数据挖掘概念与技术-第1章

合集下载

第1章 《数据挖掘》PPT绪论

第1章 《数据挖掘》PPT绪论
Wisdom
Knowledge
Information
Data
3 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.1 数据挖掘的概念
数据挖掘、数据库、人工智能
• 数据挖掘是从数据中发掘知识的过程,在这个过程中人工智能和数据库技术可以作 为挖掘工具,数据可以被看作是土壤,云平台可以看作是承载数据和挖掘算法的基 础设施 。在挖掘数据的过程中需要用到一些挖掘工具和方法,如机器学习的方法。 当挖掘完毕后,数据挖掘还需要对知识进行可视化和展现。
21 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
• WEKA WEKA 是一个基于JAVA 环境下免费开源的数据挖掘工作平台,集合了大量能承担数据 挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及 在新的交互式界面上的可视化。
22 of 43
1.3数据挖掘常用工具
•R • Weka • Mahout • RapidMiner • Python • Spark MLlib
第一章 绪论
20 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
•R R是用于统计分析和图形化的计算机语言及分析工具,提供了丰富的统计分析和数据挖 掘功能,其核心模块是用C、C++和Fortran编写的。
为了提高系统的决策支持能力,像ERP、SCM、HR等一些应用系统也逐渐与数据 挖掘集成起来。多种理论与方法的合理整合是大多数研究者采用的有效技术。
12 of 43
1.2 数据挖掘起源及发展历史
第一章 绪论
3 数据挖掘面临的新挑战
随着物联网、云计算和大数据时代的来临,在大数据背景下数据挖掘要面临的挑 战,主要表现在以下几个方面:

数据挖掘概念与技术

数据挖掘概念与技术

数据挖掘概念与技术数据挖掘概念与技术一. 什么是数据挖掘,数据挖掘的知识体系及应用范围1. 定义:又称数据中的知识发现,从大量的数据中挖掘有趣模式和知识的过程。

知识发现的过程:1). 数据清理:除噪声和删除不一致数据2). 数据集成:多种数据源的组合3). 数据选择:取和分析与任务相关的数据4). 数据变换:数据变换和统一成适合挖掘的形式5). 数据挖掘:使用智能方法提取数据格式6). 模式评估:识别代表知识的有趣模式7). 知识表示:使用可视化和知识表示技术,向用户提供挖掘的知识2. 为什么要进行数据挖掘未来将是大数据时代,IDC(国际数据公司)研究报告指出2012年全球信息资料量为2.8ZB (2的40次方GB),而在2020年预计会达到40ZB,平均每人拥有5247GB的数据。

庞大的数据量背后隐藏着巨大的潜在价值,人们手握巨量的数据却没有很好的手段去充分挖掘其中的价值,因此对数据挖掘的研究可以帮助我们将数据转化成知识。

3. 数据挖掘的知识体系数据库的用户为数据库专业人员、处理日常操作,而数据仓库为主管和分析人员,为决策提供支持。

3). 数据仓库体系架构:底层数据,中间层OLAP服务器,顶层前端工具4). 数据仓库模型:企业仓库:提供企业范围内的数据集成,企业范围的数据集市:包含企业范围数据的一个子集,对特定的用户群,咸鱼选定的主题,部门范围的。

虚拟仓库:操作数据库上视图的集合2. 数据仓库建模数据立方体:允许以多维数据建模和观察,由维(属性)和事实(数值)定义方体:给定诸维的每个可能的自己产生一个方体,结果形成方体的格,方体的格称作数据立方体。

多维模型:星形模式:包括一个大的中心表(事实表)、一组小的附属表(维表),维表围绕中心表雪花模式:是星形的表变种,某些维表被规范化费解到附加的表中,用于数据集市事实星座:多个事实表分享维表,用于复杂的应用,常用于企业数据仓库3. 典型OLAP操作:上卷:沿一个维的概念分层向上攀升或通过维规约进行聚集,如由city上卷到country下钻:沿维的概念分层向下或引入附加的维来实现,如由季度数据到更详细的月数据切片:在立方体的一个维上进行选择,定义一个子立方体,如选择季度一的数据切块:在立方体的两个或多个维上进行选择,定义子立方体,如选择季度为一和商品类型为计算机的数据转轴:转动数据视角,或将3D立方变换成2D 平面序列物化:完全物化(完全立方体):计算定义数据立方体的格中所有的方体,需要过多存储空间,导致维灾难部分物化:选择性计算子立方体冰山立方体:一个数据立方体,只存放其聚集值大于某个最小支持度阈值的立方体单元。

数据挖掘概念与技术第一章PPT课件

数据挖掘概念与技术第一章PPT课件
数据利用
数据淹没,但却缺乏知识
信息技术的进化
···
数据挖掘的自动化分析的海量数据集 文件处理->数据库管理系统->高级数据库:系统高级数据分析
2021
3
定义:从大量的数据中提取有趣的(非平凡的,隐 含的,以前未知的和潜在有用的)模式或知识。
“数据中发现知识”(KDD)
2021
4
选择和变换
评估和表示
第一章 引论
2021
1
1.1 为什么进行数据挖掘 1.2 什么是数据挖掘 1.3 可以挖掘什么类型的数据 1.4 可以挖掘什么类型的模式 1.5 使用什么技术 1.6 面向什么类型的应用 1.7 数据挖掘的主要问题 1.8 小结
2021
2
数据爆炸
海量数据,爆炸式增长
来源:网络,电子商务,个人 类型:图像,文本···
设想网上购物的一次交易,其付款过程至少包括以下几步数据库操作:
一、更新客户所购商品的库存信息 二、保存客户付款信息--可能包括与银行系统的交互 三、生成订单并且保存到数据库中 四、更新用户相关信息,例如购物数量等等
2021
9
其他类型的数据
股票交易数据 文本 图像 音频视频 未知的
2021
10
1.4.1 类/概念描述:特征化与区分
类/概念
数据特征化
目标数据的一般特性或特征汇总
数据区分
将目标类数据对象的一般性与一个或多个 对比类对象的一般特性进行比较
特征化和区分
2021
11
1.4.2 挖掘频繁模式、关联和相关性
频繁模式是在数据中频繁出现的模式
1.频繁项集、频繁子序列、频繁子结构 2.挖掘频繁模式可以发现数据中的关联和相关性 例如:单维与多维关联

数据挖掘概念、技术--数据挖掘原语、语言和系统结构1

数据挖掘概念、技术--数据挖掘原语、语言和系统结构1
பைடு நூலகம்数据挖掘原语、语言和系 统结构
数据挖掘语言分类
数据挖掘查询语言;
• DBMiner中定义的原语 DBMiner中定义的原语
数据挖掘建模语言; 通用数据挖掘语言。 第一阶段的数据挖掘语言一般属于查询语 言;PMML属于建模语言;OLE 言;PMML属于建模语言;OLE DB for DM属于通用数据挖掘语言。 DM属于通用数据挖掘语言。
置信度
• confidence factor (or predictive accuracy) • P(A^B)/P(A)
Piatetsky-Shapiro’st three principles for rule interestingness (RI)
如果P(A^B)=P(A)P(B),那么RI=O; 如果P(A^B)=P(A)P(B),那么RI=O; 当其它参数固定时,Rl随着P(A^B)的增加 当其它参数固定时,Rl随着P(A^B)的增加 单调递增; 当其它参数固定时,RI随着P(A)或P(B)的 当其它参数固定时,RI随着P(A)或P(B)的 增加单调递减。
提供匹配的模式模版(元模式,元规则,元查询) 指导发现过程。 P(X:customer,W)^Q(X,Y)=>buys(X,Z)
背景知识
关于挖掘领域的知识。概念分层允许在多个抽象 层次上发现知识。 概念分层定义了一组由底层概念集到高层概念集 的映射。 概念分层结构可以由系统用户,领域专家,知识 工程师,自动发现,统计分析获得
简洁性
要求规则的前件和后件(主要是前件) 要求规则的前件和后件(主要是前件)包含的 属性的项数不要太多。即A 属性的项数不要太多。即A的属性数目越少 规则越简洁,客观兴趣度越高。
• 一般地,A包含的属性越少P(A)越大。 一般地,A包含的属性越少P(A)越大。

数据挖掘技术分析期末总结

数据挖掘技术分析期末总结

数据挖掘技术分析期末总结第一章:引言数据挖掘技术在当前信息爆炸的时代扮演着至关重要的角色。

数据挖掘技术能够从大量、复杂、多源、高维度的数据中发现隐藏的、有用的信息,并利用这些信息做出智能决策。

本文将对数据挖掘技术进行分析和总结,包括数据挖掘的定义、应用、技术和挑战等方面。

第二章:数据挖掘的定义和基本概念本章将对数据挖掘的定义和基本概念进行介绍。

数据挖掘是一门综合性的学科,它将数据库技术、机器学习、统计学和模式识别等多个学科的知识融合于一体。

数据挖掘的基本概念包括数据预处理、特征选择、数据采样、模型选择、模型评估等。

第三章:数据挖掘的技术和方法本章将对数据挖掘的技术和方法进行详细介绍。

数据挖掘的核心技术包括分类、聚类、关联规则挖掘、异常检测和预测分析等。

针对不同的任务和数据类型,我们可以选择不同的数据挖掘方法,如决策树、神经网络、支持向量机等。

第四章:数据挖掘的应用领域本章将对数据挖掘的应用领域进行梳理。

数据挖掘技术可以广泛应用于金融、电子商务、医疗、交通、社交网络等各个领域。

在这些领域中,数据挖掘可以帮助企业发现市场机会、提高生产效率、优化运营管理等。

第五章:数据挖掘的挑战和未来发展趋势本章将对数据挖掘的挑战和未来发展趋势进行分析和展望。

随着科技的不断发展,数据量的不断增加,数据挖掘面临着各种挑战,如数据隐私保护、模型解释性和数据不平衡等。

然而,数据挖掘仍然有很大的发展空间,未来可能出现更多的研究和应用领域。

第六章:结论本文通过对数据挖掘技术的分析和总结,我们可以得出以下结论:数据挖掘技术在当今社会具有重要的应用价值;数据挖掘技术包括了多种技术和方法,可以根据不同的任务和数据类型进行选择;数据挖掘技术还面临着各种挑战,但未来仍然有很大的发展潜力。

总结:数据挖掘技术是当今社会中处理和分析大数据的重要工具。

在数据挖掘技术的帮助下,我们可以从大数据中发现有价值的信息,并据此做出智能决策。

数据挖掘技术的应用领域广泛,可以帮助企业进行市场预测、产品推荐和风险控制等。

数据挖掘概念与技术_课后题答案

数据挖掘概念与技术_课后题答案

数据挖掘概念与技术_课后题答案数据挖掘⼀⼀概念概念与技术Data MiningConcepts andTechniques习题答案第1章引⾔1.1什么是数据挖掘?在你的回答中,针对以下问题:1.2 1.6定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。

使⽤你熟悉的现实⽣活的数据库,给岀每种数据挖掘功能的例⼦。

解答:特征化是⼀个⽬标类数据的⼀般特性或特性的汇总。

例如,学⽣的特征可被提岀,形成所有⼤学的计算机科学专业⼀年级学⽣的轮廓,这些特征包括作为⼀种⾼的年级平均成绩(GPA: Grade point aversge)的信息,还有所修的课程的最⼤数量。

区分是将⽬标类数据对象的⼀般特性与⼀个或多个对⽐类对象的⼀般特性进⾏⽐较。

例如,具有⾼GPA的学⽣的⼀般特性可被⽤来与具有低GPA的⼀般特性⽐较。

最终的描述可能是学⽣的⼀个⼀般可⽐较的轮廓,就像具有⾼GPA的学⽣的75%是四年级计算机科学专业的学⽣,⽽具有低GPA的学⽣的65%不是。

关联是指发现关联规则,这些规则表⽰⼀起频繁发⽣在给定数据集的特征值的条件。

例如,⼀个数据挖掘系统可能发现的关联规则为:major(X, Computi ng scie nee” S own s(X, personalcomputer ” [support=12%, confid en ce=98%]其中,X是⼀个表⽰学⽣的变量。

这个规则指出正在学习的学⽣,12% (⽀持度)主修计算机科学并且拥有⼀台个⼈计算机。

这个组⼀个学⽣拥有⼀台个⼈电脑的概率是98% (置信度,或确定度)。

分类与预测不同,因为前者的作⽤是构造⼀系列能描述和区分数据类型或概念的模型(或功能),⽽后者是建⽴⼀个模型去预测缺失的或⽆效的、并且通常是数字的数据值。

它们的相似性是他们都是预测的⼯具:分类被⽤作预测⽬标数据的类的标签,⽽预测典型的应⽤是预测缺失的数字型数据的值。

聚类分析的数据对象不考虑已知的类标号。

数据挖掘概念与技术原书第3版课后练习题含答案

数据挖掘概念与技术原书第3版课后练习题含答案

数据挖掘概念与技术原书第3版课后练习题含答案前言《数据挖掘概念与技术》(Data Mining: Concepts and Techniques)是一本经典的数据挖掘教材,已经推出了第3版。

本文将为大家整理并提供第3版课后习题的答案,希望对大家学习数据挖掘有所帮助。

答案第1章绪论习题1.1数据挖掘的基本步骤包括:1.数据预处理2.数据挖掘3.模型评价4.应用结果习题1.2数据挖掘的主要任务包括:1.描述性任务2.预测性任务3.关联性任务4.分类和聚类任务第2章数据预处理习题2.3数据清理包括以下几个步骤:1.缺失值处理2.异常值检测处理3.数据清洗习题2.4处理缺失值的方法包括:1.删除缺失值2.插补法3.不处理缺失值第3章数据挖掘习题3.1数据挖掘的主要算法包括:1.决策树2.神经网络3.支持向量机4.关联规则5.聚类分析习题3.6K-Means算法的主要步骤包括:1.首先随机选择k个点作为质心2.将所有点分配到最近的质心中3.重新计算每个簇的质心4.重复2-3步,直到达到停止条件第4章模型评价与改进习题4.1模型评价的方法包括:1.混淆矩阵2.精确率、召回率3.F1值4.ROC曲线习题4.4过拟合是指模型过于复杂,学习到了训练集的噪声和随机变化,导致泛化能力不足。

对于过拟合的处理方法包括:1.增加样本数2.缩小模型规模3.正则化4.交叉验证结语以上是《数据挖掘概念与技术》第3版课后习题的答案,希望能够给大家的学习带来帮助。

如果大家还有其他问题,可以在评论区留言,或者在相关论坛等平台提出。

数据挖掘概念与技术习题答案-第1章

数据挖掘概念与技术习题答案-第1章

数据挖掘概念与技术(原书第3版)第一章课后习题及解答1.9习题1.1什么是数据挖掘?在你的回答中,强调以下问题:(a)它是又一种广告宣传吗?(b)它是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用吗?(c)我们提出了一种观点,说数据挖掘是数据库技术进化的结果。

你认为数据挖掘也是机器学习研究进化的结果吗?你能基于该学科的发展历史提出这一观点吗?针对统计学和模式识别领域,做相同的事。

(d)当把数据挖掘看做知识发现过程时,描述数据挖掘所涉及的步骤。

答:狭义的数据挖掘是知识发现过程中的一个步骤,广义的数据挖掘通常用来表示整个知识发现过程,我们一般采用广义的观点:数据挖掘是从大量数据中挖掘有趣模式和知识的过程。

数据源包括数据库、数据仓库、WEB、其他信息存储库或动态地流入系统的数据。

a.它不是一种广告宣传,它基于实际的需求,提供从数据中发现知识的工具。

b。

数据挖掘不是从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用,它可以看做是信息技术的自然进化,是一些相关学科和应用领域的交汇点.c。

数据挖掘是数据库技术进化的结果,也是机器学习、统计学和模式识别领域技术进化的结果。

机器学习是一个快速成长的学科,这一领域中的监督学习、无监督学习、半监督学习和主动学习问题,与数据挖掘高度相关,数据挖掘和机器学习有许多相似之处,对于分类和聚类任务,机器学习研究通常关注模型的准确率。

除准确率之外,数据挖掘研究非常强调挖掘方法在大型数据集上的有效性和可伸缩性,以及处理复杂数据类型的方法,开发新的非传统的方法.统计学研究数据的收集、分析、解释和表示。

数据挖掘和统计学具有天然联系。

(1)统计模型是一组数学函数,它们利用随机变量及其概率分布刻画目标类对象的行为,可以是数据挖掘的结果,也可以是数据挖掘任务的基础。

(2)统计学研究开发一些使用数据和统计模型进行预测和预报的工具,描述统计可以帮助理解数据;推理统计学用某种方式对数据建模,可以解释观测中的随机性和确定性,并用来提取关于所考察的过程中或总体的结论.(3)统计假设检验使用实验数据进行统计判决,可以用来验证数据挖掘结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据挖掘概念与技术(原书第3版)
第一章课后习题及解答
1.9习题
1.1什么是数据挖掘?在你的回答中,强调以下问题:
(a)它是又一种广告宣传吗?
(b)它是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用吗?
(c)我们提出了一种观点,说数据挖掘是数据库技术进化的结果。

你认为数据挖掘也是机器学习研究进化的结果吗?你能基于该学科的发展历史提出这一观点吗?针对统计学和模式识别领域,做相同的事。

(d)当把数据挖掘看做知识发现过程时,描述数据挖掘所涉及的步骤。

答:
狭义的数据挖掘是知识发现过程中的一个步骤,广义的数据挖掘通常用来表示整个知识发现过程,我们一般采用广义的观点:数据挖掘是从大量数据中挖掘有趣模式和知识的过程。

数据源包括数据库、数据仓库、WEB、其他信息存储库或动态地流入系统的数据。

a.它不是一种广告宣传,它基于实际的需求,提供从数据中发现知识的工具。

b.数据挖掘不是从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用,它可以看做是信息技术的自然进化,是一些相关学科和应用领域的交汇点。

c. 数据挖掘是数据库技术进化的结果,也是机器学习、统计学和模式识别领域技术进化的结果。

机器学习是一个快速成长的学科,这一领域中的监督学习、无监督学习、半监督学习和主动学习问题,与数据挖掘高度相关,数据挖掘和机器学习有许多相似之处,对于分类和聚类任务,机器学习研究通常关注模型的准确率。

除准确率之外,数据挖掘研究非常强调挖掘方法在大型数据集上的有效性和可伸缩性,以及处理复杂数据类型的方法,开发新的非传统的方法。

统计学研究数据的收集、分析、解释和表示。

数据挖掘和统计学具有天然联系。

(1)统计模型是一组数学函数,它们利用随机变量及其概率分布刻画目标类对象的行为,可以是数据挖掘的结果,也可以是数据挖掘任务的基础。

(2)统计学研究开发一些使用数据和统计模型进行预测和预报的工具,描述统计可以帮助理解数据;推理统计学用某种方式对数据建模,可以解释观测中的随机性和确定性,并用来提取关于所考察的过程中或总体的结论。

(3)统计假设检验使用实验数据进行统计判决,可以用来验证数据挖掘结果。

模式识别领域
d. 当把数据挖掘看做知识发现过程时,数据挖掘包括以下几个步骤:(1)在数据库中进行数据清理和数据集成;(2)在数据仓库中进行数据选择和数据变换;(3)数据挖掘,使用智能方法提取数据模式;(4)进行模式评估和知识表示
1.2数据库与数据仓库有何不同?它们有哪些相似之处?
答:
数据库系统,也称数据库管理系统(DBMS),由一组内部相关的数据(称做数据库)和一组管理和存取数据的软件程序组成。

关系数据库是表的汇集,可以通过数据库查询访问,是数据挖掘的最常见、最丰富的信息源,因此它是我们数据挖掘研究的一种主要数据形式。

数据仓库是一种用于长期存储数据的仓库,这些数据来自多个数据源,是经过组织的,以便
支持管理决策。

这些数据在一种统一的模式下存放,并且通常是汇总的。

数据仓库提供一些数据分析能力,简称联机分析处理。

数据仓库是一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。

不同:数据库是由表构成的,数据仓库是由
相同:数据库和数据仓库都可以存储数据,都是数据分析和数据挖掘的信息源。

1.3定义下列数据挖掘功能:特征化、区分、关联和相关性分析、分类、回归、聚类、离群点分析。

使用你熟悉的现实生活中的数据库,给出每种数据挖掘功能的例子。

答:
特征化:数据特征化是目标类数据的一般特性或特征的汇总。

可以通过数据库,用sql查询,得到顾客的概况;
区分:数据区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。

类别由用户指定,两类对象的各类特征数据可以用sql查询。

关联和相关性分析:
分类:它找出描述和区分数据类或概念的模型或函数,以便能够使用模型预测类标号未知的对象的类标号。

导出模型是基于对训练数据的分析。

该模型用来预测类标号未知的对象的类标号。

例如决策树模型
回归:它建立连续值的函数模型,可以用来预测缺失的或难以获得的数值数据值。

回归分析是一种最常用的数值预测的统计学方法,回归也包含基于可用数据的分布趋势识别。

聚类:对象根据最大化类内相似性、最小化类间相似性的原则进行聚类和分组。

可以对客户购买数据,进行k-means分析。

离群点分析:数据集中可能包含一些数据对象,它们与数据的一般行为或模型不一致。

这些数据对象是离群点。

我们可以假定一个数据分布或概率模型,使用统计检验来检测离群点,或者使用距离度量,将远离任何簇的对象视为离群点,基于密度的方法也可以识别局部区域中的离群点。

实际应用中,我们可以通过检测一个给定账号与正常的付费相比,付款数额特别大,离群点分析可以发现信用卡欺骗性使用。

1.4给出一个例子,其中数据挖掘对于工商企业的成功是至关重要的。

该工商企业需要什么数据挖掘功能(例如,考虑可以挖掘何种类型的模式?)这种模式能够通过简单的查询处理或统计分析得到吗?
答:对于银行,发放信用卡时,需要评估持卡人的还款能力,以此确定是否发放及信用卡额度,可以考虑回归方程的数据挖掘模式,这种模式比较麻烦,需要些精力。

1.5解释区分和分类、特征化和聚类、分类和回归之间的区别和相似之处。

1.6根据你的观察,描述一个可能的知识类型,它需要由数据挖掘方法发现,但未在本章中列出,它需要一种不同于本章列举的数据挖掘技术吗?
答:建立一个周期性的知识类型,在不同的时间段,数据都会进行更新、修改、变化等,这就需要一种新的数据挖掘技术。

1.7离群点经常被当做噪声丢弃。

然而,一个人的垃圾可能是另一个人的宝贝。

例如,信用卡交易中的异常可能帮助我们检测信用卡的欺诈使用。

以欺诈检测为例,提出两种可以用来检测离群点的方法,并讨论呢哪种方法更可靠。

答:第一种方法,可以假定一个数据分布或概率模型,使用统计检验来检测离群点;第二种,可以使用距离度量,将远离任何簇的对象视为离群点。

可以通过分析一个给定账号的付款金额,如果某一笔金额和正常的付费相比特别大,可能是信用卡欺诈性使用;还可以通过购物地点检测,如果显著偏离平常的购物地点,那么就是异常消费。

1.8描述三个关于数据挖掘方法和用户交互问题的数据挖掘挑战。

答:
(1)如何与数据挖掘系统交互
(2)如何在挖掘中融入用户的背景知识
(3)如何可视化和理解数据挖掘的结果
1.9与挖掘少量数据(例如,几百个元组的数据集合)相比,挖掘海量数据(例如,数十亿个元组)的主要挑战是什么?
答:主要的挑战是数据挖掘算法的运行时间必须是可预计的、短的和可以被应用接受的。

1.10概述在诸如流/传感器数据分析、时空数据分析或生物信息学等某个特定应用领域中的数据挖掘的主要挑战。

答:在生物信息学中,对于某些生物对象,染色体序列、生物学网络和染色体的3D空间结构可能同时存在。

由于数据清理和数据集成的困难性,以及这种数据的多个数据源之间的复杂相互作用,挖掘复杂对象也是一大挑战。

相关文档
最新文档