) / 2
H ( ) a (n) cos n
n0
精品课件-数字信号处理(第三版) 刘顺兰-第7章

第7章数字信号处理中的有限字长效应
7.1.2 定点制误差分析 1. 数的定点表示 定点制下,一旦确定了小数点在整个数码中的位置,在整个
运算过程中即保持不变。因此,根据系统设计要求、 数值范围来 确定小数点处于什么位置很重要,这就是数的定标。 数的定标有Q表示法和S表示法两种。Q表示法形如Qn,字母Q后的 数值n表示包含n位小数。如Q0表示小数点在第0位的后面,数为整 数;Q15 表示小数点在第15位的后面,0~14位都是小数位。S表 示法则形如Sm.n,m表示整数位,n表示小数位。以16位DSP为例, 通过设定小数点在16位数中的不同位置,可以表示不同大小和不 同精度的小数。表7.1列出了一个16位数的16种Q表示、 S表示及 它们所能表示的十进制数值范围。
小的正数: (01.000..0)2×2-127=1×2-127≈5.9×10-39
(4) 当S=1,E=-127,F的23位均为1时,表示的浮点数为绝 对值最小的负数:
(10.111..1)2×2-127=(-1-2-23)×2-127≈-5.9×10-39 双精度浮点数占用8个字节(64位)存储空间,包括1位符号位、 11位阶码、 52位尾数,数值范围为1.7E-308~1.7E+308。
第7章数字信号处理中的有限字长效应
乘除运算时,假设进行运算的两个数分别为x和y,它们的Q 值分别为Qx和Qy,则两者进行乘法运算的结果为xy,Q值为Qx+Qy, 除法运算的结果为x/y,Q值为Qx-Qy。
在程序或硬件实现中,上述定标值的调整可以直接通过寄存 器的左移或右移完成。若b>0,实现x×2b需将存储x的寄存器左 移b位;若b<0,实现x×2b则需将存储x的寄存器右移|b|位即可。
称为小数点位置。
精品课件-数字信号处理-第7章

xA (n) x(n) jxˆ(n)
(7-7)
式中 xˆ(n) 是时间离散信号x(n)
xˆ(n) x(n) h(n)
(7-8)
解析信号对实信号来说就是有一阶导数的连续信号。由此意 义来说,任何序列都不是解析信号,因为它是一个以整数为变量 的函数,但xA(n)是xA(t)的采样,如果xA(t)是解析的, 我们仍认 为xA(n)也是解析的, 这是对解析信号的修正。
第七章 离散希尔伯特变换
7
h(n) |H(j )|
-
n) π
2
- π 2
(a)
-7 -6 -5 -4 -3 -2-1
1 2 3 4 5 6 7 n
(b)
图7.1 (a) 频域特性; (b) 时域特性
第七章 离散希尔伯特变换
7
7.4 因果序列傅里叶变换下的希尔伯特变换
当xA(n)是解析序列时,其实部和虚部成希尔伯特变换关系。 它对应的频谱则是单边的。如果把频谱看成解析的,即其实部与 虚部成希尔伯特变换关系,则对应的时域序列应是单边的, 即 因果的。本节主要讨论因果序列傅里叶变换的希尔伯特变换。
第七章 离散希尔伯特变换
7
7.2 时间连续信号的希尔伯特变换
给定一时间连续信号x(t),其希尔伯特变换 xˆ(t)定义为
xˆ(t) 1 x( )d 1 x(t )d x(t) 1
π t
π
πt
(7-1)
xˆ(t) 可以看成是x(t)通过单位冲激响应 h(t) 1 滤波器
的输出。
第七章 离散希尔伯特变换
7
在时间连续信号处理中解析信号是一个重要的概念,本章我 们将其推广到时间离散信号。从形式上说不能把复时间离散信号 或复序列看成是解析函数,因为它是一个以整数为变量的函数, 但是也可以按照类似的处理方式,将复序列之实部和虚部联系起 来使复序列的频谱在单位圆上的-π≤ω<0范围内为零。用类似 的方法也可以将周期性(或有限时宽)序列的傅里叶变换之实部 和虚部联系起来,在这种情况下,“因果性”条件是,该周期序 列在各周期的后半部为零。根据对偶关系,对于时间序列呈单边 特性的因果序列,在频域(其实部与虚部)也应存在某种变换关系。 最小相位序列是一类很重要的信号, 其傅里叶变换幅度和相位 之间存在希尔伯特变换关系。
数字信号处理第三版第七章

对称,是满足式(7.1.9)的一组解,
因为cos[ω(n-τ)]关于n=τ偶对称,所以要求τ和h(n)满
足如下条件:
()
,
N1
2
2
h(n)h(N1n), 0≤ n≤ N1
(7.1.10)
2. 线性相位FIR滤波器幅度特性Hg(ω)的特点 实质上,幅度特性的特点就是线性相位FIR滤波
因为cos[ω(n-τ)]关于ω=0, π, 2π三点偶对称,所以由 式(7.1.11)可以看出,Hg(ω)关于ω=0, π, 2π三点偶对称。 因此情况1可以实现各种(低通、高通、带通、带阻)滤 波器。
情况2: h(n)=h(N-n-1), N为偶数。
仿照情况1的推导方法得到:
H ( e j ) H g () e j = N 1 h ( n ) e j n e j M 2 h ( n )c o s (( n ) )
第7章 有限脉冲响应数字滤波器的设计
7.1 线性相位FIR数字滤波器的条件和特点 7.2 利用窗函数法设计FIR滤波器 7.3 利用频率采样法设计FIR滤波器 7.4 利用等波纹最佳逼近法设计FIR滤波器 7.5 IIR和FIR数字滤波器的比较 7.6 几种特殊类型滤波器简介 7.7 滤波器分析设计工具FDATool
用情况3的推导过程可以得到:
M
Hg() 2h(n)sin[(n)] n0
(7.1.13)
N是偶数,τ=(N-1)/2=N/2-1/2。所以,当ω=0, 2π时,
sin[ω(n-τ)]=0;当ω=π时,sin[ω(n-τ)]=(-1)n- N/2, 为峰值点。而且sin [ω(n-τ)]关于过零点ω=0和
如何减少吉布斯效应的影响,设计一个满足要求的FIR滤波器呢? 直观上,增加矩形窗口的宽度(即加大N)可以减少吉布斯效应 的影响。N 时, 在主瓣附近, WRg(ω)近似为:
第七章 数字信号处理中的有限字长效应

设系数采用b位量化长度和舍入方式进行量化,系数量化误
差为e(n),其变化范围 ( / 2, / 2) ,均值为0,方差为 2 /12
则实际系数为:
ˆ h(n) h(n) e(n)
0 n ( N 1) / 2
ˆ 且量化后 h(n) 也一定满足偶对称,即
ˆ ˆ h(n) h( N 1 n)
2.有限字长效应对信号量化的影响;
3.有限字长效应对系统参数表示的影响
4.有限字长效应在运算过程中的影响
7.1
数字信号处理中的有限长效应
有限字长效应:
在实际的处理过程中,数字信号和系统都不是无限精度的,而是有 限精度,精度的大小则有字长的大小决定,正是由于有限精度,从而给 原有的数字信号处理系统带来了影响,这种影响称为数字信号处理中的 有限字长效应。
z1 0.85 j 0.15
求得a2对z1和z2的影响
z2 0.85 j 0.15
z1 1 j 900 3.3333e a2 z1 z2
z2 1 j 900 3.3333e a2 z2 z1
可见, a2对z1和z2的影响是相同的。因而
z2 z2 a2 a2
i 1 i 1
b
b1
i b 1
b1
ai 2 i
故截尾误差满足:
0 ET (2b 2b1 ), x 0
即
0 ET , x 0
②对于反码负数
b
x 1 2 b1 ai 2 i
i 1
b1
ET QT [ x] x 1 2 ai 2 (1 2
若采用截尾处理,试分别求出原码负数1.1001、反码负数1.1100
数字信号处理讲义第7章滤波器的设计方法

第7章滤波器的设计方法教学目的1.掌握由连续时间滤波器设计离散时间IIR滤波器的方法,包括冲激响应不变法,双线性变换法等;2.了解常用的窗函数,掌握低通IIR滤波器的频率变换法、用窗函数法设计FIR滤波器的方法;3.掌握FIR滤波器的逼近原理与设计方法。
教学重点与难点重点:本章是本课程的重中之重,滤波器的设计是核心内容之一。
1.连续时间滤波器设计离散时间IIR滤波器的方法,包括冲激响应不变法,双线性变换法等;2.常用的窗函数,掌握低通IIR滤波器的频率变换法、用窗函数法设计FIR滤波器的方法;3.掌握FIR滤波器的逼近原理与设计方法。
难点:1.冲激响应不变法,双线性变换法2.用窗函数法设计FIR滤波器FIR滤波器的逼近原理与设计方法基本概念7.0.1 选频滤波器的分类数字滤波器是数字信号处理的重要基础。
在对信号的过滤、检测与参数的估计等处理中, 数字滤波器是使用最广泛的线性系统。
数字滤波器是对数字信号实现滤波的线性时不变系统。
它将输入的数字序列通过特定运算转变为输出的数字序列。
因此,数字滤波器本质上是一台完成特定运算的数字计算机。
我们已经知道,一个输入序列x(n),通过一个单位脉冲响应为h(n)的线性时不变系统后,其输出响应y(n)为∑∞-)(y))()()(n(nn=m*=xmhnhx将上式两边经过傅里叶变换,可得式中,Y (e j ω)、X (e j ω)分别为输出序列和输入序列的频谱函数, H (ejω)是系统的频率响应函数。
可以看出,输入序列的频谱X (e j ω)经过滤波后,变为X (e j ω)H (e j ω)。
如果|H (e j ω)|的值在某些频率上是比较小的,则输入信号中的这些频率分量在输出信号中将被抑制掉。
因此,只要按照输入信号频谱的特点和处理信号的目的,适当选择H (ej ω),使得滤波后的X (e j ω)H (e j ω)符合人们的要求,这就是数字滤波器的滤波原理。
和模拟滤波器一样,线性数字滤波器按照频率响应的通带特性可划分为低通、高通、带通和带阻几种形式。
数字信号处理第七章

H(ej)h(n)
Hd (e j)为理想低通
滤波器的传输函数。
数字信号处理第七章
h (n )h d(n )R N (n )
如果对截取后的信号进行傅里叶变换,假设采用矩形窗截
取,对截取后信号进行傅里叶变换得:
频域卷积定理
H(ej) 1
Hd
(e
j
)
1 e 0
j
c
c
:低通滤波器的延时
hd(n)
1
2
Hd(ej)ejnd
1
2
c ej
c
ejnd
1
2
c ej(n)d
c
1
2
1
j(n)
ej(n)
|c c
s
in( c(n)) (n)
数字信号处理第七章
理想特性的hd(n)和Hd(ω)
hd
(n)
sin(c(n ) (n )
hd(n)的最大 值是多少?
ej 2 1 H d()W R ()d
H(ej)H()ej 数字信号处理第七章
则实际FIR滤波器的幅度函数H (ω) 为
H ()2 1 H d()W R()d
取样函数
矩形窗
正好是理想滤波器幅度函数与窗函数幅度函数的卷积。
数字信号处理第七章
H(0) 0.5H(0) H(ω)max H(ω)min
③N增加,过渡带宽减小,肩峰值不变。 因主瓣附近
(a)
(b)
hd(n)是一个以(N-1)/2为中心的偶对称的无限长非因果序列, 如果截取一段n=0~N-1的hd(n)作为h(n),则为保证所得到的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h1 ( n)
h( N 1•)
( N 1) / 2
H g (ω) a(n)cos(ωn)
•2 h(0•) •
••
n0
其中:
N 1 2
N 1
N 1
H (z) h(n)zn h( N n 1)zn
n0
n0
N 1
N 1
h(m)z ( N m1) z ( N 1) h(m)z m z ( N 1) H (z 1 )
m0
m0
H ( z )
1 [H (z)
z ( N 1) H (z 1 )]= 1
N 1
h(n)[z n
FIR数字滤波器的特点: 1. 容易获得严格的线性相位,(同时可以有任意的幅度特性); 2. 单位脉冲响应有限长,滤波器一定是稳定的(全零点型); 3. 总是可实现的(任何非因果有限长序列,经延时可成因果性); 4. 运算量化噪声可做的很小,可用FFT高效运算(有限长序列); 5. 为了得到好的衰减特性,FIR的H(z)的阶次比IIR要高。
H(e jω) 1 e jωk , ω ωc 则输出为: Y(e jω) X(e jω)H(e jω) X(e jω)1 e jωk , ω ωc 反变换得: y (n) = x (n - k) 结论:表明线性相位滤波器不会改变输入信号的形状,而只是在时域 内延迟了 k 个时刻,如果滤波器的相频特性不是线性相位,则输出信 号就会产生严重畸变。
相频特性反映出系统对输入信号的延时情况
二、实现线性相位的条件
N 1
H(e jω ) h(n)e jωn H g (ω)e jθ(ω)
n0
Hg(ω)-幅度特性 θ(ω) -相频特性
注意与幅频特性的区别
线性相位就是θ(ω) 是ω的线性函数:
第一类线性相位: θ(ω)=-τω 第二类线性相位: θ(ω)=θ0-τω
()
0
2
2. h(n)奇对称时 θ(ω) ω N 1 π 22
()
2
2
0
(N 1)
滤波器有(N-1)/2个采样间 隔的延时。
(N 3) 2
滤波器有(N-1)/2个采样间隔的延时,它还 是理想的正交变换网络,称为90o移相器.
四、幅度函数的特点
(参教材p.191表7-1四种线性相位FIR滤波器特性)
h (n)是实序列且对 (N-1)/2偶对称,即:h(n) = h(N-n -1)
2. 第二类线性相位条件: h(n)是实序列且对 (N-1)/2奇对称,即:h(n) = -h(N-n -1)
偶对称 奇对称
1. 第一类线性相位条件:
h(n)是实序列且对 (N-1)/2 偶对称,即:h(n) = h(N-1-n)
定义系统的相位延迟: τ p (ω) θ(ω) / ω 定义系统的群延迟: τ g (ω) dθ(ω) / dω
对于第一类和第二类线性情况的群时延函数: d θ (ω )/dω= -τ,均为常数
因果FIR系统满足线性相位的充要条件:
h(n)为实序列,且: h(n) h( N 1 n)
•
h(0)
•
•
0
(a)
h(0)
0•
•
•
(c)
• •
N 1 2
•
N 1 2
•
• h( N 1) •
N-1 n
•
N 1 n
h(•N 1)
N为奇数
1.第一类线性相位条件:
h(0)•
0
h(0•)
0
••
• •
• • h(•N 1)
N 1
(b) 2
• •
N-1 n
•
N 1 n
N 1
•
(d)
2
•
•
N为偶数
•
h( N 1)
FIR数字滤波器的 H(z)为z -1 的多项式,设计方法有: 1. 直接近似法-----窗函数法; 2. 频率抽样法、等波纹逼近法。
§7.1 线性相位FIR滤波器的特点
一、实现线性相位的目的
N 1
H(e jω ) h(n)e jωn H g (ω)e jθ(ω)
n0
若传输特性在通带内幅频特性为1,相频特性具有线性相位。即:
h(n)是实序列且对 (N-1) /2 奇对称,即:h(n) = -h(N-1-n)
N 1
N 1
H (z) h(n)zn - h( N n 1)zn
n0
n0
N 1
N 1
- h(m)z ( N m1) -z ( N 1) h(m)z m -z ( N 1) H (z 1 )
m0
m0
z( N 1)zn ]
2
2 n0
(
z
N 1) 2
N 1h(n) n0 2
(
z
N 1n) 2
(
z
N 1n) 2
H (e
jω )
e
j(
N 1)ω 2
N
1
h(n)
cos
n
N
1 ω
n0
2
H g (ω)
N
1
h(
n)
cos
n
n0
N 1 ω, 2
θ(ω) 1 (N 1)ω 2
2. 第二类线性相位条件:
H ( z )
1 [H (z)-z( N 1) H (z1 )]
1
N 1
h(n)[z n
z( N 1)zn ]
2
2 n0
(
z
N 1) 2
N 1h(n) n0 2
(
z
N 1 2
n)-z
(
N 1n) 2
H (e)ω 2
N
1
h(n)
s
in
n
N
1 ω
n0
2
H g (ω)
N
1
h(n)
sin
n
n0
N 1 ω, 2
θ(ω) 1 (N 1)ω π
2
2
三、线性相位的特点:
H
(z)
( N 1)
z2
N 1
h(n)
z
N 1n 2
z
N 1n 2
1. h(n)偶对称
n0 2
线性相位
H(e jω )
j( N 1)ω N 1
e2
h(n)cos[(n
N
1)ω]
第七章
有限脉冲响应(FIR)数字滤波器的设计
§7.0 引言 §7.1 线性相位FIR滤波器的特点 §7.2 窗函数设计 §7.3 频率抽样设计法 §7.4 IIR与FIR滤波器的比较 本章小结
引言
IIR数字滤波器的特点: 1. 优点在于可以利用AF设计的现成成果,较简单、方便; 2. 但它只考虑幅度特性没有考虑相位 ,相位校正复杂; 3. H(z)为有理分式。
n0
2
H
g
(ω)
N 1 n0
h(n)
cos
n
N 2
1
ω
θ(ω) 1 (N 1)ω 2
第一类线性相位
2. h(n)奇对称
H g (ω)
N 1 n0
h(n)
s
in
N 2
1
n ω
θ(ω) 1 ( N 1)ω π
2
2
第二类线性相位
可见,相位函数 ()---都是严格的线性相位关系:
1. h(n)偶对称时 θ(ω) ω N 1 2