六年级数学上册组合图形的周长和面积.doc

合集下载

小学数学六年组合图形面积问题

小学数学六年组合图形面积问题

小学数学六年组合图形面积问题1.(2011•东莞)如图中圆的周长是62.8厘米,如果圆的面积和长方形的面积相等,计算涂色部分的周长.2.求下列图形的面积和周长周长:面积:周长:面积:3.求图中阴影部分的周长.(单位:厘米)4.如图所示,三角形ABC的边长都为6cm,分别以A、B、C三点为圆心,边长的一半为半径作弧,求阴影部分的周长.5.(2008•镇海区)如图,三角形AOC是边长为3厘米的正三角形,求阴影部分的面积.6.(2008•兴山县)计算阴影部分的面积.7.(2008•洛阳)如图:阴影部分的面积是50平方厘米,求图中圆环的面积.8.梯形面积51平方厘米,图中阴影影部分的面积(单位:厘米)9.图中两块阴影部分的面积相等,三角形ABC是直角三角形,BC是直径,长20厘米.计算AB 的长度.10.求阴影部分的面积(单位:厘米)11.(2012•郑州)ABCD和CDEF 都是正方形,DC等于12厘米,CB等于10厘米,求阴影部分的面积.12.(2012•郑州)计算如图阴影部分的面积.(单位:分米)13.(2012•仙游县)求出阴影部分的周长和面积.(单位:厘米)14.(2012•金沙县)如图,求阴影部分的面积.已知:r=10cm.15.(2012•衡阳)两个正方形组成下图所示的组合图形.已知组合图形的周长是52厘米,DG=4厘米,阴影部分的面积是_________平方厘米.16.(2011•汕头)求下图阴影部分面积.(单位:厘米)17.(2010•镇海区)图形计算.①一个环形铁片,外圆半径是0.6米,内圆半径是0.4米.它的面积是多少平方米?(π取3.14,得数保留两位小数)②求阴影部分的面积.(单位,厘米)18.(2010•雨花区)求阴影部分面积(空白部分面积为80平方厘米)19.(2010•尤溪县)求下列图形中阴影部分的面积.<单位:厘米>20.(2009•镇海区)在图中,O是圆心,OD=4,C是OB的中点.阴影部分的面积是14π,求直角三角形OAB的面积.21.(2009•南岗区)如图,半圆的直径AB长6厘米,半圆绕A点逆时针旋转60°,使直径AB到达AC的位置.求图中阴影部分的面积.22.(2008•杭州)如果你完成上述题目觉得正确无误后,可考虑解决以下问题,注意:本题不计入总分.两个正方形如图放置,其中D、C、G在同一条直线上,小正方形ECGF的边长为6,连AE、EG、AG,求图中阴影部分的面积.23.(2008•禅城区)图中,圆周长为12.56厘米,平行四边形ABCD 的面积为21.6平方厘米,求阴影部分的面积.(π取3.14)24.(2003•重庆)列式计算:①6除1.5的商,加上3,在乘3,积是多少?②1与0.5的和除以它们的差的2倍,商是多少?③如图:三角形ABC为直角三角形,BC为圆的直径,BC=20厘米,S1、S2阴六年数学图形面积问题- 7 - 影部分的面积,且S1=S2,求三角形ABC的面积?()25.在如图所示的长方形ABCO中,三角形ABD的面积比三角形BCD的面积大10平方厘米,求阴影部分的面积.26.如图:三角形ABC是等腰直角三角形,直角边为4厘米,求阴影部分面积.27.计算下图中阴影部分的面积.(单位:厘米)28.求图中阴影部分的面积(图中单位:厘米)六年数学图形面积问题- 8 - 29.如图中平行四边形的面积是90平方分米.求阴影部分的面积.30.求阴影部分的面积:。

六年级数学上册组合图形的周长和面积讲解

六年级数学上册组合图形的周长和面积讲解

六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

小学六年级数学圆的周长和面积

小学六年级数学圆的周长和面积

小学六年级数学(圆的周长和面积(20150926))1、把4个啤酒瓶扎在一起(如图所示),捆4圈至少用绳子多少厘米?(7×4+3.14×7)×4=(28+21.98)×4=49.98×4,≈200(厘米);2、计算下图中阴影部分的周长。

(单位:厘米)3、一个街心花园如下图的形状,中间正文形的边长是20米,四周为半圆形,这个街心花园的周长是多少米?这个街心花园的周长是四个半圆组合而成的,圆的半径r=20÷2=10m所以周长:2×2π×10=40π m4、在学校200米的跑道中,每条跑道宽1.2米。

由于有弯道,为了公平,外道和内道选手的起跑线不在同一地点。

如:A点处是小明的起跑线,B点处是小强的起跑线(如下图所示)那么,,A、B两点的距离是多少米?5、如下图,从点A到点B沿着大圆周走和沿着中、小圆周走的路程相同吗?6、下图中,从A点到B点沿着大圆周走和沿着小圆周走,路程相同吗?7、已知AB=50厘米,求图中各圆的周长总和。

8、已知一个大圆中紧紧地排列着三个半径不同的小圆(如图),并且这四个圆的圆心恰好在同一条直线上。

如果大圆的周长是30厘米,那么三个小圆的周长之和是多少?9、将半径分别是3厘米和2厘米的两个半圆如下图形状放置,求阴影部分的周长。

3.14×3×2÷2+3.14×2×2÷2+3+2×2-3,=9.42+6.28+3+1,=19.7(厘米),10、一个半圆的周长是20.56分米,这个半圆的直径是多少厘米?11、以B与C为圆心的两个半圆的直径都是4分米,求阴影部分的周长。

12、下图中圆的面积等于长方形的面积,已知圆的周长是36厘米,那么图中的阴影部分的周长是多少厘米?13、如下图,是由正方形和半圆组成的图形,其中P点为半圆的中点,Q点为正方形一边上的中点,那么阴影部分的面积是多少?(单位:厘米)14、求下图中阴影部分的面积。

六年级上册数学讲义-5.3圆和扇形组合图形面积(拓展)-人教版(含答案)

六年级上册数学讲义-5.3圆和扇形组合图形面积(拓展)-人教版(含答案)

扇形和圆的组合图形的面积学生姓名年级学科授课教师日期时段核心内容扇形和圆的组合图形的面积课型一对一/一对N 教学目标掌握扇形和圆的组合图形的面积的计算重、难点1、会利用平面图形的周长和面积公式求平面图形的周长和面积。

2、会用割、补、分解、代换、增加辅助线等方法,将复杂问题变得简单。

课首沟通和学生交谈。

了解学生对圆的认识,对各计算公式是否掌握。

知识导图课首小测1.一个圆形花坛的半径是3m,它的面积是多少平方米?(已知圆的半径,求圆的面积)2.圆形花坛的直径是20m,它的面积是多少平方米?(已知圆的直径,求圆的面积)3.一个圆形蓄水池的周长是25.12m,这个蓄水池的占地面积是多少?(已知圆的周长,求圆的面积)4.求下图扇形的面积。

导学一:运用代换法将复杂的图形转化为简单的规则图形例 1. 图1中右半部分阴影面积比左半部分阴影面积大33平方厘米,AB=60厘米,CB垂直AB,求BC的长。

我爱展示1.如图1-1所示,两个圆的圆心分别为O1、O两圆半径都是1厘米,且图中两个阴影部分的面积相等。

求长方形ABO1O的面积。

2.如图1-2,所示,求右半部分阴影面积比左半部分阴影面积大多少平方厘米。

3.如图1-3:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少平方厘米?导学二:巧用各基本图形的计算公式求解知识点讲解 1:把R2看成一个整体例 1. 图2中已知阴影部分的面积是20平方分米,求环形的面积。

我爱展示1.下图中正方形的面积是8平方米,圆的面积是多少平方米?2.已知下图2-2中阴影部分三角形的面积是5平方米,求圆的面积。

3.已知下图2-3中阴影部分三角形的面积是7平方米,求圆的面积。

知识点讲解 2:从局部到整体,从整体到局部,牢记公式,巧妙应用。

例 1. 如图3,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?我爱展示1.下图3-1中,△ABC是等腰直角三角形,以为半径的圆弧交延长线于点,已知阴影部分的面积是求。

数学六年级-圆的组合图形面积计算

数学六年级-圆的组合图形面积计算

辅导讲义案例1:有一个著名的希波克拉蒂月牙问题.如图:以AB为直径作半圆,C是圆弧上一点,(不与A、B重合),以AC、BC为直径分别作半圆,围成两个月牙形(阴影部分).已知直径AC为6cm,直径BC为8cm,直径AB为10cm.(1)将直径分别为AB、AC、BC所作的半圆面积分别记作S AB、S AC、S BC.分别求出三个半圆的面积。

(2)请你猜测:这两个月牙形(阴影部分)的面积与三角形ABC的面积之间的数量关系,并说明理由。

案例2:归纳总结以下基本图面积计算方法(1)扇形:扇形的面积=扇形中的弧长部分=扇形的周长(2)弓形面积:弓形面积=(3)“弯角”面积:如图:(4)“谷子”面积:如图:例题1:如图,直径AB为3厘米的半圆以A点为圆心逆时针旋转60°,使AB到达AC的位置,求图中的阴影部分的面积。

例题2:如图,三角形ABC是等腰直角三角形,腰AB长为4厘米,求阴影部分的面积?试一试:如图,三角形ABC是直角三角形,AC=20,阴影(1)的面积比阴影(2)的面积小23,求BC的长?例题3:如图,ABCD 是一个正方形,2ED DA AF ===,阴影部分的面积是多少?试一试:下图中,cm DC DB AD 10===,求阴影部分的面积.例题4:如图,ABCD是平行四边形,8cm∠=︒,高4cmCH=,弧BE、DF分DABAB=,30AD=,10cm别以AB、CD为半径,弧DM、BN分别以AD、CB为半径,则阴影部分的面积为多少?(精确到0.01)例题5:如图所示,直角三角形ABC的斜边AB长为10厘米,60ABC∠=︒,此时BC长5厘米.以点B为中心,将ABC∆顺时针旋转120︒,点A、C分别到达点E、D的位置.求AC边扫过的图形即图中阴影部分的面积.试一试:如下图,Rt△CAB中,AB=3,AC=4,将它以A点为中心逆时针旋转60°,得到Rt△EAD,求阴影部分面积是多少?1.有8个半径为1的小圆,用它们圆周的一部分连成一个花瓣图形(如图阴影所示),图中黑点是这些圆的圆心,那么花瓣图形的面积是()(A)16(B)16π+(C)1162π+(D)162π+2.如图,一只羊被4米长的绳子拴在长为3米,宽为2米的长方形水泥台的一个顶点上,水泥台的周围都是草地,问这头羊能吃到草的草地面积是多少?(结果精确到0.01平方米)3.如图,已知正方形ABCD的边长为5,正方形CEFG的边长为3,求图中阴影部分的面积.(π为3.14)4.如图,ABCD是正方形,边长是8厘米,BE=4厘米,其中圆弧BD的圆心是C点,那么图中阴影部分的面积等于多少平方厘米?5.如图,两个正方形的边长分别是6和5.求图形中阴影部分的面积.6.7.8.如图所示,已知半圆的直径AB=12,BC所对的圆心角∠CAB=30°,并且小阴影面积为3.26,求大阴影的面积.7.如图,正方形的边长为10,那么图中阴影部分的面积是多少?8.如图,矩形的长为4,宽为5,求阴影部分的面积?A BDCA1.如图是以边长为40米的正方形ABCD 的顶点A 为圆心,AB 长为半径的弧与以CD 、BC 为直径的半圆构成的花坛(图中阴影部分).小杰沿着这个花坛边以相同的速度跑了6圈,用去了8分钟,求(1)花坛(图中阴影部分)面积;(2)小杰平均每分钟跑多少米?2.某同学用所学过的圆与扇形的知识设计了一个问号,如图中阴影部分所示,已知图中的大圆半径为4,两个小圆半径均为2,求图中阴影部分的面积。

(完整版)六年级数学上册组合图形的周长和面积

(完整版)六年级数学上册组合图形的周长和面积

六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

小学六年级上阴影区域面积和周长

小学六年级上阴影区域面积和周长

小学六年级上阴影区域面积和周长引言本文档将介绍小学六年级上学期阴影区域的面积和周长的计算方法。

理解和掌握这些概念对于学生在几何学领域的研究非常重要。

通过本文档的研究,学生将能够正确地计算阴影区域的面积和周长,并且能够运用这些知识解决实际问题。

阴影区域的定义在数学中,阴影区域是指由一个或多个图形的组合形成的区域。

计算阴影区域的面积和周长涉及到对各个图形的特征和数值的理解和运用。

计算阴影区域面积的方法计算阴影区域的面积需要根据具体的图形进行计算。

下面是一些常见的图形以及计算它们面积的方法:矩形的面积计算矩形是最常见的图形之一,它的面积可以通过将长度与宽度相乘得到。

具体计算公式为:面积 = 长度 ×宽度。

三角形的面积计算三角形的面积通常可以通过底边长度与高度的乘积的一半得到。

具体计算公式为:面积 = 1/2 ×底边长度 ×高度。

圆的面积计算圆的面积计算相对复杂一些,需要使用圆的半径来计算。

具体计算公式为:面积= π × 半径的平方,其中π是一个近似的常数,约等于3.14。

计算阴影区域周长的方法计算阴影区域的周长需要根据具体的图形进行计算。

下面是一些常见的图形以及计算它们周长的方法:矩形的周长计算矩形的周长可以通过将所有边的长度相加得到。

具体计算公式为:周长 = 2 × (长 + 宽)。

三角形的周长计算三角形的周长可以通过将三条边的长度相加得到。

具体计算公式为:周长 = 边1 + 边2 + 边3。

圆的周长计算圆的周长被称为圆周,它的计算方法是通过圆的半径与圆周率的乘积得到。

具体计算公式为:周长= 2 × π × 半径。

实际问题的运用学生们可以通过研究阴影区域面积和周长的计算方法,运用这些知识解决实际问题。

例如,他们可以计算房间的地板面积和墙面周长,或者计算园中各个花坛的面积和花圃周长等。

总结通过掌握阴影区域面积和周长的计算方法,学生们将能够在几何学领域中更加自信地解决问题。

人教版小学六年级数学上册《含有圆的组合图形的面积》教案

人教版小学六年级数学上册《含有圆的组合图形的面积》教案

含有圆的组合图形的面积教学目标:1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

2、通过自主合作,培养学生独立思考、合作探究的意识。

3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。

教学重难点:组合图形的认识及面积计算、图形分析。

教具学具准备:多媒体课件、各种基本图形纸片。

教学设计:⊙创设情境,认识圆环1.师:我们来欣赏一组美丽的图片。

课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……2.同学们,你们从图中发现了什么?(它们都是环形的)3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。

你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)4.导入新课:这节课我们一起来探讨环形的知识。

(板书课题:圆环的面积)⊙探索交流,解决问题1.画一画,剪一剪,发现环形特点。

(1)画一画。

让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。

(学生按照要求画圆)(2)剪一剪。

指导学生先剪下所画的大圆,再剪下所画的小圆。

问:剩下的部分是什么图形?(环形)师:我们也称它为圆环。

(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?生明确:圆环是从外圆中去掉一个内圆得到的。

(4)借助图示认识圆环的各部分名称。

你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)①外圆:又名大圆,它的半径用R表示。

②内圆:又名小圆,它的半径用r表示。

③环宽:指外圆半径和内圆半径相差的宽度。

2.探究圆环面积的计算方法。

(1)小组讨论,怎样求圆环的面积?(2)汇报讨论结果。

(3)小结:环形的面积=外圆面积-内圆面积。

3.课件出示例2。

光盘的银色部分是一个圆环,内圆半径是2 cm,外圆半径是6 cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级组合图形的周长和面积计算练习题
例1.求阴影部分的面积。

(单位:厘米)
解:这是最基本的方法:圆面积减去等腰直角三角形的面积,
×-2×1=1.14(平方厘米)
例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)
解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,
所以阴影部分的面积为:7-=7-×7=1.505平方厘米
例3.求图中阴影部分的面积。

(单位:厘米)
解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)
解:同上,正方形面积减去圆面积,
16-π()=16-4π
=3.44平方厘米
例5.求阴影部分的面积。

(单位:厘米)
解:这是一个用最常用的方法解最常见的题,为方便起见,
我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,
π()×2-16=8π-16=9.12平方厘米
另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)
π-π()=100.48平方厘米
(注:这和两个圆是否相交、交的情况如何无关)
例7.求阴影部分的面积。

(单位:厘米)
解:正方形面积可用(对角线长×对角线长÷2,求)
正方形面积为:5×5÷2=12.5
所以阴影面积为:π÷4-12.5=7.125平方厘米
(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)
例8.求阴影部分的面积。

(单位:厘米)
解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米
例9.求阴影部分的面积。

(单位:厘米)
解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,
所以阴影部分面积为:2×3=6平方厘米
例10.求阴影部分的面积。

(单位:厘米)
解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米
(注: 8、9、10三题是简单割、补或平移)。

相关文档
最新文档