2020年高考专题训练八 立体几何

合集下载

2020年高考理科数学《立体几何》题型归纳与训练

2020年高考理科数学《立体几何》题型归纳与训练

2020年高考理科数学《立体几何》题型归纳与训练2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD中,AM=CD=AB=1.现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB,AC.试判断:在AB边上是否存在点P,使AD∥平面MPC?并说明理由【答案】当AP=AB时,有AD∥平面MPC.理由如下:连接BD交MC于点N,连接NP.在梯形MBCD中,DC∥MB,==,在△ADB中,=,∴AD∥PN.∵AD?平面MPC,PN?平面MPC,∴AD∥平面MPC.【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN与BN的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法:构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD做了一个平面ADB与平面MPC相交于线PN。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证AD平行于PN,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

辅助线的构造理论同上。

我们只须过已知直线上任意一点做一条与已知平面平行的直线即可。

可总结为下图例2如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.求证:GF∥平面ADE;【答案】解法一:(1)证明:如图,取AE的中点H,连接HG,HD,又G是BE的中点,所以GH∥AB,且GH=AB.又F是CD的中点,所以DF=CD.由四边形ABCD是矩形得,AB∥CD,AB=CD,所以GH∥DF,且GH=DF,从而四边形HGFD是平行四边形,所以GF∥DH.又DH?平面ADE,GF?平面ADE,所以GF∥平面ADE.解法2:(1)证明:如下图,取AB中点M,连接MG,MF.又G是BE的中点,可知GM∥AE.又AE?平面ADE,GM?平面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD.又AD?平面ADE,MF?平面ADE,所以MF∥平面ADE.又因为GM∩MF=M,GM?平面GMF,MF?平面GMF,所以平面GMF∥平面ADE.因为GF?平面GMF,所以GF∥平面ADE.【解析】解法一为构造线线平行,解法二为构造面面平行。

2020高考数学题型整理分类《(8)立体几何》解析版(含历年真题)

2020高考数学题型整理分类《(8)立体几何》解析版(含历年真题)

(八) 大题考法——立体几何1.如图,AC 是圆O 的直径,点B 在圆O 上,∠BAC =30°,BM ⊥AC ,垂足为M .EA ⊥平面ABC ,CF ∥AE ,AE =3,AC =4,CF =1.(1)证明:BF ⊥EM ;(2)求平面BEF 与平面ABC 所成锐二面角的余弦值. 解:(1)证明:∵EA ⊥平面ABC ,∴BM ⊥EA , 又BM ⊥AC ,AC ∩EA =A ,∴BM ⊥平面ACFE , ∴BM ⊥EM .①在Rt △ABC 中,AC =4,∠BAC =30°,∴AB =23,BC =2, 又BM ⊥AC ,则AM =3,BM =3,CM =1.∵FM =MC 2+FC 2=2,EM =AE 2+AM 2=32, EF =42+(3-1)2=25,∴FM 2+EM 2=EF 2,∴EM ⊥FM . ② 又FM ∩BM =M ,③∴由①②③得EM ⊥平面BMF ,∴EM ⊥BF .(2)如图,以A 为坐标原点,过点A 垂直于AC 的直线为x 轴,AC ,AE 所在的直线分别为y 轴,z 轴建立空间直角坐标系.由已知条件得A (0,0,0),E (0,0,3),B (3,3,0),F (0,4,1), ∴BE ―→=(-3,-3,3),BF ―→=(-3,1,1). 设平面BEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·BE ―→=0,n ·BF ―→=0,得⎩⎨⎧-3x -3y +3z =0,-3x +y +z =0,令x =3,得y =1,z =2,∴平面BEF 的一个法向量为n =(3,1,2). ∵EA ⊥平面ABC ,∴取平面ABC 的一个法向量为AE ―→=(0,0,3). 设平面BEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,AE ―→〉|=622×3=22.故平面BEF 与平面ABC 所成的锐二面角的余弦值为22. 2.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2,∠ABC =90°,AB =3,BC =1,AD =23,∠ACD =60°,E 为CD 的中点.(1)求证:BC ∥平面PAE ;(2)求直线PD 与平面PBC 所成角的正弦值. 解:(1)证明:∵AB =3,BC =1,∠ABC =90°, ∴AC =2,∠BCA =60°.在△ACD 中,∵AD =23,AC =2,∠ACD =60°, ∴由余弦定理可得:AD 2=AC 2+CD 2-2AC ·CD ·cos ∠ACD ,∴CD =4, ∴AC 2+AD 2=CD 2,∴△ACD 是直角三角形. 又E 为CD 的中点,∴AE =12CD =CE =2,又∠ACD =60°,∴△ACE 是等边三角形, ∴∠CAE =60°=∠BCA ,∴BC ∥AE . 又AE ⊂平面PAE ,BC ⊄平面PAE , ∴BC ∥平面PAE .(2)由(1)可知∠BAE =90°,以点A 为坐标原点,以AB ,AE ,AP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则P (0,0,2),B (3,0,0),C (3,1,0),D (-3,3,0),∴PB ―→=(3,0,-2),PC ―→=(3,1,-2),PD ―→=(-3,3,-2).设n =(x ,y ,z )为平面PBC 的法向量, 则⎩⎪⎨⎪⎧n ·PB ―→=0,n ·PC ―→=0,即⎩⎨⎧3x -2z =0,3x +y -2z =0,取x =1,则y =0,z =32,n =⎝⎛⎭⎫1,0,32,∴cos 〈n ,PD ―→〉=n ·PD ―→|n |·|PD ―→|=-2374·16=-217,∴直线PD 与平面PBC 所成角的正弦值为217.3.如图,在四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.解:(1)证明:以C 为坐标原点,射线CD 为x 轴正半轴建立如图所示的空间直角坐标系C -xyz ,则D (1,0,0),A (2,2,0),B (0,2,0).设S (x ,y ,z ),显然x >0,y >0,z >0,则AS ―→=(x -2,y -2,z ),BS ―→=(x ,y -2,z ),DS ―→=(x -1,y ,z ).由|AS ―→|=|BS ―→|,得 (x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2,解得x =1.由|DS ―→|=1,得y 2+z 2=1. ① 由|BS ―→|=2,得y 2+z 2-4y +1=0.②由①②,解得y =12,z =32.∴S ⎝⎛⎭⎫1,12,32,AS ―→=⎝⎛⎭⎫-1,-32,32,BS ―→=⎝⎛⎭⎫1,-32,32,DS ―→=⎝⎛⎭⎫0,12,32, ∴DS ―→·AS ―→=0,DS ―→·BS ―→=0,∴DS ⊥AS ,DS ⊥BS , 又AS ∩BS =S ,∴SD ⊥平面SAB .(2)设平面SBC 的法向量为n =(x 1,y 1,z 1), 则n ⊥BS ―→,n ⊥CB ―→,∴n ·BS ―→=0,n ·CB ―→=0. 又BS ―→=⎝⎛⎭⎫1,-32,32,CB ―→=(0,2,0),∴⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2y 1=0,取z 1=2,得n =(-3,0,2). ∵AB ―→=(-2,0,0),∴cos 〈AB ―→,n 〉=AB ―→·n | AB ―→||n |=-2×(-3)2×7=217.故AB 与平面SBC 所成角的正弦值为217. 4.(2018·诸暨高三适应性考试)如图,四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,△PAD 是边长为2的等边三角形,底面ABCD 是直角梯形,∠BAD =∠CDA =90°,AB =2DC =22,E 是CD 的中点.(1)求证:AE ⊥PB ;(2)设F 是棱PB 上的点,EF ∥平面PAD ,求EF 与平面PAB 所成角的正弦值. 解:(1)证明:取AD 的中点G ,连接PG ,BG ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PG ⊥AD , ∴PG ⊥平面ABCD ,∵AE ⊂平面ABCD ,∴AE ⊥PG . 又∵tan ∠DAE =tan ∠ABG =24, ∴∠ABG +∠EAB =∠DAE +∠EAB =∠DAB =90°, ∴AE ⊥BG .∵BG ∩PG =G ,BG ⊂平面PBG ,PG ⊂平面PBG , ∴AE ⊥平面PBG , ∴AE ⊥PB .(2)法一:作FH ∥AB 交PA 于H ,连接DH ,则HF ∥DC . ∵EF ∥平面PAD ,平面FHDE ∩平面PAD =DH , ∴EF ∥DH ,∴四边形FHDE 为平行四边形, ∴HF =DE .易知DC ∥AB ,DC =12AB ,∴HF =14AB ,即H 为PA 的一个四等分点.取PA 的中点K ,连接DK ,则DK ⊥PA .∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , ∴AB ⊥平面PAD . ∵DK ⊂平面PAD , ∴AB ⊥DK , ∵PA ∩AB =A , ∴DK ⊥平面PAB .∴∠DHK 为EF 与平面PAB 所成的角, 由已知得DK =3,DH =DK 2+HK 2=132, ∴sin ∠DHK =DK DH =3132=23913,∴EF 与平面PAB 所成角的正弦值为23913.法二:以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系.则A (0,0,0),B (22,0,0),P (0,1,3),E ⎝⎛⎭⎫22,2,0,PB ―→=(22,-1,-3),EP―→=⎝⎛⎭⎫-22,-1,3. 设PF ―→=λPB ―→,则EF ―→=EP ―→+λPB ―→=⎝⎛⎭⎫22λ-22,-1-λ,3-3λ.由(1)知PG ⊥平面ABCD ,∴PG ⊥AB . ∵AD ⊥AB ,PG ⊥AD =G , ∴AB ⊥平面PAD ,∴AB ―→=(22,0,0)为平面PAD 的一个法向量. ∵EF ∥平面PAD ,∴EF ―→·AB ―→=22×⎝⎛⎭⎫22λ-22=0,解得λ=14. ∴EF ―→=⎝⎛⎭⎫0,-54,334.设平面PAB 的一个法向量为n =(x ,y ,z ), 又AB ―→=(22,0,0),PB ―→=(22,-1,-3), 则⎩⎪⎨⎪⎧n ·AB ―→=0,n ·PB ―→=0,即⎩⎨⎧22x =0,22x -y -3z =0,取y =3,得z =-1,∴n =(0,3,-1). ∴|cos 〈n ,EF ―→〉|=⎪⎪⎪⎪-534-3342×132=23913,∴EF 与平面PAB 所成角的正弦值为23913.5.(2019届高三·镇海中学检测)如图,在三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,AB =BC =2,∠ACB =30°,∠C 1CB =60°,BC 1⊥A 1C ,E 为AC 的中点,CC 1=2.(1)求证:A 1C ⊥平面C 1EB ;(2)求直线CC 1与平面ABC 所成角的余弦值. 解:(1)证明:因为AB =BC =2,E 为AC 的中点, 所以AC ⊥BE .又因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , 所以BE ⊥平面A 1ACC 1,所以BE ⊥A 1C .又因为BC 1⊥A 1C ,BC 1∩BE =B ,BC 1⊂平面C 1EB ,BE ⊂平面C 1EB , 所以A 1C ⊥平面C 1EB .(2)法一:因为平面A 1ACC 1⊥平面ABC , 所以直线CC 1与平面ABC 所成角为∠C 1CA . 因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=BC =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面A 1ACC 1,所以BE ⊥EC 1,所以EC 1= 3. 在△CC 1E 中,根据余弦定理可知,cos ∠C 1CE =33. 所以直线CC 1与平面ABC 所成角的余弦值为33. 法二:以E 为坐标原点,EC 为x 轴,EB 为y 轴建立如图所示的空间直角坐标系.因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=CB =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面AA 1CC 1,所以BE ⊥EC 1,所以EC 1= 3. 所以|CC 1―→|=2,|C 1E ―→|=3, 设C 1(x,0,y ),又C (3,0,0),所以⎩⎨⎧(x -3)2+y 2=4,x 2+y 2=3,解得⎩⎨⎧x =33,y =263,所以C 1⎝⎛⎭⎫33,0,263,则CC 1―→=⎝⎛⎭⎫-233,0,263, 易知平面ABC 的一个法向量为n =(0,0,1), 设直线CC 1与平面ABC 所成的角为α, 则sin α=|cos 〈CC 1―→,n 〉|=63,所以cos α=33.即直线CC 1与平面ABC 所成角的余弦值为33.6.如图所示,四棱锥P -ABCD 的底面ABCD 为矩形,PA ⊥平面ABCD ,点E 是PD 的中点,点F 是PC 的中点.(1)证明:PB ∥平面AEC ;(2)若底面ABCD 为正方形,探究在什么条件下,二面角C -AF -D 的大小为60°?解:易知AD ,AB ,AP 两两垂直,建立如图所示的空间直角坐标系A -xyz ,设AB =2a ,AD =2b ,AP =2c ,则A (0,0,0),B (2a,0,0),C (2a,2b,0),D (0,2b,0),P (0,0,2c ).连接BD 交AC 于点O ,连接OE ,则O (a ,b,0),又E 是PD 的中点,所以E (0,b ,c ).(1)证明:因为PB ―→=(2a,0,-2c ),EO ―→=(a,0,-c ), 所以PB ―→=2EO ―→,所以PB ―→∥EO ―→, 即PB ∥EO .因为PB ⊄平面AEC ,EO ⊂平面AEC , 所以PB ∥平面AEC .(2)因为四边形ABCD 为正方形,所以a =b ,则A (0,0,0),B (2a,0,0),C (2a,2a,0),D (0,2a,0),P (0,0,2c ),E (0,a ,c ),F (a ,a ,c ),因为z 轴⊂平面CAF ,所以设平面CAF 的一个法向量为n =(x,1,0),而AC ―→=(2a,2a,0),所以AC ―→·n =2ax +2a =0,得x =-1,所以n =(-1,1,0). 因为y 轴⊂平面DAF ,所以设平面DAF 的一个法向量为m =(1,0,z ), 而AF ―→=(a ,a ,c ),所以AF ―→·m =a +cz =0,得z =-a c ,所以m =⎝⎛⎭⎫1,0,-ac ∥m ′=(c,0,-a ). 所以cos 60°=|n ·m ′||n ||m ′|=c 2(a 2+c 2)=12,得a =c .故当AP 与正方形ABCD 的边长相等时,二面角C -AF -D 的大小为60°.。

2020年高考数学解答题核心:立体几何综合问题(专项训练)(教师版)

2020年高考数学解答题核心:立体几何综合问题(专项训练)(教师版)

专题08 立体几何综合问题(专项训练)1.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =AE =2. (1)求证:BD ⊥平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成的角的余弦值大小.【答案】见解析【解析】(1)因为四边形ABCD 是菱形,所以BD ⊥AC .因为AE ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥AE .因为AC ∩AE =A ,所以BD ⊥平面ACFE .(2)以O 为原点,OA →,OB →的方向为x ,y 轴正方向,过O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·OB →=0,n ·OE →=0,即⎩⎨⎧3y =0,x +2z =0,令z =1,则n =(-2,0,1),由题意得sin 45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22.因为a >0,所以解得a =3.所以OF →=(-1,0,3),BE →=(1,-3,2),所以cos 〈OF →,BE →〉=OF →·BE →|OF →|·|BE →|=-1+610·8=54.故异面直线OF 与BE 所成的角的余弦值为54.2.(2019·河南郑州模拟)如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO .(1)求证:平面PBAD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.【答案】见解析【解析】(1)证明:因为OB =OC ,又因为∠ABC =π4,所以∠OCB =π4,所以∠BOC =π2,即CO ⊥AB .又PO ⊥平面ABC ,OC ⊂平面ABC ,所以PO ⊥OC .又因为PO ,AB ⊂平面PAB ,PO ∩AB =O ,所以CO ⊥平面PAB ,即CO ⊥平面PBAD .又CO ⊂平面COD ,所以平面PBAD ⊥平面COD .(2)以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设|OA |=1,则|PO |=|OB |=|OC |=2,|DA |=1.则C (2,0,0),B (0,2,0),P (0,0,2),D (0,-1,1),所以PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).设平面BDC 的法向量为n =(x ,y ,z ),所以⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,所以⎩⎪⎨⎪⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,所以n =(1,1,3).设PD 与平面BDC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n |=⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211.即直线PD 与平面BDC 所成角的正弦值为22211. 3.(2019·湖北武汉调考)如图, 四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.【答案】见解析【解析】方法一 (1)证明:建立如图所示的空间直角坐标系Cxyz ,则D (1,0,0),A (2,2,0),B (0,2,0),设S (x ,y ,z ),则x >0,y >0,z >0,且AS →=(x -2,y -2,z ,),BS →=(x ,y -2,z ).DS→=(x -1,y ,z ).由|AS →|=|BS →|,得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2,得x =1,由|DS →|=1得y 2+z 2=1,①由|BS →|=2得y 2+z 2-4y +1=0,②由①②解得y =12,z =32,所以S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,所以DS →·AS →=0,DS →·BS →=0,所以DS ⊥AS ,DS ⊥BS ,又AS ∩DS =S ,所以SD ⊥平面SAB .(2)设平面SBC 的一个法向量为m =(a ,b ,c ),BS →=⎝ ⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),AB →=(-2,0,0),由⎩⎪⎨⎪⎧m ·BS →=0,m ·CB →=0得⎩⎪⎨⎪⎧a -32b +32c =0,2b =0,所以可取m =(-3,0,2),故AB 与平面SBC 所成的角的正弦值为cos 〈m ,AB →〉=m ·AB →|m |·|AB →|=-2×(-3)7×2=217. 方法二 (1)证明:如下图,取AB 的中点E ,连接DE ,SE ,则四边形BCDE 为矩形,所以DE =CB =2,所以AD =DE 2+AE 2= 5.因为侧面SAB 为等边三角形,AB =2,所以SA =SB =AB =2,且SE =3,又SD =1,所以SA 2+SD 2=AD 2,SE 2+SD 2=ED 2,所以SD ⊥SA ,SD ⊥SB ,又AS ∩DS =S ,所以SD ⊥平面SAB .(2)作S 在DE 上的射影G ,因为AB ⊥SE ,AB ⊥DE ,AB ⊥平面SDE ,所以平面SDE ⊥平面ABCD ,两平面的交线为DE ,所以SG ⊥平面ABCD ,在Rt △DSE 中,由SD ·SE =DE ·SG 得1×3=2×SG ,所以SG =32,作A 在平面SBC 上的射影H ,则∠ABH 为AB 与平面SBC 所成的角,因为CD ∥AB ,AB ⊥平面SDE ,所以CD ⊥平面SDE ,所以CD ⊥SD ,在Rt △CDS 中,由CD =SD =1,求得SC = 2.在△SBC 中,SB =BC =1,SC =2,所以S △SBC =12×2×22-12=72,由V A -SBC =V S -ABC 得13·S △SBC ·AH =13·S △ABC ·SG ,即13×72×AH =13×12×2×2×2,得AH =2217,所以sin ∠ABH =AHAB =217,故AB 与平面SBC 所成的角的正弦值为217. 4.(2019·安徽江南名校联考)如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC=10,∠PAD =45°,E 为PA 的中点. (1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.【答案】见解析【解析】(1)证明:取PB 的中点M ,连接EM 和CM ,过点C 作CN ⊥AB ,垂足为点N .因为CN ⊥AB ,DA ⊥AB ,所以CN ∥DA ,又AB ∥CD ,所以四边形CDAN 为平行四边形,所以CN =AD =8,DC =AN =6,在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,所以AB =12,而E ,M 分别为PA ,PB 的中点,所以EM ∥AB 且EM =6,又DC ∥AB ,所以EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形,所以DE ∥CM .因为CM ⊂平面PBC ,DE ⊄平面PBC ,所以DE ∥平面BPC .(2)由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系Dxyz ,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8).假设AB 上存在一点F 使CF ⊥BD ,设点F 坐标为(8,t,0),则CF →=(8,t -6,0),DB →=(8,12,0),由CF →·DB →=0得t =23.又平面DPC 的法向量为m =(1,0,0),设平面FPC 的法向量为n =(x ,y ,z ).又PC →=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0.由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y ,不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角,故二面角F -PC -D 的余弦值为817.5.(2017·山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是DF的中点.(1)设P是CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.【答案】见解析【解析】(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°,因此∠CBP=30°.(2)方法一取EC的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC=32+22=13.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM=13-1=2 3.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos120°=12,所以EC=23,因此△EMC为等边三角形,故所求的角为60°.方法二 以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由⎩⎪⎨⎪⎧m ·AE →=0,m ·AG →=0可得⎩⎨⎧2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2). 设n =(x 2,y 2,z 2)是平面ACG 的法向量. 由⎩⎪⎨⎪⎧n ·AG →=0,n ·CG →=0可得⎩⎨⎧x 2+3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.由图可得此二面角为锐二面角,故所求的角为60°.6.(2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . (1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.【答案】见解析【解析】(1)证明:由题设可得△ABD ≌△CBD ,从而AD =CD . 又△ACD 是直角三角形,所以∠ADC =90°. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又因为△ABC 是正三角形,故BO ⊥AC , 所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠BOD =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系Oxyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝ ⎛⎭⎪⎫0,32,12,故AD →=(-1,0,1),AC →=(-2,0,0),AE →=⎝⎛⎭⎪⎫-1,32,12.设n =(x ,y ,z )是平面DAE 的法向量,则⎩⎪⎨⎪⎧ n ·AD →=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x +32y +12z =0,可取n =⎝ ⎛⎭⎪⎫1,33,1.设m 是平面AEC 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AE →=0,同理可取m =(0,-1,3),则cos 〈n ,m 〉=n·m |n||m|=77.所以二面角D -AE -C 的余弦值为77.。

北京市高考数学联考试题分类大汇编(8)立体几何试题解析.doc

北京市高考数学联考试题分类大汇编(8)立体几何试题解析.doc

北京市 2020 年高考数学最新联考试题分类大汇编一、选择题:(3) ( 北京市东城区 2020 年 1 月高三考试文科)一个几何体的三视图如图所示,则该几何体的体积为( A)(B)( C)(D)【答案】 C【解析】该几何体为底面是直角边为的等腰直角三角形,高为的直三棱柱,其体积为。

7. ( 北京市西城区2020 年 1 月高三期末考试理科) 某几何体的三视图如图所示,该几何体的体积是()(A)(B)(C)(D)【答案】 D【解析】将三视图还原直观图,可知是一个底面为正方形(其对角线长为2),高为 2 的四棱锥,其体积为A.且,则B.且,则C.且,则D.且,则【答案】 C体的体积为.(9) ( 北京市城区 2020 年 4 月高考一模文科 ) 已知一个四棱的三如所示,四棱的体是 .10. (2020 年 4 月北京市房山区高三一模理科一个几何体的三如所示,个几何体的体 .三、解答:(17) ( 北京市城区2020 年 1 月高三考文科)(本小共14 分)如,在四棱中,底面是正方形,平面,是中点,段上一点.(Ⅰ)求:;(Ⅱ)确定点在段上的位置,使// 平面,并明理由.【命分析】本考垂直和面探索性等合。

考学生的空想象能力。

明垂直的方法:(1)异面直所成的角直角;( 2)面垂直的性定理;( 3)面面垂直的性定理;( 4)三垂定理和逆定理;( 5)勾股定理;( 6)向量垂直 . 要注意面、面面垂直的性定理的成立条件 . 解程中要特体会平行关系性的性,垂直关系的多性 . 本第一利用方法二行明;探求某明(Ⅰ)因平面,所以.又四形是正方形,所以,,所以平面 ,又平面,所以 .⋯⋯⋯⋯⋯⋯7分. ⋯⋯⋯⋯⋯⋯ 14 分(16) ( 2020 年 4 月北京市海淀区高三一模理科)(本小分14 分)在四棱中,//,,,平面,.(Ⅰ)平面平面,求://;(Ⅱ)求:平面;(Ⅲ)点段上一点,且直与平面所成角的正弦,求的.(16)(本小分 14 分)所以,,,所以,.所以, .因,平面,平面,所以平面 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9 分由(Ⅱ)知平面的一个法向量 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分17. (2020 年 3 月北京市朝阳区高三一模文科⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分zPA D⋯⋯ ⋯yCBx⋯⋯ ⋯) (本分13 分)在如所示的几何体中,四形平行四形,,平面,,,,,且是的中点 .(Ⅰ)求:平面;(Ⅱ)在上是否存在一点,使得最大?若存在,求出的正切;若不存在,明理由 .(17)(本小分 13 分)(Ⅱ)解:假在上存在一点,使得最大. 因平面,所以 .又因,所以平面.⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分在中, .17. ( 北京市西城区 2020 年 4 月高三第一次模文 ) (本小分 14 分)如,矩形中,,.,分在段和上,∥,将矩形沿折起.折起后的矩形,且平面平面.(Ⅰ)求:∥平面;(Ⅱ)若,求:;(Ⅲ)求四面体体的最大.17.(本小分 14 分)(Ⅰ)明:因四形,都是矩形,所以∥∥,.所以四形是平行四形,⋯⋯⋯⋯⋯ 2 分所以∥,⋯⋯⋯⋯⋯⋯ 3 分因平面,所以∥平面.⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)明:接,.因平面平面,且,所以平面,⋯⋯ 5 分所以.⋯⋯⋯⋯ 6 分9 分(Ⅲ)解:,,其中.由(Ⅰ)得平面,所以四面体的体.⋯⋯⋯ 11 分所以.⋯⋯⋯⋯⋯13 分当且当,即,四面体的体最大.(17) ( 北京市城区2020 年 4 月高考一模理科⋯⋯⋯⋯⋯⋯) (本小共14 分13 分)1(17)(共 13 分)(Ⅰ)明:取中点,.因,,所以,而,即△是正三角形又因 ,所以.⋯⋯⋯⋯2分所以在 2 中有, . ⋯⋯⋯⋯ 3 分所以二面角.的平2面角.1又二面角直二面角,所以. ⋯⋯⋯⋯ 5 分又因 ,所以⊥平面 , 即⊥平面 .⋯⋯⋯⋯6分(Ⅱ)解:由(Ⅰ)可知⊥平面,,如,以原点,建立空直角坐系,,,,.在1中,.因,所以∥,且 .所以四形平行四形.所以∥,且 .故点的坐(1,, 0) . 2 所以,, .⋯⋯⋯⋯8分不妨平面的法向量,即令,得 .⋯⋯⋯⋯10分所以 .⋯⋯⋯⋯12分故直与平面所成角的大小.⋯⋯⋯⋯13分(17) ( 北京市城区 2020 年 4 月高考一模文科 ) (本小共 14 分)如,在的正三角形中,,,分,,上的点,且足 . 将△沿折起到△的位置,使平面平面,,. (如)(Ⅰ)若中点,求:∥平面;(Ⅱ)求: .1 2(17)(共 14 分)明:(Ⅰ)取中点, .在△中,分 的中点,所以∥,且.因 ,所以∥ , 且,所以∥,且.所以四 形 平行四 形.所以∥.⋯⋯⋯⋯ 5 分又因 平面,且平面, 所以∥平面.(Ⅱ)取中点, .因 ,,所以,而,即△是正三角形 又因 , 所以 .所以在2 中有 . 因 平面平面,平面平面,.⋯⋯⋯⋯ 9 分⋯⋯⋯⋯ 7 分所以⊥平面 .⋯⋯⋯⋯ 12 分17. (2020又平面, 所以⊥ .年 3 月北京市丰台区高三一模文科) (本小 共⋯⋯⋯⋯ 14 分)14 分如 ,四棱 P-ABCD 中,底面 ABCD 是菱形, PA =PD ,∠ BAD =60o , E 是 AD 的中点,点Q在 棱 PC 上.(Ⅰ)求 : AD ⊥平面 PBE ; (Ⅱ)若 Q 是 PC 的中点,求 : PA // 平面 BDQ ;(Ⅲ)若 V P-BCDE =2 V Q - ABCD , 求的 .17. 明:(Ⅰ)因E 是 AD 的中点, PA =PD ,所以AD⊥PE .⋯⋯⋯⋯⋯⋯⋯⋯ 1 分因 底面 ABCD 是菱形,∠ BAD =60o ,所以 = ,又因 E 是 的中点,AB BD AD所以⊥.⋯⋯⋯⋯⋯⋯⋯⋯ 2 分AD BE因 PE∩BE=E,⋯⋯⋯⋯⋯⋯⋯⋯ 3 分所以 AD⊥平面 PBE.⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)接 AC交 BD于点 O, OQ.⋯⋯⋯⋯⋯⋯⋯⋯ 5 分因O 是中点,Q 是的中点,AC PC所以 OQ△ PAC中位.所以 OQ //因,所以.⋯⋯⋯⋯⋯⋯⋯⋯14分17. (2020年4月北京市房山区高三一模理科(本小共14 分)在直三棱柱中,=2 ,.点分是,的中点,是棱上的点.(I )求:平面;(II)若 // 平面,确定点的位置,并出明;(III)求二面角的余弦 .17.(本小共 14 分)(I)明:∵在直三棱柱中,,点是的中点,∴⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分, ,∴⊥平面⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分平面∴,即⋯⋯⋯⋯⋯⋯⋯ 3 分又∴平面⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分( II )当是棱的中点, // 平面 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分明如下 :, 取的中点H,接 ,的中位∴∥,⋯⋯⋯⋯⋯⋯⋯ 6 分∵由已知条件,正方形∴∥,∵ 的中点,(III)∵ 直三棱柱且又平面的法向量,==,⋯⋯⋯⋯⋯⋯⋯⋯13 分二面角的平面角,且角.⋯⋯⋯⋯⋯⋯⋯⋯14 分。

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥13平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由【答案】当AP =AB 时,有AD ∥平面MPC .13理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,==,DNNB DCMB 12在△ADB 中,=,∴AD ∥PN .APPB 12∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法:1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证AD 平行于PN ,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

一一一一一一一一一2.构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

2020年新高考一轮理数:第八章 立体几何

2020年新高考一轮理数:第八章 立体几何

第八章⎪⎪⎪立体几何第一节 空间几何体的三视图、直观图、表面积与体积本节主要包括3个知识点:1.空间几何体的三视图和直观图;空间几何体的表面积与体积;3.与球有关的切、接应用问题.突破点(一) 空间几何体的三视图和直观图[基本知识]1.空间几何体的结构特征 (1)多面体的结构特征(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.[基本能力]1.判断题(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)棱台各侧棱的延长线交于一点.()(3)正方体、球、圆锥各自的三视图中,三视图均相同.()(4)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.()答案:(1)×(2)√(3)×(4)×2.填空题(1)如图所示的几何体中,是棱柱的为________(填写所有正确的序号).解析:根据棱柱的定义,结合给出的几何体可知③⑤满足条件.答案:③⑤(2)有一个几何体的三视图如图所示,这个几何体的形状为________.解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台.答案:棱台(3)已知一个几何体的三视图如图所示,则此几何体从上往下依次由____________构成.解析:由三视图可知,该几何体是由一个圆台和一个圆柱组成的组合体.答案:圆台,圆柱(4)利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案:1[全析考法][例1]给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3[解析]①错误,只有这两点的连线平行于旋转轴时才是母线;②错误,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③错误,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.[答案] A[方法技巧]解决与空间几何体结构特征有关问题的技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1中的命题②④易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2018·河北衡水中学调研)正方体ABCD -AB1C1D1中,E为棱BB1的中点(如1图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧视图为()(2)(2017·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 2 B.2 3C.2 2 D.2[解析](1)过点A,E,C1的截面为AEC1F,如图,则剩余几何体的侧视图为选项C中的图形.故选C.(2)在正方体中还原该四棱锥如图所示,从图中易得最长的棱为AC1=AC2+CC21=(22+22)+22=2 3.[答案](1)C(2)B[方法技巧]有关三视图问题的解题方法(1)由几何体的直观图画三视图需注意的事项①注意正视图、侧视图和俯视图对应的观察方向;②注意能看到的线用实线画,被挡住的线用虚线画;③画出的三视图要符合“长对正、高平齐、宽相等”的基本特征.(2)由几何体的部分视图画出剩余视图的方法先根据已知的部分视图推测直观图的可能形式,然后推测其剩余视图的可能情形,若为选择题,也可以逐项检验.(3)由几何体三视图还原其直观图时应注意的问题要熟悉柱、锥、球、台的三视图,结合空间想象将三视图还原为直观图.空间几何体的直观图按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A[全练题点]1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:选B俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边长为2的直角三角形,则该三棱锥的正视图可能为()解析:选C空间几何体的正视图和侧视图“高平齐”,故正视图的高一定为2,正视图和俯视图“长对正”,故正视图的底边长为2.侧视图中的直角说明这个三棱锥最前面的面垂直于底面,这个面遮住了后面的一条侧棱.综合以上可知,这个三棱锥的正视图可能是C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD 平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.5.[考点二]已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A.1 B.2C.3 D.4解析:选D由题意知,三棱锥放置在长方体中如图所示,利用长方体模型可知,此三棱锥的四个面全部是直角三角形.故选D.突破点(二)空间几何体的表面积与体积[基本知识]1.圆柱、圆锥、圆台的侧面展开图及侧面积公式S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式[基本能力]1.判断题(1)锥体的体积等于底面面积与高之积.( ) (2)台体的体积可转化为两个锥体的体积之差.( ) (3)球的体积之比等于半径比的平方.( ) 答案:(1)× (2)√ (3)× 2.填空题(1)已知圆柱的底面半径为a ,高为66a ,则此圆柱的侧面积等于________. 解析:底面周长l =2πa ,则S 侧=l ·h =2πa ·⎝⎛⎭⎫66a =63πa 2. 答案:63πa 2(2)已知某棱台的上、下底面面积分别为63和243,高为2,则其体积为________. 解析:V =13(63+243+63×243)×2=28 3.答案:28 3(3)已知圆锥的母线长是8,底面周长为6π,则它的体积是________. 解析:设圆锥底面圆的半径为r ,则2πr =6π,∴r =3.设圆锥的高为h ,则h =82-32=55,∴V 圆锥=13πr 2h =355π.答案:355π(4)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为________.解析:在正三棱柱ABC -A 1B 1C 1中,∵AD ⊥BC ,AD ⊥BB 1,BB 1∩BC =B ,∴AD ⊥平面B 1DC 1. ∴VA -B 1DC 1=13S △B 1DC 1·AD =13×12×2×3×3=1.答案:1(5)一个空间几何体的三视图如图所示,则该几何体的表面积为________.解析:由三视图可知该几何体是一个底面为等腰梯形的平放的直四棱柱,所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.答案:48+817[全析考法][例1] (1)(2018·福州市五校联考)某几何体的三视图如图所示,其中俯视图为一个直角三角形,一个锐角为30°,则该几何体的表面积为( )A .24+12 3B .24+5 3C .12+15 3D .12+12 3(2)(2018·南昌市十校联考)已知某几何体的三视图如图所示,则该几何体的表面积是()A .(25+35)πB .(25+317)πC .(29+35)πD .(29+317)π[解析] (1)由已知可得,该几何体为三棱柱,底面是斜边长为4,斜边上的高为3的直角三角形,底面面积为23,底面周长为6+23,棱柱的高为4,故棱柱的表面积S =2×23+4×(6+23)=24+123,故选A.(2)由三视图可知该几何体由一个上下底面直径分别为2和4,高为4的圆台,一个底面直径为4,高为4的圆柱和一个直径为4的半球组成,其直观图如图所示,所以该几何体的表面积为π+π×(1+2)×17+π×4×4+4π×222=π+317π+16π+8π=(25+317)π,故选B. [答案] (1)A (2)B[方法技巧] 求空间几何体表面积的常见类型及思路[例2] (1)(2017·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .10(2)(2018·洛阳市第一次统考)某几何体的三视图如图所示,则该几何体的体积是( )A.15π2B .8πC.17π2D .9π[解析] (1)如图,把三棱锥A -BCD 放到长方体中,长方体的长、宽、高分别为5,3,4,△BCD 为直角三角形,直角边分别为5和3,三棱锥A -BCD 的高为4,故该三棱锥的体积V =13×12×5×3×4=10.(2)依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接,恰好可以形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,选B.[答案] (1)D (2)B[方法技巧] 求空间几何体体积的常见类型及思路[全练题点]1.[考点二](2018·石家庄市教学质量检测)某几何体的三视图如图所示(在网格线中,每个小正方形的边长为1),则该几何体的体积为( )A .2B .3C .4D .6解析:选A 由三视图知,该几何体为四棱锥如图所示,其底面面积S =12×(1+2)×2=3,高为2,所以该几何体的体积V =13×3×2=2,故选A.2.[考点一](2018·长沙市统一模拟考试)如图是某几何体的三视图,其正视图、侧视图均是直径为2的半圆,俯视图是直径为2的圆,则该几何体的表面积为( )A .3πB .4πC .5πD .12π解析:选A 由三视图可知,该几何体是半径为1的半球,其表面积为2π+π=3π.选A.3.[考点二](2017·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1D.3π2+3解析:选A 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V =12×13π×12×3+13×12×2×2×3=π2+1.4.[考点一](2018·南昌市模拟)如图,直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为________.解析:根据题意可知,此旋转体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱(底面半径为1,高为1),如图所示.则所得几何体的表面积为圆锥的侧面积、圆柱的侧面积以及圆柱的下底面积之和,即表面积为π·1·12+12+2π·12+π·12=(2+3)π.答案:(2+3)π5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得(5.4-x )×3×1+π×⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题与球有关的组合体问题常涉及内切和外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体时,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体时,正方体的各个顶点均在球面上,正方体的体对角线长等于球的直径.球与其他旋转体组合时,通常作它们的轴截面解题;球与多面体组合时,通常过多面体的一条侧棱和球心及“切点”或“接点”作截面图进行解题.[全析考法]多面体的内切球问题[例1] (1)(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________. (2)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] (1)设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.(2)设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14×63a =612a , 因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. [答案] (1)32 (2)63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(2)(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.(3)(2018·河北衡水调研)一个直六棱柱的底面是边长为2的正六边形,侧棱长为3,则它的外接球的表面积为________.[解析] (1)如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(2)由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.(3)由直六棱柱的外接球的直径为直六棱柱中最长的对角线,知该直六棱柱的外接球的直径为42+32=5,∴其外接球的表面积为4π×⎝⎛⎭⎫522=25π. [答案] (1)A (2)9π2 (3)25π[方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.[全练题点]1.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 2.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c=2×12×6×86+8+10=2,故选B.3.[考点一](2018·东北三省模拟)三棱柱ABC -A 1B 1C 1的底面是边长为3的正三角形,侧棱AA 1⊥底面ABC ,若球O 与三棱柱ABC -A 1B 1C 1各侧面、底面均相切,则侧棱AA 1的长为( )A.12B.32C .1D. 3解析:选C 因为球O 与直三棱柱的侧面、底面均相切,所以侧棱AA 1的长等于球的直径.设球的半径为R ,则球心在底面上的射影是底面正三角形ABC 的中心,如图所示.因为AC =3,所以AD=12AC =32.因为tan π6=MD AD ,所以球的半径R =MD =AD tan π6=32×33×1=12,所以AA 1=2R =2×12=1.4.[考点二]三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA =3,则该三棱锥外接球的表面积为( )A .5π B.2π C .20πD .4π解析:选A 把三棱锥P -ABC 看作由一个长、宽、高分别为1、1、3的长方体截得的一部分(如图).易知该三棱锥的外接球就是对应长方体的外接球.又长方体的体对角线长为12+12+(3)2=5,故外接球半径为52,表面积为4π×⎝⎛⎭⎫522=5π. 5.[考点二](2018·洛阳统考)已知三棱锥P -ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P -ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π3C.64π3D.80π3解析:选D 依题意,记三棱锥P -ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P -ABC =13S △ABC h =13×⎝⎛⎭⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝⎛⎭⎫2332=203,所以三棱锥P -ABC 的外接球的表面积为4πR 2=80π3,故选D.[全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B. 2.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:选B 设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以圆柱的体积V =34π×1=3π4. 3.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2 C .6πD.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 4.(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.5.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V1V2=1656=15,故选D.6.(2017·全国卷Ⅱ)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为________.解析:由题意知,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R,则有2R=14,R=142,因此球O的表面积为S=4πR2=14π.答案:14π[课时达标检测][小题对点练——点点落实]对点练(一)空间几何体的三视图和直观图1.给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是()A.0 B.1C.2 D.3解析:选A①直平行六面体底面是菱形,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③④显然错误,故选A.2.(2018·广州六校联考)已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数为()A .5B .4C .3D .2解析:选B 由题知可以作为该几何体的俯视图的图形可以为①②③⑤.故选B. 3.在如图所示的空间直角坐标系O -xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四面体的正视图和俯视图分别为( )A .①和③B .③和①C .④和③D .④和②解析:选D 由题意得,该几何体的正视图是一个直角三角形,三个顶点的坐标分别是(0,0,2),(0,2,0),(0,2,2),且内有一条虚线(一顶点与另一直角边中点的连线),故正视图是④;俯视图即在底面的射影,是一个斜三角形,三个顶点的坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.4.如图,△O ′A ′B ′是△OAB 的水平放置的直观图,其中O ′A ′=O ′B ′=2,则△OAB 的面积是________.解析:在Rt △OAB 中,OA =2,OB =4,△OAB 的面积S =12×2×4=4.答案:45.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为_______cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C .在Rt △ABC 中,AC =12 cm ,BC =8-3=5(cm).∴AB =122+52=13(cm).答案:13对点练(二) 空间几何体的表面积与体积1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a 2B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π解析:选B 由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.3.(2018·湖北四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为( )A .16B .(10+5)πC .4+(5+5)πD .6+(5+5)π解析:选C 该几何体是两个相同的半圆锥与一个半圆柱的组合体,其表面积为S =π+4π+4+5π=4+(5+5)π.4.(2017·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.答案:2+π25.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)解析:由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r 中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V 142π=588π196π=3(寸). 答案:36.(2018·合肥市质检)高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的________.解析:由侧视图、俯视图知该几何体是高为2、底面积为 12×2×(2+4)=6的四棱锥,其体积为13×6×2=4.而直三棱柱的体积为12×2×2×4=8,则该几何体的体积是原直三棱柱的体积的12.答案:12对点练(三) 与球有关的切、接应用问题1.在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥外接球的表面积为( ) A .2π B .6π C .46πD .24π解析:选B 设相互垂直的三条侧棱AB ,AC ,AD 分别为a ,b ,c 则12ab =22,12bc =32,12ac =62,解得a =2,b =1,c = 3.所以三棱锥A -BCD 的外接球的直径2R =a 2+b 2+c 2=6,则其外接球的表面积S =4πR 2=6π.2.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于点E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝⎛⎭⎫233-R 2+⎝⎛⎭⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π.3.(2018·湖北七市(州)联考)一个几何体的三视图如图所示,该几何体外接球的表面积为( )。

专题08 立体几何解答题常考全归类(精讲精练)(原卷版)

专题08 立体几何解答题常考全归类(精讲精练)(原卷版)

专题08 立体几何解答题常考全归类【命题规律】空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.【核心考点目录】核心考点一:非常规空间几何体为载体核心考点二:立体几何探索性问题核心考点三:立体几何折叠问题核心考点四:立体几何作图问题核心考点五:立体几何建系繁琐问题核心考点六:两角相等(构造全等)的立体几何问题核心考点七:利用传统方法找几何关系建系核心考点八:空间中的点不好求核心考点九:创新定义【真题回归】1.(2022·天津·统考高考真题)直三棱柱111ABC A B C 中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.6.(2022·全国·统考高考真题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【方法技巧与总结】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的.(3)计算:在证明的基础上计算得出结果.简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin h l,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°.4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【核心考点】核心考点一:非常规空间几何体为载体【规律方法】关键找出三条两两互相垂直的直线建立空间直角坐标系.【典型例题】例1.(2022·陕西安康·统考一模)如图,已知AB 为圆锥SO 底面的直径,点C 在圆锥底面的圆周上,2BS AB ==,6BAC π∠=,BE 平分SBA ∠,D 是SC 上一点,且平面DBE ⊥平面SAB .(1)求证:SA BD ⊥;(2)求二面角E BD C --的正弦值.例2.(2022·安徽·校联考二模)如图,将长方形11OAAO (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAAO 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值.例3.(2022·山东东营·胜利一中校考模拟预测)如图,,AB CD 分别是圆台上、下底面的直径,且AB CD ,点E 是下底面圆周上一点,AB =(1)证明:不存在点E 使平面AEC ⊥平面ADE ;(2)若4DE CE ==,求二面角D AE B --的余泫值.例4.(2022·河北·统考模拟预测)如图,在圆台1OO 中,上底面圆1O 的半径为2,下底面圆O 的半径为4,过1OO 的平面截圆台得截面为11ABB A ,M 是弧AB 的中点,MN 为母线,cos NMB ∠=(1)证明:1AB ⊥平面1AOM ; (2)求二面角M NB A --的正弦值.核心考点二:立体几何探索性问题【规律方法】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.【典型例题】例5.(2022·上海虹口·统考一模)如图,在三棱柱111ABC A B C 中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AAC C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 请求出1A E 的长;若不存在,请说明理由.例6.(2022春·山东·高三山东省实验中学校考阶段练习)如图,在三棱柱111ABC A B C 中,1AB C 为等边三角形,四边形11AA B B 为菱形,AC BC ⊥,4AC =,3BC =.(1)求证:11AB AC ⊥;(2)线段1CC 上是否存在一点E ,使得平面1AB E 与平面ABC 的夹角的余弦值为14?若存在,求出点E 的位置;若不存在,请说明理由.例7.(2022春·黑龙江绥化·高三海伦市第一中学校考期中)如图1,在矩形ABCD 中,AB =2,BC =1,E 是DC 的中点,将DAE 沿AE 折起,使得点D 到达点P 的位置,且PB =PC ,如图2所示.F 是棱PB 上的一点.(1)若F 是棱PB 的中点,求证://CF 平面P AE ;(2)是否存在点F ,使得二面角F AE C --?若存在,则求出PF FB 的值;若不存在,请说明理由.例8.(2022·广东韶关·统考一模)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 求出λ的值;若不存在,请说明理由.核心考点三:立体几何折叠问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例9.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)当2x =时①求证:BD EG ⊥;②求二面角D BF C --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的一半?并说明理由.例10.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值.例11.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD 沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC =(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面P AD 夹角的余弦值.例12.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C --的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由. (2)求直线PC 与平面PBE 所成角的正弦值.核心考点四:立体几何作图问题 【规律方法】(1)利用公理和定理作截面图(2)利用直线与平面平行的性质定理作平行线 (3)利用平面与平面垂直作平面的垂线 【典型例题】例13.(2022·贵州·校联考模拟预测)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,112CD CC AC ===,3DCB π∠=且113cos cos 4C CD C CB ∠=∠=.(1)试在平面ABCD 内过点C 作直线l ,使得直线//l 平面1C BD ,说明作图方法,并证明:直线11//l B D ; (2)求点C 到平面1A BD 的距离.例14.(2022秋·河北石家庄·高一石家庄市第十五中学校考期中)如图为一块直四棱柱木料,其底面ABCD 满足:AB AD ⊥,AD BC ∥.(1)要经过平面11CC D D 内的一点P 和棱1BB 将木料锯开,在木料表面应该怎样画线?(借助尺规作图,并写出作图说明,无需证明)(2)若2AD AB ==,11BC AA ==,当点P 是矩形11CDD C 的中心时,求点1D 到平面1APB 的距离.例15.(2022·全国·高三专题练习)如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,//EF BC ,且332EF BC ==,H ,G 分别为CE ,CD 的中点.(1)求二面角C FH G --的余弦值;(2)作平面FHG 与平面ABCD 的交线,记该交线与直线AB 交点为P ,写出APAB的值(不需要说明理由,保留作图痕迹).例16.(2022·全国·高三专题练习)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB π∠=.ACBD O =,且PO ⊥平面ABCD ,PO =点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅰ)求直线AB 与平面EFG 的成角的正弦值;(Ⅰ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.核心考点五:立体几何建系繁琐问题 【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例18.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C 中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ;(2)若2AB AC ==,直线1BB 与平面1ACB 所成角的正切值为2,求多面体1B EFGC -的体积V .核心考点六:两角相等(构造全等)的立体几何问题 【规律方法】 构造垂直的全等关系 【典型例题】例20.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例21.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.核心考点七:利用传统方法找几何关系建系【规律方法】利用传统方法证明关系,然后通过几何关系建坐标系. 【典型例题】例22.如图:长为3的线段PQ 与边长为2的正方形ABCD 垂直相交于其中心()O PO OQ >. (1)若二面角P AB Q --的正切值为3-,试确定O 在线段PQ 的位置;(2)在(1)的前提下,以P ,A ,B ,C ,D ,Q 为顶点的几何体PABCDQ 是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例23.在四棱锥P ABCD -中,E 为棱AD 的中点,PE ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,2ED BC ==,3EB =,F 为棱PC 的中点.(Ⅰ)求证://PA 平面BEF ;(Ⅰ)若二面角F BE C --为60︒,求直线PB 与平面ABCD 所成角的正切值.例24.三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,侧面11BCC B 为矩形,123A AB π∠=,二面角1A BC A --的正切值为12. (Ⅰ)求侧棱1AA 的长;(Ⅰ)侧棱1CC 上是否存在点D ,使得直线AD 与平面1A BC ,若存在,判断点的位置并证明;若不存在,说明理由.核心考点八:空间中的点不好求 【规律方法】 方程组思想 【典型例题】例25.(2022·江苏南京·模拟预测)已知三棱台111ABC A B C 的体积为143,且π2ABC ∠=,1A C ⊥平面11BB C C . (1)证明:平面11A B C ⊥平面111A B C ;(2)若11AC B C =,11112A B B C ==,求二面角1B AA C --的正弦值.例26.(2022春·浙江·高三浙江省新昌中学校联考期中)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA ,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.例27.(2022春·辽宁沈阳·高三沈阳市第一二〇中学校考期中)如图,在几何体ABCDE 中,底面ABC 为以AC为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,//BCE DE 平面,ABC AD DE ⊥.(1)证明;DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时,AM 与CD 所成角的余弦值.核心考点九:创新定义 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例28.(2022·安徽合肥·合肥一六八中学校考模拟预测)已知顶点为S 的圆锥面(以下简称圆锥S )与不经过顶点S 的平面α相交,记交线为C ,圆锥S 的轴线l 与平面α所成角θ是圆锥S 顶角(圆S 轴截面上两条母线所成角θ的一半,为探究曲线C 的形状,我们构建球T ,使球T 与圆锥S 和平面α都相切,记球T 与平面α的切点为F ,直线l 与平面α交点为A ,直线AF 与圆锥S 交点为O ,圆锥S 的母线OS 与球T 的切点为M ,OM a =,MS b =.(1)求证:平面SOA ⊥平面α,并指出a ,b ,θ关系式; (2)求证:曲线C 是抛物线.例29.(2022·全国·高三专题练习)类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角-P ABC ,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理;(2)如图2,四棱柱1111ABCD A B C D -中,平面11AA C C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒, ①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置;若不存在,说明理由.例30.(2022·全国·校联考模拟预测)蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.【新题速递】1.(2022·重庆沙坪坝·重庆八中校考模拟预测)如图,在三棱柱111ABC A B C 中,1BC CC =,1AC AB =.(1)证明:平面1ABC ⊥平面11BCC B ;(2)若BC =,1AB B C =,160CBB ∠=︒,求直线1BA 与平面111A B C 所成角的正弦值.2.(2022·四川达州·统考一模)如图,三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,112AB AC BB ===,,160ABB ∠=.(1)证明: 1AB B C ⊥;(2)若12B C =,求1AC 与平面1BCB 所成角的正弦值.3.(2022·陕西宝鸡·统考一模)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.4.(2022·广东广州·统考一模)如图,已知四棱锥P ABCD -的底面ABCD 是菱形,平面PBC ⊥平面ABCD ,30,ACD E ∠=为AD 的中点,点F 在PA 上,3AP AF =.(1)证明:PC //平面BEF ;(2)若PDC PDB ∠∠=,且PD 与平面ABCD 所成的角为45,求平面AEF 与平面BEF 夹角的余弦值.5.(2022·上海奉贤·统考一模)如图,在四面体ABCD 中,已知BA BD CA CD ===.点E 是AD 中点.(1)求证:AD ⊥平面BEC ;(2)已知95,arccos,625AB BDC AD ∠===,作出二面角D BC E --的平面角,并求它的正弦值.6.(2022·上海浦东新·统考一模)如图,三棱锥-P ABC 中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积.7.(2022·四川成都·石室中学校考模拟预测)如图,在四棱锥P ABCD -中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE 平面PCD(1)证明:CD ⊥平面PAD ;(2)若1CD =,求二面角A PB C --的正弦值.8.(2022春·江苏徐州·高三期末)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ∥BC ,N 为PB 的中点.(1)若点M 在AD 上,2AM MD =,34AD BC =,证明:MN 平面PCD ; (2)若3PA AB AC AD ====,4BC =,求二面角D AC N --的余弦值.9.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD ED FA ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求二面角F AC E --的大小.10.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.11.(2022·四川广安·广安二中校考模拟预测)APD △是等腰直角三角形,AP PD ⊥且AD =ABCD 是直角梯形,AB BC ⊥,DC BC ⊥,且222AB BC CD ===,平面APD ⊥平面ABCD .(1)求证:AP ⊥平面BPD ;(2)若点E 是线段PB 上的一个动点,问点E 在何位置时三棱锥D APE -.12.(2022·四川南充·统考一模)在平面五边形ABCDE 中(如图1),ABCD 是梯形,//AD BC ,2AD BC ==AB =90ABC ∠=︒,ADE 是等边三角形.现将ADE 沿AD 折起,连接EB ,EC 得四棱锥E ABCD -(如图2)且CE =(1)求证:平面EAD ⊥平面ABCD ;(2)在棱EB 上有点F ,满足13EF EB =,求二面角E AD F --的余弦值.13.(2022·贵州贵阳·贵阳六中校考一模)如图,在四棱锥P ABCD -中,DA AB ⊥,PD PC ⊥,PB PC ⊥,1AB AD PD PB ====,4cos 5DCB ∠=.(1)求证:BD ⊥平面PAC .(2)设E 为BC 的中点,求PE 与平面ABCD 所成角的正弦值.14.(2022春·广东广州·高三校考期中)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB AD ⊥,//,222AB CD PC AB AD CD ====,点E 在侧棱PB 上.(1)求证:平面EAC ⊥平面PBC ;(2)若平面PAC 与平面ACE PE BE 的值.。

2020年高考数学《三维设计》第八章 立体几何第三节 空间点、线、面之间的位置关系

2020年高考数学《三维设计》第八章  立体几何第三节  空间点、线、面之间的位置关系
在此平面内. (2)公理 2:过不在一条直线上的三点,有且只有一个平面(注意:
三点不一定能确定一个平面). 推论 1:经过一条直线和直线外一点,有且只有一个平面. 推论 2:经过两条相交直线,有且只有一个平面. 推论 不重合的平面有一个公共点,那么它们有且 只有一条过该点的公共直线.
③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;
④α∩β=b,P∈α,P∈β⇒P∈b.
返回
5.若三个平面两两相交,且三条交线互相平行,则这三个平面 把空间分成_____7___部分. 解析:通过举例说明,如三棱柱三个侧面所在平面满足两两 相交,且三条交线互相平行,这三个平面将空间分成 7 部分.
返回
考点——在细解中明规律
返回
2.空间中两直线的位置关系
(1)空间中两直线的位置关系 (1)两条异面直线不能确定一 个平面.
共面直线平相行交
(2) 不 能 把 异 面 直 线 误 解 为 分 别在不同平面内的两条直线.
异面直线:不同在任何一个平面内
(2)异面直线所成的角
①定义:设 a,b 是两条异面直线,经过空间任一点 O 作
题目千变总有根,梳干理枝究其本
返回
考点一 平面的基本性质及应用 [师生共研过关]
[典例精析]
返回
如图所示,在正方体 ABCD-A1B1C1D1 中,E,F 分
别是 AB 和 AA1 的中点.求证:
(1)E,C,D1,F 四点共面;
(2)CE,D1F,DA 三线共点.
[证明] (1)如图,连接 EF,CD1,A1B. ∵E,F 分别是 AB,AA1 的中点,∴EF∥BA1. 又 A1B∥D1C,∴EF∥CD1, ∴E,C,D1,F 四点共面. (2)∵EF∥CD1,EF<CD1,∴CE 与 D1F 必 相交,设交点为 P,如图所示.则由 P∈CE, CE⊂平面 ABCD,得 P∈平面 ABCD. 同理 P∈平面 ADD1A1.又平面 ABCD∩平面 ADD1A1=DA, ∴P∈直线 DA,∴CE,D1F,DA 三线共点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考专题训练八 立体几何
5.(12分)(考点:折叠问题、面面垂直、利用空间向量求线面角的正弦值)
如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.
(1)证明:平面PEF ⊥平面ABFD ;
(2)求DP 与平面ABFD 所成角的正弦值.
6.(12分)(考点:折叠问题、面面垂直、三棱锥的体积计算等)
如图,在平行四边形ABCM 中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .
(1)证明:平面ACD ⊥平面ABC
(2)Q 为线段AD 上一点,且BP=DQ=
23DA , 求三棱锥Q-ABP 的体积.
7.(12分)(考点:面面垂直、四棱锥的体积、设求四棱锥的侧面积)
如图,在四棱锥P-ABCD 中,AB//CD ,
且90BAP CDP ∠=∠=
(1)证明:平面PAB ⊥平面PAD ;
(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为
83,求该四棱锥的侧面积.。

相关文档
最新文档