概率论第八章 假设检验

合集下载

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。

由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。

概率论与数理统计 第8章

概率论与数理统计  第8章
后所生产的灯管中抽取 25 只,测得平均寿命为 1675 小时。 问采用新工艺后,灯管寿命是否有显著性提高?
现在的问题就是要判别新产品的寿命是服从 μ >1500 的
正态分布,还是服从 μ ≤1500的正态分布? 若是前者,我们 就说新产品的寿命有显著性提高;若是后者,就说新产品的 寿命没有显著性提高。
定义 1 将对总体提出的某种假设称为原假设,记为 H 0 ; 将与原假设矛盾的假设称为备择假设,记为 H 1 。
在例 8-1 中,我们把涉及的两种情况用假设的形式表示
出来,第一个假设 μ ≤1500 表示采用新工艺后产品平均寿命没 有显著性提高,第二个假设 μ >1500 表示采用新工艺后产品平
均寿命有显著性提高。第一个假设为原假设,即“ H 0 :μ
定义 8 给定犯第一类错误的概率不大于 α 所作的假设 检验称为显著性检验,称 α 为显著性水平。 例 8-2 某车间用一台包装机包装食盐,每袋食盐的净 重是一个随机变量,它服从正态分布。当包装机正常时,其 均值为 0.5kg ,标准差为 0.015kg 。某日开工后为检查包装 机工作是否正常,随机地抽取它所包装的食盐 9 袋,称得样 本均值 ������ X =0. 511kg ,问在显著性水平 α =0.05 下,这 天包装机工作是否正常。
由于无论是第一类错误还是第二类错误都是作假设检验 时的随机事件,因此在假设检验中它们都有可能发生。我们 当然希望尽可能使犯两类错误的概率都很小,但一般来说, 当样本的容量固定时,若刻意地减少犯一类错误的概率,则 犯另一类错误的概率往往会增大。若要使两类错误的概率都 减小,就需增大样本的容量。在给定样本容量的情况下,我 们总是对犯第一类错误的概率加以控制,使它不大于 α , 而不关心犯第二类错误的概率 β是增大了还是减小了,这样 的假设检验就是显著性检验。

概率论与数理统计教案第八章

概率论与数理统计教案第八章
其中, 是已知常数.试求拒绝域 .
例8为比较新老品种的肥料对作物的效用有无显著差别,选用了各方面条件差不多的10个地块种上此作物.随机选用其中5块施上新肥料,而剩下的5块施上老肥料.等到收获时观察到施新肥的地块,平均年产333(单位:千斤),样本方差为32,施老肥的地块平均年产330,样本方差为40.假设作物产量服从正态分布,检验新肥是否比老肥效用上有显著提高(显著性水平 ).
点面朝上
1
2
3
4
5
6
出现次数
23
26
21
20
15
15
在 水平下,请问,这颗骰子是否是均匀的
例2在某细纱机上进行断点率测定,测验锭子总数为440,测得断头次数记录如下表:
每锭断头数
0
1
2
34Βιβλιοθήκη 5678
锭数(实测)
269
112
38
19
3
1
0
0
3
试问在显著性水平 下能否认为锭子的断头数服从泊松分布
例3某高校研究在校学生的体重,现随机抽取了100位学生,测得他们的体重(单位:kg)为
检验参数
原假设与备择假设
检验统计量
拒绝域
方差
已知
;
当 时,

;
;
未知
;
当 时,

;
;
3、两个正态总体均值差的假设检验问题可汇总如下表
检验参数
抽样分布
检验统计量
拒绝域
均值差
已知
;
当 时,
;
;
未知
;
当 时,
;
;
4、两个正态总体方差比的假设检验问题可汇总如下表

概率论与数理统计第八章假设检验

概率论与数理统计第八章假设检验
当总体分布函数完全未知或只知其形式、但 不知其参数的情况,为推断总体的性质,提出 某些关于总体的假设。
为判断所作的假设是否正确, 从总体中抽取 样本, 根据样本的取值, 按一定的原则进行检 验, 然后, 作出接受或拒绝所作假设的决定.
整理课件
2
我们主要讨论的假设检验的内容有
参数检验 总体均值、均值差的检验 总体方差、方差比的检验
H0: Θ0 vs H1: Θ1,
根据样本,构造一个检验统计量T 和检验法则: 若与T的取值有关的一个小概率事件W发生,则 否定H0,否则接受H0,而且要求
P(W|H0)
此时称W为拒绝域,整为理课检件 验水平。
11
例 3. 某厂生产的螺钉,按标准强度为68克/mm2,
而实际生产的螺钉强度 X 服从 N ( ,3.6 2 ). 若 E ( X ) = = 68, 则认为这批螺钉符合要求,否
7
所以我们否定H0, 认为隧道南的路面发生交 通事故的概率比隧道北大.
做出以上结论也有可能犯错误。这是因为 当隧道南北的路面发生交通事故的概率相同, 而3起交通事故又都出现在隧道南时, 我们才犯 错误。这一概率正是P=0.043.
于是, 我们判断正确的概率是1-0.043=95.7%
整理课件
8
假设检验中的基本概念和检验思想 (1) 根据问题的背景, 提出原假设
再作一个备择假设
H1: p> 0.35. 在本问题中,如果判定H0不对,就应当承认H1.
检验: 三起交通事故的发生是相互独立的, 他们
之间没有联系.
如果H0为真, 则每一起事故发生在隧道南的 概率都是0.35, 于是这三起交通事故都发生在隧
道南的概率是
P= 0.353 ≈ 0.043.

《概率论与数理统计》课件第八章 假设检验

《概率论与数理统计》课件第八章 假设检验
假设检验是统计学中一种重要的推断方法,其理论依据为小概率原理。小概率原理指的是,在一次试验中,小概率事件几乎不会发生。在假设检验中,如果原假设为真,那么出现小概率率性质的反证法,它允许我们在一定程度上接受或拒绝关于总体参数或分布的假设。假设检验在统计学中有着广泛的应用,尤其是在单个及两个正态总体的均值和方差的检验中。通过这些检验,我们可以根据样本数据对总体的特性进行推断,从而作出科学的决策。需要注意的是,任何检验方法都不能完全排除犯错误的可能性,但假设检验通过控制犯第一类错误的概率,即错误地拒绝真实假设的概率,来确保推断的可靠性。在实际应用中,我们还需要根据具体情况选择合适的显著性水平,以平衡犯两类错误的概率。

《概率论与数理统计》第八章1假设检验的基本概念

《概率论与数理统计》第八章1假设检验的基本概念
单侧检验 H0 : 0 1000, H1 : 1000
2. 从某批矿砂中,抽取10样本,检验这批砂矿的含 铁量是否为3%?
双侧检验 H0 : 0 3%, H1 : 3%
3.某学校学生英语平均分65分, 先抽取某个班的平均 分,看该成绩是否显著高于全校整体水平?
单侧检验 H0 : 0 65, H1 : 65
0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?
分析 以 和 分别表示这一天袋装糖的净重
总体X 的均值和标准差,
由长期实践表明标准差比较稳定, 我们就设
0.015,于是 X ~ N(, 0.0152 ),这里 未知. 问题 问题是根据样本值判断 0.5 还是 0.5 .

以,原假
设H
不正确
0

对于这两种解释,哪种解释比较合理呢?
我们需要判断以上两种假设谁对谁错,并给出判断的理由
以上例子属于参数检验(parametric test) 的问题,(如针对总体均值,总体方差等参数的假 设检验)。
另外还有非参数检验(Nonparametric test) 的问题,如关于总体服从某种分布(如正态分布, 泊松分布)的假设检验。
4. 拒绝域与临界点
拒绝域W1: 拒绝原假设 H0 的所有样本值 (x1, x2, ···, xn)所组成的集合.
W1 W1 :拒绝原假设H0的检验统计量的取值范围.
临界点(值):拒绝域的边界点(值) (相应于检验统计量的值).
如: 在前面例4中,拒绝域 {u :| u | u / 2 }.
5. 双边备择假设与双边假设检验
之 下 做 出 的.
2. 检验统计量

概率论与数理统计第八章假设检验习题解答

1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。

设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25.3--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==å=i iX Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21»-=l ω,这样的矩形称为黄金矩形。

这种尺寸的矩形使人们看上去有良好的感觉。

现代建筑构件(如窗架)、工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。

下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。

设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05)H 0:μ = 0.618H 1:μ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618.0--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α (4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=--===åå==ni ini ix xn S xnx ,)1(055.2200925.0618.06605.0||,0930.2)1(22-<=-==-n t t n t αα(5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。

概率论与数理统计练习题第八章答案

第八章 假设检验(一)一、选择题:1.假设检验中,显著性水平为α,则 [ B ](A) 犯第二类错误的概率不超过α (B) 犯第一类错误的概率不超过α (C) α是小于等于%10的一个数,无具体意义 (D) 可信度为α-1.2.设某产品使用寿命X 服从正态分布,要求平均寿命不低于1000小时,现从一批这种产品中随机抽出25只,测得平均寿命为950小时,方差为100小时,检验这批产品是否合格可用 [ A ](A )t 检验法 (B )2χ检验法 (C )Z 检验法 (U 检验法) (D )F 检验法 3.从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若这批零件的直径是符合标准5cm ,采用了t 检验法,在显著性水平α下,接受域为 [ A ](A )2||(99)<t t α (B )2||(100)<t t α (C )2||(99)≥t t α (D )2||(100)≥t t α4.设样本12,,,n X X X 来自正态分布2~(,)X N μσ,在进行假设检验时,采用统计量t =是对于[ C ](A )μ未知,检验220σσ= (B )μ已知,检验220σσ=(C )2σ未知,检验0μμ= (D )2σ已知,检验0μμ= 二、计算题:1.已知某炼铁厂铁水含碳量在正常情况下,服从正态分布2(4.52,0.108)N ,现在测定了5炉铁水,其含碳量分别为4.29 4.33 4.77 4.35 4.36 若标准差不变,给定显著性水平05.0=α,问 (1)现在所炼铁水总体均值μ有无显著性变化?(2)若有显著性变化,可否认为现在生产的铁水总体均值 4.52μ<?010.02522: 4.52,: 4.52~(0,1)0.05 1.964.421,0.108|| 2.07 1.96H H x Z N z x Z μμασμ=≠======>提出假设: 选统计量 在给定显著性水平下,取临界值为,由于 计算 所以,现在所炼铁水总体均值有显、.二著性变化。

浙江大学概率论与数理统计盛骤-第四版


拒绝域为:
X S
0
n

t (n 1)
即 S k n t (n 1)
因此,拒绝域为:
t

X 0
Sn
t (n 1).
14
例2 某种元件的寿命X(以小时记)服从正态分布N (, 2 ),
, 2均未知。现测得16只元件的寿命如下:
159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于225(小时)?(取
原假设 H0 : 6.0,备择假设 H1 : 6.0
检验统计量为 X , 检验拒绝域的形式为 X 6.0 c.
由于作出决策的依据是一个样本,因此,可能出现“实 际上原假设成立,但根据样本作出拒绝原假设”的决策。 这种错误称为“第一类错误”,实际中常常将犯第一类错 误的概率控制在一定限度内,即事先给定较小的数α (0<α<1)(称为显著性水平),使得
X1, X2, , Xn来自N , 2 , X 和S 2分别为样本均值和方差,显著性水平为
H0 : 0 , H1 : 0
1 2已知时
检验拒绝域形式为:X 0 c n
在H0为真时,
X 0 n
~ N 0,1
根据犯第一类错误概率不大于 ,
正确决策
第二类错误
第一类错误
正确决策
第一类错误:原假设H0成立时,作出拒绝原假设的决策; 第二类错误:备择假设H1成立时,作出接受原假设的决策。
通常,犯第一类错误的概率、犯第二类错误的概率、样本容量可 以看作为“三方拔河”。
8
例如,设显著性水平为,计算上例中犯第一类错误的概率 和 5.4时犯第二类错误的概率:

概率论第八章8.1 假设检验的基本原理


0.12 0.1 0.08 0.06
α/2
0.04 0.02 60 62.5 65 67.5 70 72.5 75
α/2
H0 真
0. 12 0. 1 0. 08 0. 06 0. 04 0. 02
β
H0 不真
67 .5 70 72 .5 75 77 .5 80 82 .5
注 1º 一般,作假设检验时,先控制犯第一 一般,作假设检验时, 类错误的概率α,在此基础上使 β 尽量 一般要增大样本容量. 地小. 地小.要降低 β 一般要增大样本容量. 不真时,参数值越接近真值, 越大. 当H0不真时,参数值越接近真值,β 越大. 注 2º 备择假设可以是单侧,也可以双侧. 备择假设可以是单侧,也可以双侧. 引例2中的备择假设是双侧的. 引例2中的备择假设是双侧的.若根据以 往生产情况, =68.现采用了新工艺 现采用了新工艺, 往生产情况,µ0=68.现采用了新工艺,关 心的是新工艺能否提高螺钉强度, 心的是新工艺能否提高螺钉强度,µ越大 越好.此时可作如下的右边假设检验: 越好.此时可作如下的右边假设检验: H0 : µ = 68; H1 : µ > 68
拒绝 H0
第一类错误
(弃真) 弃真)
正确
犯第一类错误的概率通常记为 α 犯第二类错误的概率通常记为 β
任何检验方法都不能完全排除犯错 误的可能性. 误的可能性.理想的检验方法应使犯两类 错误的概率都很小, 错误的概率都很小,但在样本容量给定的 情形下,不可能使两者都很小,降低一个, 情形下,不可能使两者都很小,降低一个, 往往使另一个增大. 往往使另一个增大. 假设检验的指导思想是控制犯第一类 然后,若有必要, 错误的概率不超过α, 然后,若有必要,通 过增大样本容量的方法来减少 β .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章假设检验第一节概述统计推断中的另一类重要问题是假设检验(Hypothesis testing).当总体的分布函数未知,或只知其形式而不知道它的参数的情况时,我们常需要判断总体是否具有我们所感兴趣的某些特性.这样,我们就提出某些关于总体分布或关于总体参数的假设,然后根据样本对所提出的假设作出判断:是接受还是拒绝.这就是本章所要讨论的假设检验问题.我们先从下面的例子来说明假设检验的一般提法.例8.1某工厂用包装机包装奶粉,额定标准为每袋净重0.5kg.设包装机称得奶粉重量X服从正态分布N(μ,σ2).根据长期的经验知其标准差σ=0.015(kg).为检验某台包装机的工作是否正常;随机抽取包装的奶粉9袋,称得净重(单位:kg)为0.499 0.515 0.508 0.512 0.4980.515 0.516 0.513 0.524问该包装机的工作是否正常?由于长期实践表明标准差比较稳定,于是我们假设X~N(μ,0.0152).如果奶粉重量X 的均值μ等于0.5kg,我们说包装机的工作是正常的.于是提出假设:H0:μ=μ0=0.5;H1:μ≠μ0=0.5.这样的假设叫统计假设.1.统计假设关于总体X的分布(或随机事件之概率)的各种论断叫统计假设,简称假设,用“H”表示,例如:(1)对于检验某个总体X的分布,可以提出假设:H0:X服从正态分布,H1: X不服从正态分布.H0:X服从泊松分布,H1: X不服从泊松分布.(2)对于总体X的分布的参数,若检验均值,可以提出假设:H0:μ=μ0;H1:μ≠μ0.H0:μ≤μ0;H1:μ>μ0.若检验标准差,可提出假设:H0:σ=σ0;H1:σ≠σ0.H0:σ≥σ0;H1:σ<σ0.这里μ0,σ0是已知数,而μ=E(X),σ2=D(X)是未知参数.上面对于总体X的每个论断,我们都提出了两个互相对立的(统计)假设:H0和H1,显然,H0与H1只有一个成立,或H0真H1假,或H0假H1真,其中假设H0,称为原假设(Original hypothesis)(又叫零假设、基本假设),而H1称为H0的对立假设(又叫备择假设).在处理实际问题时,通常把希望得到的陈述视为备择假设,而把这一陈述的否定作为原假设.例如在上例中,H0:μ=μ0=0.5为原假设,它的对立假设是H1:μ≠μ0=0.5.统计假设提出之后,我们关心的是它的真伪.所谓对假设H0的检验,就是根据来自总体的样本,按照一定的规则对H0作出判断:是接受,还是拒绝,这个用来对假设作出判断的规则叫做检验准则,简称检验,如何对统计假设进行检验呢?我们结合上例来说明假设检验的基本思想和做法.2.假设检验的基本思想 在例8.1中所提假设是H 0:μ=μ0=0.5(备择假设H 1:μ≠μ0).由于要检验的假设涉及总体均值μ,故首先想到是否可借助样本均值这一统计量来进行判断.从抽样的结果来看,样本均值x =19(0.499+0.515+0.508+0.512+0.498+0.515+0.516+0.513+0.524)=0.5110,与μ=0.5之间有差异.对于与μ0之间的差异可以有两种不同的解释.(1) 统计假设H 0是正确的,即μ=μ0=0.5,只是由于抽样的随机性造成了与μ0之间的差异;(2) 统计假设H 0是不正确的,即μ≠μ0=0.5,由于系统误差,也就是包装机工作不正常,造成了与μ0之间的差异.对于这两种解释到底哪一种比较合理呢?为了回答这个问题,我们适当选择一个小正数α(α=0.1,0.05等),叫做显著性水平(Level of significance).在假设H0成立的条件下,确定统计量X -μ0的临界值αλ,使得事件{|X -μ0|>αλ}为小概率事件,即P{|X -μ0|>αλ}=α.(8.1)例如,取定显著性水平α=0.05.现在来确定临界值λ0.05.因为X ~N (μ,σ2),当H 0:μ=μ0=0.5为真时,有X ~N (μ0,σ2),于是2011~,ni i X X N n n σμ=⎛⎫= ⎪⎝⎭∑,ZX X =N (0,1),所以 P {|Z |>z α/2}=α.由(8.1)式,有P Z ⎧>⎨⎩=α,因此22,z z αααλ==λ0.05=z 0.0250.015/3=0.0098. 故有P {|X -μ0|>0.0098}=0.05.因为α=0.05很小,根据实际推断原理,即“小概率事件在一次试验中几乎是不可能发生的”原理,我们认为当H 0为真时,事件{|X -μ0|>0.0098}是小概率事件,实际上是不可能发生的.现在抽样的结果是|x -μ0|=|0.5110-0.5|=0.0110>0.0098.也就是说,小概率事件{|X -μ0|>0.0098}居然在一次抽样中发生了,这说明抽样得到的结果与假设H 0不相符,因而不能不使人怀疑假设H 0的正确性,所以在显著性水平α=0.05下, 我们拒绝H 0,接受H 1,即认为这一天包装机的工作是不正常的.通过上例的分析,我们知道假设检验的基本思想是小概率事件原理,检验的基本步骤是: (1) 根据实际问题的要求,提出原假设H 0及备择假设H 1;(2) 选取适当的显著性水平α(通常α=0.10,0.05等)以及样本容量n ;(3) 构造检验用的统计量U ,当H 0为真时,U 的分布要已知,找出临界值αλ使P {|U |>αλ}=α.我们称|U |>αλ所确定的区域为H 0的拒绝域(Rejection region),记作W ; (4) 取样,根据样本观察值,计算统计量U 的观察值U 0;(5) 作出判断,将U 的观察值U 0与临界值αλ比较,若U 0落入拒绝域W 内,则拒绝H 0接受H 1;否则就说H 0相容(接受H 0).3.两类错误由于我们是根据样本作出接受H 0或拒绝H 0的决定,而样本具有随机性,因此在进行判断时,我们可能会犯两个方面的错误:一类错误是,当H 0为真时,而样本的观察值U 0落入拒绝域W 中,按给定的法则,我们拒绝了H 0,这种错误称为第一类错误.其发生的概率称为犯第一类错误的概率或称弃真概率,通常记为α,即P {拒绝H 0|H 0为真}=α;另一种错误是,当H 0不真时,而样本的观察值落入拒绝域W 之外,按给定的检验法则,我们却接受了H 0.这种错误称为第二类错误,其发生的概率称为犯第二类错误的概率或取伪概率,通常记为β,即P {接受H 0|H 0不真}=β.显然这里的α就是检验的显著性水平.总体与样本各种情况的搭配见表8-1.表8-1对给定的一对H 0和H 1,总可以找到许多拒绝域W .当然我们希望寻找这样的拒绝域W ,使得犯两类错误的概率α与β都很小.但是在样本容量n 固定时,要使α与β都很小是不可能的,一般情形下,减小犯其中一类错误的概率,会增加犯另一类错误的概率,它们之间的关系犹如区间估计问题中置信水平与置信区间的长度的关系那样.通常的做法是控制犯第一类错误的概率不超过某个事先指定的显著性水平α(0<α<1),而使犯第二类错误的概率也尽可能地小.具体实行这个原则会有许多困难,因而有时把这个原则简化成只要求犯第一类错误的概率等于α,称这类假设检验问题为显著性检验问题,相应的检验为显著性检验.在一般情况下,显著性检验法则是较容易找到的,我们将在以下各节中详细讨论.在实际问题中,要确定一个检验问题的原假设,一方面要根据问题要求检验的是什么,另一方面要使原假设尽量简单,这是因为在下面将讲到的检验法中,必须要了解某统计量在原假设成立时的精确分布或渐近分布.下面各节中,我们先介绍正态总体下参数的几种显著性检验,再介绍总体分布函数的假设检验.第二节 单个正态总体的假设检验1.单个正态总体数学期望的假设检验(1) σ2已知关于μ的假设检验(Z 检验法(Z -test)) 设总体X ~N (μ,σ2),方差σ2已知,检验假设H 0:μ=μ0;H 1:μ≠μ0 (μ0为已知常数) 由X ~N (μ,n σ)X N (0,1), 我们选取ZX (8.2)作为此假设检验的统计量,显然当假设H 0为真(即μ=μ0正确)时,Z ~N (0,1),所以对于给定的显著性水平α,可求z α/2使P {|Z |>z α/2}=α,见图8-1,即P {Z <-z α/2}+P {Z >z α/2}=α.从而有P {Z >z α/2}=α/2, P {Z ≤z α/2}=1-α/2.图8-1利用概率1-α/2,反查标准正态分布函数表,得双侧α分位点(即临界值)z α/2. 另一方面,利用样本观察值x 1,x 2,…,x n 计算统计量Z 的观察值z 0x (8.3)如果:(a )|z 0|>z α/2,则在显著性水平α下,拒绝原假设H 0(接受备择假设H 1),所以|z 0|>z α/2便是H0的拒绝域.(b ) |z 0|≤z α/2,则在显著性水平α下,接受原假设H 0,认为H 0正确.这里我们是利用H0为真时服从N (0,1)分布的统计量Z 来确定拒绝域的,这种检验法称为Z 检验法(或称U 检验法).例8.1中所用的方法就是Z 检验法.为了熟悉这类假设检验的具体作法,现在我们再举一例.例8.2 根据长期经验和资料的分析,某砖厂生产的砖的“抗断强度”X 服从正态分布,方差σ2=1.21.从该厂产品中随机抽取6块,测得抗断强度如下(单位:kg ²cm -2):32.56 29.66 31.64 30.00 31.87 31.03检验这批砖的平均抗断强度为32.50kg ²cm -2是否成立(取α=0.05,并假设砖的抗断强度的方差不会有什么变化)?解 ① 提出假设H 0:μ=μ0=32.50;H 1:μ≠μ0. ② 选取统计量ZX ,若H 0为真,则Z ~N (0,1).③ 对给定的显著性水平α=0.05,求z α/2使P {|Z |>z α/2}=α,这里z σ/2=z 0.025=1.96.④ 计算统计量Z 的观察值:|z 0| ≈3.05.⑤ 判断:由于|z 0|=3.05>z 0.025=1.96,所以在显著性水平α=0.05下否定H 0,即不能认为这批产品的平均抗断强度是32.50 kg ²cm -2.把上面的检验过程加以概括,得到了关于方差已知的正态总体期望值μ的检验步骤: (a ) 提出待检验的假设H 0:μ=μ0;H 1:μ≠μ0. (b ) 构造统计量Z ,并计算其观察值z 0:ZX ,z 0x(c ) 对给定的显著性水平α,根据P {|Z |>z α/2}=α,P {Z >z α/2}=α/2,P {Z ≤z α/2}=1-α/2查标准正态分布表,得双侧α分位点z α/2. (d ) 作出判断:根据H 0的拒绝域 若|z 0|>z α/2,则拒绝H 0,接受H 1; 若|z 0|≤z α/2,则接受H 0.(2) 方差σ2未知,检验μ(t 检验法(t -test)) 设总体X ~N (μ,σ2),方差σ2未知,检验H 0:μ=μ0;H 1:μ≠μ0.由于σ2X 便不是统计量,这时我们自然想到用σ2的无偏估计量——样本方差S 2代替σ2,由于X t (n -1),故选取样本的函数tX (8.4)图8-2作为统计量,当H 0为真(μ=μ0)时t ~t (n -1),对给定的检验显著性水平α,由P {|t |>t α/2(n -1)}=α, P {t >t α/2(n -1)}=α/2,见图8-2,直接查t 分布表,得t 分布分位点t α/2(n -1).利用样本观察值,计算统计量t 的观察值t 0x 因而原假设H0的拒绝域为|t 0|>t α/2(n -1). (8.5)所以,若|t 0|>t α/2(n -1),则拒绝H 0,接受H 1;若|t 0|≤t α/2(n -1),则接受原假设H 0.上述利用t 统计量得出的检验法称为t 检验法.在实际中,正态总体的方差常为未知,所以我们常用t 检验法来检验关于正态总体均值的问题.例8.3 用某仪器间接测量温度,重复5次,所得的数据是1250°,1265°,1245°,1260°,1275°,而用别的精确办法测得温度为1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?这里假设测量值X 服从N (μ,σ2)分布. 解 问题是要检验H 0:μ=μ0=1277;H 1:μ≠μ0.由于σ2未知(即仪器的精度不知道),我们选取统计量tX .当H 0为真时,t ~t (n -1),t 的观察值为|t 0|185.399-==>3.对于给定的检验水平α=0.05,由P {|t |>t α/2(n -1)}=α, P {t >t α/2(n -1)}=α/2, P {t >t 0.025(4)}=0.025,查t 分布表得双侧α分位点t α/2(n -1)=t 0.025(4)=2.776.因为|t 0|>3>t 0.025(4)=2.776,故应拒绝H 0,认为该仪器间接测量有系统偏差.(3) 双边检验与单边检验上面讨论的假设检验中,H 0为μ=μ0,而备择假设H 1:μ≠μ0意思是μ可能大于μ0,也可能小于μ0,称为双边备择假设,而称形如H 0:μ=μ0,H 1:μ≠μ0的假设检验为双边检验.有时我们只关心总体均值是否增大,例如,试验新工艺以提高材料的强度,这时所考虑的总体的均值应该越大越好,如果我们能判断在新工艺下总体均值较以往正常生产的大,则可考虑采用新工艺.此时,我们需要检验假设H 0:μ=μ0;H 1:μ>μ0. (8.6)(我们在这里作了不言而喻的假定,即新工艺不可能比旧的更差),形如(8.6)的假设检验,称为右边检验,类似地,有时我们需要检验假设H 0:μ=μ0;H 1:μ<μ0. (8.7)形如(8.7)的假设检验,称为左边检验,右边检验与左边检验统称为单边检验.下面来讨论单边检验的拒绝域. 设总体X ~N (μ,σ2),σ2为已知,x 1,x 2,…,x n 是来自X 的样本观察值.给定显著性水平α,我们先求检验问题H 0:μ=μ0;H 1:μ>μ0.的拒绝域.取检验统计量ZX ,当H 0为真时,Z 不应太大,而在H 1为真时,由于X 是μ的无偏估计,当μ偏大时,X 也偏大,从而Z 往往偏大,因此拒绝域的形式为ZX ≥k ,k 待定.因为当H 0X ~N (0,1),由P {拒绝H 0|H 0为真}=PX k ⎫≥⎬⎭=α得k =z α,故拒绝域为ZX ≥z α. (8.8)类似地,左边检验问题H 0:μ=μ0;H 1:μ<μ0.的拒绝域为ZX ≤-z α. 8.9)例8.4 从甲地发送一个信号到乙地,设发送的信号值为μ,由于信号传送时有噪声迭加到信号上,这个噪声是随机的,它服从正态分布N (0,22),从而乙地接到的信号值是一个服从正态分布N (μ,22)的随机变量.设甲地发送某信号5次,乙地收到的信号值为: 8.4 10.5 9.1 9.6 9.9由以往经验,信号值为8,于是乙方猜测甲地发送的信号值为8,能否接受这种猜测?取α=0.05.解 按题意需检验假设H 0:μ=8;H 1:μ>8.这是右边检验问题,其拒绝域如(8.8)式所示, 即 Z =X ≥z 0.05=1.645.而现在z 0=1.68>1.645,所以拒绝H 0,认为发出的信号值μ>8.2.单个正态总体方差的假设检验(2χ检验法(2χ-test)) (1) 双边检验设总体X ~N (μ,σ2),μ未知,检验假设H 0:σ2=σ02;H 1:σ2≠σ2.其中σ02为已知常数.由于样本方差S 2是σ2的无偏估计,当H 0为真时,比值22S σ一般来说应在1附近摆动,而不应过分大于1或过分小于1,由第六章知当H 0为真时2χ=220(1)n S σ-~2χ(n -1). (8.10)所以对于给定的显著性水平α有(图8-3)图8-3P {21/2αχ-(n -1)≤2χ≤2/2αχ(n -1)}=1-α. (8.11)对于给定的α,查2χ分布表可求得2χ分布分位点21/2αχ-(n -1)与2/2αχ(n -1).由(8.11)知,H 0的接受域是21/2αχ- (n -1)≤2χ≤2/2αχ (n -1); (8.12)H 0的拒绝域为2χ<21/2αχ-(n -1)或2χ>2/2αχ(n -1). (8.13)这种用服从2χ分布的统计量对个单正态总体方差进行假设检验的方法,称为2χ检验法. 例8.5 某厂生产的某种型号的电池,其寿命长期以来服从方差σ2=5000(小时2)的正态分布,现有一批这种电池,从它的生产情况来看,寿命的波动性有所改变,现随机抽取26只电池,测得其寿命的样本方差s 2=9200(小时2).问根据这一数据能否推断这批电池的寿命的波动性较以往有显著的变化(取α=0.02)?解 本题要求在α=0.02下检验假设H 0:σ2=5000;H 1:σ2≠5000.现在n =26,2/2αχ(n -1)=20.01(25)χ=44.314,21/2αχ- (n -1)= 20.99(25)χ=11.524,σ02=5000.由(8.13)拒绝域为2σ>44.314或220(1)n s σ-<11.524由观察值s 2=9200得22(1)n s σ-=46>44.314,所以拒绝H 0,认为这批电池寿命的波动性较以往有显著的变化.(2) 单边检验(右检验或左检验) 设总体X ~N (μ,σ2),μ未知,检验假设H 0:σ2≤σ02;H 1:σ2>σ02.(右检验)由于X ~N (μ,σ2),故随机变量*2χ=22(1)n S σ-~2χ(n -1).当H 0为真时,统计量2χ=22(1)n S σ-≤*2χ.对于显著性水平α,有P {*2χ>2αχ(n -1)}=α图8-4(图8-4).于是有P {2χ>2αχ(n -1)}≤P {*2χ>2αχ(n -1)}=α.可见,当α很小时,{2χ>2αχ(n -1)}是小概率事件,在一次的抽样中认为不可能发生,所以H 0的拒绝域是:2χ=22(1)n S σ->2αχ(n -1)(右检验). (8.14)类似地,可得左检验假设H 0:σ2≥σ02,H 1:σ2<σ2的拒绝域为2χ<21αχ-(n -1)(左检验). (8.15) 例8.6 今进行某项工艺革新,从革新后的产品中抽取25个零件,测量其直径,计算得样本方差为s 2=0.00066,已知革新前零件直径的方差σ2=0.0012,设零件直径服从正态分布,问革新后生产的零件直径的方差是否显著减小?(α=0.05)解 (1) 提出假设H 0:σ2≥σ02=0.0012;H 1:σ2<σ02. (2) 选取统计量2χ=22(1)n S σ-.*2χ=22(1)n S σ-~2χ(n -1),且当H 0为真时,*2χ≤2χ(3) 对于显著性水平α=0.05,查2χ分布表得21αχ-(n -1)=20.95(24)χ=13.848,当H 0为真时,P {2χ<21αχ- (n -1)}≤P 2212(1)(1)n S n αχσ-⎧⎫-<-⎨⎬⎩⎭=α. 故拒绝域为2χ<21αχ- (n -1)=13.848.(4) 根据样本观察值计算2χ的观察值2χ=220(1)240.000660.0012n s σ-⨯==13.2.(5) 作判断:由于2χ=13.2<21αχ- (n -1)=13.848,即2χ落入拒绝域中,所以拒绝H 0:σ2≥σ02,即认为革新后生产的零件直径的方差小于革新前生产的零件直径的方差.最后我们指出,以上讨论的是在均值未知的情况下,对方差的假设检验,这种情况在实际问题中较多.至于均值已知的情况下,对方差的假设检验,其方法类似,只是所选的统计量为2χ=2120()nii Xμσ=-∑.当σ2=σ2为真时,2χ~2χ(n ).关于单个正态总体的假设检验可列表8-2.表8-2注:上表中H0中的不等号改成等号,所得的拒绝域不变.第三节两个正态总体的假设检验上一节介绍了单个正态总体的数学期望与方差的检验问题,在实际工作中还常碰到两个正态总体的比较问题.1.两正态总体数学期望假设检验(1)方差已知,关于数学期望的假设检验(Z检验法)设X~N(μ1,σ12),Y~N(μ2,σ22),且X,Y相互独立,σ12与σ22已知,要检验的是H0:μ1=μ2;H1:μ1≠μ2.(双边检验)怎样寻找检验用的统计量呢?从总体X 与Y 中分别抽取容量为n 1,n 2的样本X 1,X 2,…,1n X 及Y 1,Y 2,…,2n Y ,由于2111~,X N n σμ⎛⎫ ⎪⎝⎭,2222~,Y N n σμ⎛⎫⎪⎝⎭,E (X -Y )=E (X )-E (Y )=μ1-μ2, D (X -Y )=D (X )+D (Y )=221212n n σσ+,故随机变量X -Y 也服从正态分布,即X -Y ~N (μ1-μ2,221212n n σσ+).从而X Y ~N (0,1).于是我们按如下步骤判断.(a ) 选取统计量 ZX Y , (8.16)当H 0为真时,Z ~N (0,1).(b ) 对于给定的显著性水平α,查标准正态分布表求z α/2使P {|Z |>z α/2}=α,或P {Z ≤z α/2}=1-α/2. (8.17) (c ) 由两个样本观察值计算Z 的观察值z 0:z 0x y .(d ) 作出判断:若|z 0|>z α/2,则拒绝假设H 0,接受H 1; 若|z 0|≤z α/2,则与H 0相容,可以接受H 0.例8.7 A ,B 两台车床加工同一种轴,现在要测量轴的椭圆度.设A 车床加工的轴的椭圆度X ~N (μ1,σ12),B 车床加工的轴的椭圆度Y ~N (μ2,σ22),且σ12=0.0006(mm 2),σ22=0.0038(mm 2),现从A ,B 两台车床加工的轴中分别测量了n 1=200,n 2=150根轴的椭圆度,并计算得样本均值分别为=0.081(mm),=0.060(mm).试问这两台车床加工的轴的椭圆度是否有显著性差异?(给定α=0.05)解 ① 提出假设H 0:μ1=μ2;H 1:μ1≠μ2. ② 选取统计量ZX Y ,在H 0为真时,Z ~N (0,1).③ 给定α=0.05,因为是双边检验,α/2=0.025.P {|Z |>z α/2}=0.05, P {Z >z α/2}=0.025,P {Z ≤z α/2}=1-0.025=0.975.查标准正态分布表,得z α/2=z 0.025=1.96.④ 计算统计量Z 的观察值zz 0x y =.⑤ 作判断:由于|z 0|=3.95>1.96=z α/2,故拒绝H 0,即在显著性水平α=0.05下,认为两台车床加工的轴的椭圆度有显著差异.用Z 检验法对两正态总体的均值作假设检验时,必须知道总体的方差,但在许多实际问题中总体方差σ12与σ22往往是未知的,这时只能用如下的t 检验法.(2) 方差σ12,σ22未知,关于均值的假设检验(t 检验法) 设两正态总体X 与Y 相互独立,X ~N (μ1,σ12),Y ~N (μ2,σ22),σ12,σ22未知,但知σ12=σ22,检验假设H 0:μ1=μ2;H 1:μ1≠μ2.(双边检验) 从总体X ,Y 中分别抽取样本X 1,X 2,…,1n X 与Y 1,Y 2,…,2n Y ,则随机变量tX Y μμ---t (n 1+n 2-2),式中S w 2=22112212(1)(1)2n S n S n n -+-+-,S 12,S 22分别是X 与Y 的样本方差.当假设H 0为真时,统计量t ~t (n 1+n 2-2). (8.18)对给定的显著性水平α,查t 分布得t α/2(n 1+n 2-2),使得P {|t |>t α/2(n 1+n 2-2)}=α. (8.19)再由样本观察值计算t 的观察值t 0x y(8.20)最后作出判断:若|t 0|>t α/2(n 1+n 2-2),则拒绝H 0; 若|t 0|≤t α/2(n 1+n 2-2),则接受H 0.例8.8 在一台自动车床上加工直径为2.050毫米的轴,现在每相隔两小时,各取容量都为10的样本,所得数据列表如表8-3所示.12是未知常数.问这台自动车床的工作是否稳定?(取α=0.01)解 这里实际上是已知σ12=σ22=σ2,但σ2未知的情况下检验假设H 0:μ1=μ2;H 1:μ1≠μ2.我们用t 检验法,由样本观察值算得:x =2.063, y =2.059,s 12=0.00000956, s 22=0.00000489,s w 2=2212990.0000860.0000441010218s s ⨯+⨯+=+-=0.0000072.由(8.20)式计算得t 0=3.3.对于α=0.01,查自由度为18的t 分布表得t 0.005(18)=2.878.由于|t 0|=3.3>t 0.005(18)=2.878,于是拒绝原假设H 0:μ1=μ2.这说明两个样本在生产上是有差异的,可能这台自动车床受时间的影响而生产不稳定.2. 两正态总体方差的假设检验(F 检验法(F -test )) (1) 双边检验设两正态总体X ~N (μ1,σ12),Y ~N (μ2,σ22),X 与Y 独立,X 1,X 2,…,1n X 与Y 1,Y 2,…,2n Y 分别是来自这两个总体的样本,且μ1与μ2未知.现在要检验假设H 0:σ12=σ22;H 1:σ12≠σ22.在原假设H 0成立下,两个样本方差的比应该在1附近随机地摆动,所以这个比不能太大又不能太小.于是我们选取统计量F =2122S S . (8.21) 显然,只有当F 接近1时,才认为有σ12=σ22.由于随机变量F *=22112222//S S σσ ~F (n 1-1,n 2-1),所以当假设H 0:σ12=σ22成立时,统计量F =2122S S ~F (n 1-1,n 2-1). 对于给定的显著性水平α,可以由F 分布表求得临界值12a F-(n 1-1,n 2-1)与F α/2(n 1-1,n 2-1)使得 P { 12a F-(n 1-1,n 2-1)≤F ≤F α/2(n 1-1,n 2-1)}=1-α(图8-5),由此可知H 0的接受区域是12aF-(n 1-1,n 2-1)≤F ≤F α/2(n 1-1,n 2-1);而H 0的拒绝域为F <12a F-(n 1-1,n 2-1),或 F >F α/2(n 1-1,n 2-1).然后,根据样本观察值计算统计量F 的观察值,若F 的观察值落在拒绝域中,则拒绝H 0,接受H 1;若F 的观察值落在接受域中,则接受H 0.图8-5例8.9 在例8.8中我们认为两个总体的方差σ12=σ22,它们是否真的相等呢?为此我们来检验假设H 0:σ12=σ22(给定α=0.1).解 这里n 1=n 2=10,s 12=0.00000956,s 22=0.00000489,于是统计量F 的观察值为F =0.00000956/0.00000489=1.95.查F 分布表得F α/2(n 1-1,n 2-1)=F 0.05(9,9)=3.18,F 1-α/2(n 1-1,n 2-1)=F 0.95(9,9)=1/F 0.05(9,9)=1/3.18.由样本观察值算出的F 满足F 0.95(9,9)=1/3.18<F =1.95<3.18=F 0.05(9,9).可见它不落入拒绝域,因此不能拒绝原假设H 0:σ12=σ22,从而认为两个总体的方差无显著差异.注意:在μ1与μ2已知时,要检验假设H 0:σ12=σ22,其检验方法类同均值未知的情况,此时所采用的检验统计量是:F =12211122121()1()n i i n i i X n Y n μμ==--∑∑~F (n 1,n 2). 其拒绝域参看表8-4.表8-4(2) 单边检验可作类似的讨论,限于篇幅,这里不作介绍了.第四节总体分布函数的假设检验上两节中,我们在总体分布形式为已知的前提下,讨论了参数的检验问题.然而在实际问题中,有时不能确知总体服从什么类型的分布,此时就要根据样本来检验关于总体分布的χ检验法.假设.例如检验假设:“总体服从正态分布”等.本节仅介绍2χ检验法是在总体的分布为未知时,根据样本值x1,x2,…,x n来检验关于总体所谓2分布的假设H0:总体X的分布函数为F(x);H1:总体X的分布函数不是F(x)(8.22)的一种方法(这里的备择假设H1可不必写出).注意,若总体X为离散型,则假设(8.22)相当于H0:总体X的分布律为P{X=x i}=p i,i=1,2,…;(8.23)若总体X为连续型,则假设(8.22)相当于H0:总体X的概率密度为f(x). (8.24)在用2χ检验法检验假设H 0时,若在假设H 0下F (x )的形式已知,而其参数值未知,此时需先用极大似然估计法估计参数,然后再作检验.2χ检验法的基本思想与方法如下:(1) 将随机试验可能结果的全体Ω分为k 个互不相容的事件A 1,A 2,…,A k (1ki i A = =Ω,A i A j =∅,i ≠j ;i ,j =1,2,…,k ),于是在H 0为真时,可以计算概率ˆi p =P (A i )(i =1,2,…,k ).(2) 寻找用于检验的统计量及相应的分布,在n 次试验中,事件A i 出现的频率if n与概率ˆi p往往有差异,但由大数定律可以知道,如果样本容量n 较大(一般要求n 至少为50,最好在100以上),在H 0成立条件下ˆii f p n-的值应该比较小,基于这种想法,皮尔逊使用 2χ=21ˆ()ˆki i i if npnp =-∑ (8.25) 作为检验H 0的统计量,并证明了如下的定理.定理8.1 若n 充分大(n ≥50),则当H 0为真时(不论H 0中的分布属什么分布),统计量(8.25)总是近似地服从自由度为k -r -1的2χ分布,其中r 是被估计的参数的个数.(3) 对于给定的检验水平α,查表确定临界值2(1)k r αχ--使P {2χ>2(1)k r αχ--)}=α,从而得到H 0的拒绝域为2χ>2(1)k r αχ--).(4)由样本值x 1,x 2,…,x n 计算2χ的值,并与2(1)k r αχ--比较.(5) 作结论:若2χ>2(1)k r αχ--,则拒绝H 0,即不能认为总体分布函数为F (x );否则接受H 0.例8.10 一本书的一页中印刷错误的个数X 是一个随机变量,现检查了一本书的100页,记录每页中印刷错误的个数,其结果如表8-5所示.i =0.05)?解 由题意首先提出假设:H 0:总体X 服从泊松分布.P {X =i }=!e ii λλ-,i =0,1,2,…,这里H 0中参数λ为未知,所以需先来估计参数.由最大似然估计法得03614061ˆ+70100x λ⨯+⨯++⨯⨯== =1.将试验结果的全体分为A 0,A 1,…,A 7两两不相容的事件.若H 0为真,则P {X =i }有估计111ˆˆ{}!!e e i p P X i i i --====,i =0,1,2,….例如10ˆˆ{0},e pP X -=== 11ˆˆ{1},e pP X -=== 12ˆˆ{2},2e pP X -=== ………………166701ˆˆˆ{7}11.!e i i i pP X p i -===≥=-=-∑∑ 计算结果如表8-6所示.将其中有些np i <5的组予以适当合并,使新的每一组内有np i ≥5,如表8-6所示,此处并组后k =4,但因在计算概率时,估计了一个未知参数λ,故24221ˆ()~(411).ˆi i i i f npnp χχ=-=--∑计算结果为2χ=1.460(表8-6).因为220.05(411)(2)αχχ--==5.991>1.46,所以在显著性水平为0.05下接受H 0,即认为总体服从泊松分布. 表8-68-7).n =61ii f=∑=200.要求在给定的检验水平α=0.05下检验假设H 0:抗压强度X ~N (μ,σ2).解 原假设所定的正态分布的参数是未知的,我们需先求μ与σ的极大似然估计值.由第七章知,μ与σ2的极大似然估计值为ˆx μ=, 2211ˆ()ni i x x n σ==-∑. 设*i x 为第i 组的组中值,我们有*1195102052624514200i ii x x f n ⨯+⨯++⨯==∑ =221, {}2*222211ˆ()(26)10(16)262414200i ii x x f n σ=-=-⨯+-⨯++⨯∑ =152, ˆσ=12.33. 原假设H 0改写成X 是正态N (221,12.332)分布,计算每个区间的理论概率值{}11ˆ()()i i i i i pP a X a μμΦΦ--=≤<=-, i =1,2,…,6, 其中ˆi i a xμσ-=, 22()i t i t μμ--∞=e d Φ. 为了计算出统计量2χ之值,我们把需要进行的计算列表如下(表8-8).表8-8从上面计算得出2χ的观察值为1.35.在检验水平α=0.05下,查自由度m =6-2-1=3的2χ分布表,得到临界值20.05(3)χ=7.815.由于2χ=1.35<7.815=20.05(3)χ,不能拒绝原假设,所以认为混凝土制件的抗压强度的分布是正态分布N (221,152).小 结有关总体分布的未知参数或未知分布形式的种种论断叫做统计假设.一般统计假设分为原假设H 0(在实际问题中至关重要的假设)及与原假设H 0对立假设即是备择假设H 1.假设检验就是人们根据样本提供的信息作出“接受H 0、拒绝H 1”或“拒绝H 0、接受H 1”的判断.假设检验的思想是小概率原理,即小概率事件在一次试验中几乎不会发生.这种原理是人们处理实际问题中公认的原则.由于样本的随机性,当H 0为真时,我们可能会作出拒绝H 0、接受H 1的错误判断(弃真错误)或当H 不真时,我们可能会作出接受H 、拒绝H 的错误判断(取伪错误).会增大犯第二类错误的概率,反之亦然.在假设检验中我们主要控制(减小)犯第一类错误的概率.使P {拒绝H 0|H 0为真}≤α,其中α很小.(0<α<1),α称为检验的显著性水平,这种只对犯第一类错误的概率加以控制而不考虑犯第二类错误的概率的检验称为显著性假设检验.单个、两个正态总体的均值、方差的假设检验是本章重点问题,读者需掌握Z 检验法、2χ检验法、t 检验法等.这些检验法中原假设H 0备择假设H 1及H 0的拒绝域分别见表8-2、表8-4.重要术语及主题原假设 备择假设 检验统计量 单边检验 双边检验 显著性水平 拒绝域 显著性检验 一个正态总体的参数的检验 两个正态总体均值差、方差比的检验 总体分布函数的假设检验习 题 八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N (4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)? 2.某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25. 3.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s 2=0.1(克2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05).5.测量某种溶液中的水分,从它的10个测定值得出x =0.452(%),s =0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验. (1) H 0:μ=0.5(%);H 1:μ<0.5(%).(2)0H ':σ=0.04(%);1H ':σ<0.04(%). 6.某种导线的电阻服从正态分布N (μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s =0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005? 7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到: 第一批棉纱样本:n 1=200,x =0.532kg, s 1=0.218kg ; 第二批棉纱样本:n 2=200,x =0.57kg, s 2=0.176kg .设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05) 8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设H 0:σA 2=σB 2; H 1:σA 2≠σB 2.9.在π的前800位小数的数字中,0,1,…,9相应的出现了74,92,83,79,80,73,77,75,76,91次.试用2χ检验法检验假设H 0:P (X =0)=P (X =1)=P (X =2)=…=P (X =9)=1/10,其中X 为π的小数中所出现的数字,α=0.10.10.在一副扑克牌(52张)中任意抽3张,记录3张牌中含红桃的张数,放回,然后再任抽3张,如此重复64次,得下列结果。

相关文档
最新文档