倍长中线法经典例题)
5.倍长中线法

DC BA全等三角形问题中常见的辅助线——倍长中线法△ABC 中,AD 是BC 边中线方式1:直接倍长,(图1): 延长AD 到E ,使DE =AD ,连接BE 方式2:间接倍长1) (图2)作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E , 连接BE 2) (图3)延长MD 到N ,使DN =MD ,连接CD【经典例题】例1已知,如图△ABC 中,AB =5,AC =3, 则中线AD 的取值范围是_________.(提示:画出图形,倍长中线AD ,利用三角形两边之和大于第三边)例2:已知在△ABC 中,AB =AC ,D 在AB 上,E 在AC 的延长线上, DE 交BC 于F ,且DF =EF . 求证:BD =CE .(提示:方法1:过D 作DG ∥AE 交BC 于G ,证明ΔDGF ≌ΔCEFEDFC BA方法2:过E 作EG ∥AB 交BC 的延长线于G ,证明ΔEFG ≌ΔDFB方法3:过D 作DG ⊥BC 于G ,过E 作EH ⊥BC 的延长线于H ,证明ΔBDG ≌ΔECH )例3、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE +CF 与EF 的大小.变式:如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F . 求证:EF CF BE >+(提示:方法1:在DA 上截取DG =BD ,连结EG 、FG , 证明ΔBDE ≌ΔGDE ΔDCF ≌ΔDGF 所以BE =EG 、CF =FG 利用三角形两边之和大于第三边 方法2:倍长ED 至H ,连结CH 、FH ,证明FH =EF 、CH =BE ,利用三角形两边之和大于第三边)例4:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF(提示:方法1:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA 三角形BEG 是等腰三角形。
倍长中线法(经典例题)

倍长中线法例 1:△ ABC 中, AB=5, AC=3,求中线 AD 的取值范围知识网络详解:中线是三角形中的重要线段之一, 添加辅助线.在利用中线解决几何问题时, 常常采用 “倍长中线法 ”所谓倍长中线法, 就是将三角形的中线延长一倍, 以便构造出全等三角形, 从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程: 延长某某到某点,使某某等于某某, 使什么等于什么(延长的那一条),用 SAS 证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成 【方法精讲 】常用辅助线添加方法——倍长中线SAS 全等三角形模型的构造。
AA△ ABC 中 AD 是 BC 边中线BDC方式 1: 延长 AD 到 E ,使 DE=AD ,连接 BEB DCE方式 2:间接倍长AAF 作 CF ⊥ AD 于 F , MDB D C作 BE ⊥ AD 的延长线于 连接 BEE BC 延长 MD 到 N , 使 DN=M ,D 连接 CNEN经典例题讲解:例2:已知在△ABC中,AB=AC,D 在AB上,E 在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CEADBFCE例3:已知在△ ABC中,AD是BC边上的中线, E 是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EFAFEBD C例4:已知:如图,在ABC 中,AB 交AE于点F,DF=AC.求证:AE平分BAC AC ,D、E 在BC上,且DE=EC,过D作DF // BAAFB D E C例5:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAEABCE D自检自测:1、如图,△ABC中,BD=DC=AC,E是DC的中点,求证,AD平分∠BAE.2、在四边形ABCD中,AB∥DC,E 为BC边的中点,∠BAE=∠EAF,AF 与DC的延长线相交于点F。
试探究线段AB与AF、CF之间的数量关系,并证明你的结论.ADBE CF3、如图,AD为ABC 的中线,DE平分BDA 交AB于E,DF平分ADC 交AC于F. 求证:BE CF EFAEFB CD第14 题图4、已知:如图,ABC中,C=90 ,CM AB于M,AT 平分BAC交CM于D,交BC于T,过D作DE//AB 交BC于E,求证:CT=BE.A MD BETCWelcome To Download !!!欢迎您的下载,资料仅供参考!。
倍长中线法证明全等例题

选择题在三角形ABC中,AD是中线,倍长AD至点E,连接BE,若要证明三角形ADC与三角形EDB 全等,需要添加的条件是?A. 角ADC = 角EDBB. AD = BDC. 角CAD = 角EBD(正确答案)D. AC = BE已知三角形ABC中,D是BC的中点,AD是中线,延长AD至E使得DE = AD,连接BE。
若角ADC = 角EDB,则下列哪一对三角形全等?A. 三角形ABD与三角形ECDB. 三角形ADC与三角形EDB(正确答案)C. 三角形ABC与三角形EBDD. 三角形ABD与三角形EBD在三角形ABC中,D为BC的中点,AD为中线。
延长AD到E,使得DE = AD,连接BE。
若AC平行于BE,则下列结论正确的是?A. 三角形ADC与三角形EDB不全等B. 三角形ADC与三角形EDB全等(正确答案)C. 三角形ABC与三角形EBD全等D. 无法判断三角形ADC与三角形EDB的全等关系在三角形ABC中,D是BC的中点,AD是中线。
延长AD到E,使得DE = AD,连接BE。
若要证明三角形ADC全等于三角形EDB,可依据的判定定理是?A. SSSB. ASAC. SAS(正确答案)D. AAA已知三角形ABC,D为BC的中点,AD为中线。
延长AD至E,使DE = AD,连接BE。
若角C = 角E,则下列哪一对三角形一定全等?A. 三角形ABD与三角形ECDB. 三角形ABC与三角形EBDC. 三角形ADC与三角形EDB(正确答案)D. 三角形ABC与三角形ADC在三角形ABC中,D是BC的中点,AD是中线。
延长AD到E,使得DE = AD,连接BE。
若三角形ADC与三角形EDB全等,则它们的对应角一定相等,即?A. 角ADC = 角EBD(正确答案)B. 角ADC = 角EDCC. 角CAD = 角CDED. 角BAC = 角E已知三角形ABC,D是BC的中点,AD是中线。
延长AD至E,使得DE = AD,连接BE。
倍长中线最全总结 例题+练习(附答案)

倍长中线最全总结 例题+练习(附答案)知识导航中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线。
倍长中线:延长三角形中线,是得延长后的线段是原中线的2倍。
目的是为构造一对8字型全等三角形(SAS ),从而实现边角的转移。
易错点睛倍长中线的目的在于转移边角,需要注意的是要注意延长哪一条线段或者类中线;倍长之后,需要考虑连接哪一条线段从而构造全等,实现所需的线段进行转移。
DAB C模块一 有关倍长中线的全等模型【范例】(2014秋•江汉区校级月考)如图,在ABC ∆中,AD 为中线,求证:2AB AC AD +>.【分析】延长AD 至E ,使DE AD =,构造ADC EDB ∆≅∆,再根据三角形的三边关系可得 2AB AC AD +>。
【解答】证明:由BD CD =,再延长AD 至E ,使DE AD =,D 为BC 的中点,DB CD ∴=,在ADC ∆和EDB ∆中AD DE ADC BDE DB CD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆≅∆, BE AC ∴=,在ABE ∆中,AB BE AE +>,2AB AC AD ∴+>;BB【核心考点1】倍长中线1.(2016秋•五莲县期中)如图,ABC ∆中,D 为BC 的中点. (1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB ∆≅∆,再根据三角形的三边关 系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三 边可得53253AD -<<+,再计算即可. 【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D 为BC 的中点,DB CD ∴=,在ADC ∆和EDB ∆中AD DEADC BDE DB CD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆≅∆, BE AC ∴=,在ABE ∆中,AB BE AE +>,2AB AC AD ∴+>;(2)5AB =,3AC =,53253AD ∴-<<+,14AD ∴<<.ABC2.如图,ABC ∆中,BD DC AC ==,E 是DC 的中点,求证:AD 平分BAE ∠.【分析】延长AE 到M ,使EM AE =,连结DM ,由SAS 证明DEM CEA ∆≅∆,得出C MDE ∠=∠,DM AC =,证出DM BD =,ADM ADB ∠=∠,由SAS 证明ADB ADM ∆≅∆,得出BAD MAD ∠=∠即可.【解答】证明:延长AE 到M ,使EM AE =,连结DM ,如图所示:E 是DC 的中点,DE CE ∴=,在DEM ∆和CEA ∆中,EM AE DEM CEADE CE =⎧⎪∠=∠⎨⎪=⎩,()DEM CEA SAS ∴∆≅∆, C MDE ∴∠=∠,DM AC =,又BD DC AC ==,DM BD ∴=,ADC CAD ∠=∠,又ADB C CAD ∠=∠+∠,ADM MDE ADC ∠=∠+∠,ADM ADB ∴∠=∠,在ADB ∆和ADM ∆中,AD AD ADB ADMBD DM =⎧⎪∠=∠⎨⎪=⎩,()ADB ADM SAS ∴∆≅∆,BAD MAD ∴∠=∠,即AD 平分BAE ∠。
倍长中线模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(原卷版)

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题5倍长中线模型如图①,AD是△ABC的中线,延长AD至点E使DE=AD,易证:△ADC≌△EDB(SAS).如图②,D是BC中点,延长FD至点E使DE=FD,易证:△FDB≌△EDC(SAS)当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移.【例1】.(2020·陕西咸阳·一模)问题提出(1)如图,AD是△ABC的中线,则AB+AC__________2AD;(填“>”“<”或“=”)问题探究(2)如图,在矩形ABCD中,CD=3,BC=4,点E为BC的中点,点F为CD上任意一点,当△AEF的周长最小时,求CF的长;②图①图构造全等倍长类中线倍长中线D CBAFFAB CAB CDCA经典例题解题策略问题解决(3)如图,在矩形ABCD中,AC=4,BC=2,点O为对角线AC的中点,点P为AB上任意一点,点Q为AC上任意一点,连接PO、PQ、BQ,是否存在这样的点Q,使折线OPQB的长度最小?若存在,请确定点Q的位置,并求出折线OPQB的最小长度;若不存在,请说明理由.【例2】.(2021·湖北武汉·八年级期中)已知△ABC中,(1)如图1,点E为BC的中点,连AE并延长到点F,使FE=EA,则BF与AC的数量关系是________.(2)如图2,若AB=AC,点E为边AC一点,过点C作BC的垂线交BE的延长线于点D,连接AD,若∠DAC=∠ABD,求证:AE=EC.(3)如图3,点D在△ABC内部,且满足AD=BC,∠BAD=∠DCB,点M在DC的延长线上,连AM交BD的延长线于点N,若点N为AM的中点,求证:DM=AB.【例3】(2020·安徽合肥·二模)如图,正方形ABCD中,E为BC边上任意点,AF平分∠EAD,交CD于点F.(1)如图1,若点F恰好为CD中点,求证:AE=BE+2CE;(2)在(1)的条件下,求CE的值;BC(3)如图2,延长AF交BC的延长线于点G,延长AE交DC的延长线于点H,连接HG,当CG=DF时,求证:HG⊥AG.【例4】.(2020·江西宜春·一模)将一大、一小两个等腰直角三角形拼在一起,OA =OB,OC =OD,∠AOB =∠COD =90°,连接AC,BD .(1)如图1,若A 、O 、D 三点在同一条直线上,则AC 与BD 的关系是 ;(2)如图2,若A 、O 、D 三点不在同一条直线上,AC 与BD 相交于点E ,连接OE ,猜想AE 、BE 、OE 之间的数量关系,并给予证明;(3)如图3,在(2)的条件下作BC 的中点F ,连接OF ,直接写出AD 与OF 之间的关系.一、解答题1.(2022·全国·八年级)如图1,在△ABC 中,若AB =10,BC =8,求AC 边上的中线BD 的取值范围. (1)小聪同学是这样思考的:延长BD 至E ,使DE =BD ,连接CE ,可证得△CED ≌△ABD . ①请证明△CED ≌△ABD ; ②中线BD 的取值范围是 .(2)问题拓展:如图2,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中,AB =BM ,BC =BN ,∠ABM =∠NBC =∠90°,连接MN .请写出BD 与MN 的数量关系,并说明理由.培优训练2.(2022·全国·八年级课时练习)【观察发现】如图①,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明的解法如下:延长AD到点E,使DE=AD,连接CE.在△ABD与△ECD中{BD=DC∠ADB=∠EDCAD=DE∴△ABD≅△ECD(SAS)∴AB=.又∵在△AEC中EC﹣AC<AE<EC+AC,而AB=EC=7,AC=5,∴<AE<.又∵AE=2AD.∴<AD<.【探索应用】如图②,AB∥CD,AB=25,CD=8,点E为BC的中点,∠DFE=∠BAE,求DF的长为.(直接写答案)【应用拓展】如图③,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点,求证:AP⊥DP.3.(2022·江苏·八年级课时练习)某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】如图1,延长△ABC的边BC到D,使DC=BC,过D作DE∥AB交AC延长线于点E,求证:△ABC≌△EDC.【理解与应用】如图2,已知在△ABC中,点E在边BC上且∠CAE=∠B,点E是CD的中点,若AD平分∠BAE.(1)求证:AC=BD;(2)若BD=3,AD=5,AE=x,求x的取值范围.4.(2022·全国·八年级课时练习)已知:多项式x2+4x+5可以写成(x﹣1)2+a(x﹣1)+b的形式.(1)求a,b的值;(2)△ABC的两边BC,AC的长分别是a,b,求第三边AB上的中线CD的取值范围.5.(2022·山东淄博·八年级期末)如图,O为四边形ABCD内一点,E为AB的中点,OA=OD,OB=OC,∠AOB+∠COD=180°.(1)若∠BOE=∠BAO,AB=2√2,求OB的长;(2)用等式表示线段OE和CD之间的关系,并证明.6.(2022·江苏·八年级课时练习)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.7.(2022·全国·八年级专题练习)如图1,在△ABC中,CM是AB边的中线,∠BCN=∠BCM交AB延长线于点N,2CM=CN.(1)求证AC=BN;的值.(2)如图2,NP平分∠ANC交CM于点P,交BC于点O,若∠AMC=120°,CP=kAC,求CPCM 8.(2021·全国·八年级单元测试)(1)如图1,△ABC中,AD为中线,求证:AB+AC>2AD;(2)如图2,△ABC中,D为BC的中点,DE⊥DF交AB、AC于E、F.求证:BE+CF>EF.9.(2022·江苏·八年级课时练习)(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.10.(2022·全国·八年级课时练习)在△ABM中,AM⊥BM,垂足为M,AM=BM,点D是线段AM上一动点.(1)如图1,点C是BM延长线上一点,MD=MC,连接AC,若BD=17,求AC的长;(2)如图2,在(1)的条件下,点E是△ABM外一点,EC=AC,连接ED并延长交BC于点F,且点F 是线段BC的中点,求证:∠BDF=∠CEF.(3)如图3,当E在BD的延长上,且AE⊥BE,AE=EG时,请你直接写出∠1、∠2、∠3之间的数量关系.(不用证明)11.(2022·全国·八年级课时练习)已知:等腰Rt△ABC和等腰Rt△ADE中,AB=AC,AE=AD,∠BAC=∠EAD=90°.(1)如图1,延长DE交BC于点F,若∠BAE=68°,则∠DFC的度数为;(2)如图2,连接EC、BD,延长EA交BD于点M,若∠AEC=90°,求证:点M为BD中点;(3)如图3,连接EC、BD,点G是CE的中点,连接AG,交BD于点H,AG=9,HG=5,直接写出△AEC的面积.12.(2022·全国·八年级课时练习)在△ABC中,点P为BC边中点,直线a绕顶点A旋转,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)如图1,若点B,P在直线a的异侧,延长MP交CN于点E.求证:PM=PE.(2)若直线a绕点A旋转到图2的位置时,点B,P在直线a的同侧,其它条件不变,此时S△BMP+S△CNP=7,BM=1,CN=3,求MN的长度.(3)若过P点作PG⊥直线a于点G.试探究线段PG、BM和CN的关系.13.(2021·陕西·西安市铁一中学八年级开学考试)(1)阅读理解:如图1,在△ABC中,若AB=10,BC=8.求AC边上的中线BD的取值范围,小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE.利用全等将边AB转化到CE,在△BCE中利用三角形三边关系即可求出中线BD的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是;中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=∠NBC=90°,连接MN,探索BD与MN的关系,并说明理由.14.(2020·辽宁·大连市第三十四中学八年级阶段练习)课堂上,老师出示了这样一个问题:如图1,点D是△ABC边BC的中点,AB=5,AC=3,求AD的取值范围.(1)小明的想法是,过点B作BE//AC交AD的延长线于点E,如图2,从而通过构造全等解决问题,请你按照小明的想法解决此问题;(2)请按照上述提示,解决下面问题:在等腰Rt△ABC中,∠BAC=90°,AB=AC,点D边AC延长线上一点,连接BD,过点A作AE⊥BD于点E,过点A作AF⊥AE,且AF=AE,连接EF交BC于点G,连接CF,求证BG=CG.15.(2022·全国·八年级课时练习)如图,点P是∠MON内部一点,过点P分别作PA∥ON交OM于点A,PB∥OM交ON于点B(P A≥PB),在线段OB上取一点C,连接AC,将△AOC沿直线AC翻折,得到△ADC,延长AD交PB于点E,延长CD交PB于点F.(1)如图1,当四边形AOBP是正方形时,求证:DF=PF;(2)如图2,当C为OB中点时,试探究线段AE,AO,BE之间满足的数量关系,并说明理由;(3)如图3,在(2)的条件下,连接CE,∠ACE的平分线CH交AE于点H,设OA=a,BE=b,若∠CAO =∠CEB,求△CDH的面积(用含a,b的代数式表示).16.(2022·全国·八年级专题练习)(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图2),①延长AD到M,使得DM=AD;②连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是;方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠CAF=90°,请直接利用(2)的结论,试判断线段AD与EF的数量关系,并加以证明.17.(2022·全国·八年级课时练习)(1)阅读理解:如图1,在△ABC中,若AB=5,AC=8,求BC边上的中线AD的取值范围.小聪同学是这样思考的:延长AD至E,使DE=AD,连接BE.利用全等将边AC 转化到BE,在△BAE中利用三角形三边关系即可求出中线AD的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是_________,中线AD的取值范围是_________;(2)问题解决:如图2,在△ABC中,点D是BC的中点,点M在AB边上,点N在AC边上,若DM⊥DN.求证:BM+CN>MN;(3)问题拓展:如图3,在△ABC中,点D是BC的中点,分别以AB,AC为直角边向△ABC外作Rt△ABM 和Rt△ACN,其中∠BAM=∠NAC=90°,AB=AM,AC=AN,连接MN,探索AD与MN的关系,并说明理由.18.(2022·全国·八年级课时练习)如图,在等边△ABC中,点D,E分别是AC,AB上的动点,且AE=CD,BD交CE于点P.(1)如图1,求证:∠BPC=120°;(2)点M是边BC的中点,连接P A,PM,延长BP到点F,使PF=PC,连接CF,①如图2,若点A,P,M三点共线,则AP与PM的数量关系是.②如图3,若点A,P,M三点不共线,问①中的结论还成立吗?若成立,请给出证明,若不成立,说明理由.19.(2022·山东德州·八年级期末)(1)方法呈现:如图①:在△ABC中,若AB=6,AC=4,点D为BC边的中点,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,可证△ACD≌△EBD,从而把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在△ABC中,点D是BC的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD中,AB//CD,AF与DC的延长线交于点F、点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.20.(2021·重庆市渝北中学校九年级阶段练习)(1)如图1.在Rt△ACB中,∠ACB=90°,AC=8,BC =6,点D、E分别在边CA,CB上且CD=3,CE=4,连接AE,BD,F为AE的中点,连接CF交BD于点G,则线段CG所在直线与线段BD所在直线的位置关系是.(提示:延长CF到点M,使FM=CF,连接AM)(2)将△DCE绕点C逆时针旋转至图2所示位置时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将△DCE绕点C逆时针在平面内旋转,在旋转过程中,当B,D,E三点在同一条直线上时,CF的长为.21.(2022·安徽宿州·九年级期末)已知:在矩形ABCD中,连接AC,过点D作DF⊥AC,交AC于点E,交AB于点F.(1)如图1,若tan∠ACD=√2.2①求证:AF=BF;②连接BE,求证:CD=√2BE.(2)如图2,若AF2=AB⋅BF,求cos∠FDC的值.22.(2022·全国·八年级课时练习)阅读理解:(1)如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E,使得AD=DE,再连接BE,把AB,AC,2AD集中在△ABE中,利用三角形三边关系即可判断中线AD的取值范围是______.(2)解决问题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.(3)问题拓展:如图3,在△ABC中,D是BC边上的中点,延长DA至E,使得AC=BE,求证:∠CAD=∠BED.23.(2022·全国·八年级课时练习)某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,证明:△ACD≌△EBD.【理解与应用】(2)如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是________.(3)如图3,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,求证:BE+CF>EF.24.(2020·福建福州·九年级开学考试)如图1,已知正方形ABCD和等腰RtΔBEF,EF=BE,∠BEF=90°,F是线段BC上一点,取DF中点G,连接EG、CG.(1)探究EG与CG的数量与位置关系,并说明理由;(2)如图2,将图1中的等腰RtΔBEF绕点B顺时针旋转α°(0<α<90°),则(1)中的结论是否仍然成立?请说明理由;(3)在(2)的条件下,若AD=2,求2GE+BF的最小值.。
初中数学全等专题倍长中线法(含答案)

初中数学全等专题倍长中线法1.如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.2<AB<12B.4<AB<12C.9<AB<19D.10<AB<19 答案:C解题思路:延长AD至E,使DE=AD,连接CE,可先证明△ABD≌△ECD,则AB=CE,在△ACE中,根据三角形的三边关系,得AE-AC<CE<AE+AC,即9<CE<19。
则9<AB<19.故选C.2。
如图,已知CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确的是()A.①②④B.①③④ C。
①②③ D.①②③④ 答案:A解题思路:①正确,延长CD至点F,使得DF=CD,连接AF,可先证明△ADF≌△BDC,再证明△ACF≌△BEC,由这两个三角形全等可以得知②、④正确。
由△ACF≌△BEC,得∠ACD=∠E,若要∠ACD=∠BCE,则需∠E=∠BCE,则需BC=BE,显然不成立,故③选项错误3。
如图,点E是BC的中点,∠BAE=∠CDE,延长DE到点F使得EF=DE,连接BF,则下列说法正确的是()①BF∥CD ②△BFE≌△CDE ③AB=BF ④△ABE为等腰三角形A。
①②③ B。
②③④ C.①③④ D.①②③④ 答案:A解题思路:可以先证明△BEF≌△CED,可以得到②正确,进而得到∠F=∠D,BF∥CD,①正确,又∵∠BAE=∠CDE=∠F,∴AB=BF,③正确.④不正确。
4.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A。
1 B。
2 C.3 D.4 答案:C解题思路:延长FE交DA的延长线于点M,则可证△AEM≌△BEF,再证明△GEM≌△GEF,可以得到GF=GM=GA+BF=3,答案选C5。
倍长中线法(经典例题)

N作 BE! AD 的延长线于倍长中线法知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时, 常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全 等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么 等于什么(延长的那一条),用SAS 证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS 全等三角形模 型的构造。
【方法精讲】常用辅助线添加方法倍长中线△ ABC 中式1:延长AD 到E,B --------------- ■ ------------- CDAD 是E BC使 DE=AD接BE方式2:间接倍长 AB 延长MD 到N, CE连接CN 经典例题讲解:例〔:△ ABC 中,AB=5 AC=3求中线 AD 的取值范围例2:已知在△ ABC 中,AB=AC D 在AB 上,E 在AC 的延长线上,DE 交 BC 于 F ,且 DF=EF 求证:BD=CE例3:已知在△ ABC 中 , AD 是 BC 边上的中线,E 是AD 上一点,且BE 二AC例4:已知:如图,在- ABC 中,AB = AC , DE 在 BC 上 ,且 DE 二EC 过 D 作 DF//BA 交 AE 于点 F , DF=AC.例 5:已知 CD=AB Z BDA M BAD AE 是A ABD 的中线,求证:/ C=Z BAE自检自测:1、如图,△ ABC 中 , BD=DC=AC,是 DC 的中点,求证,AD 平分/ BAE.使 DN=M ,BE延长BE 交AC 于F ,求证:AF=EF求证:AE 平分.BACDEAECCFAC2、在四边形ABCD K AB// DC E 为BC 边的中点,/ BAE K EAF AF与DC 的延长线相交于点F 。
试探究线段AB 与AF 、CF 之间的数量关 系,并证明你的结论.3、如图,AD 为 MBC 的中线,DE 平分.BDA 交AB 于E,DF 平分.AD 交 AC 于 F.求证:BE CF EF4、已知:如图, ABC 中, C=90,CM AB 于 M AT 平 分 BAC 交 CM 于 D,交 BC 于 T ,过 D 作 DE//AB 交 BC 于 E ,求证:CT=BE.ADBF。
倍长中线最全总结。例题+练习(附答案)

倍长中线最全总结。
例题+练习(附答案)中线是三角形中的重要线段之一。
在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线。
倍长中线指的是延长三角形中线,使得延长后的线段是原中线的2倍。
其目的是为了构造一对8字型全等三角形(SAS),从而实现边角的转移。
以三角形ABC为例,延长中线AD至点E,使得DE=AD,连接BE。
根据三角形的SAS全等条件,可以得出结论:△ACD≌△BED,AC=BE,∠CAD=∠BED,AC∥BE。
同样地,延长中线CD至点F,使得DE=DF,连接CF。
根据三角形的SAS全等条件,可以得出结论:△BED≌△CFD,CF=BE,∠CFD=∠BED,CF∥BE。
在利用倍长中线法时,需要注意延长哪一条线段或者类中线。
倍长之后,需要考虑连接哪一条线段从而构造全等,实现所需的线段进行转移。
举例来说,如图所示,在三角形ABC中,需要证明AB+AC>2AD。
延长中线AD至点E,使得DE=AD,构造△ADC和△EDB,根据三角形的三边关系可得AB+AC>2AD。
另外,还有一道题目是需要求解AD的取值范围。
在三角形ABC中,D为BC的中点。
根据三角形的三边关系可得5-3<2AD<5+3,即AD的取值范围为1<AD<4.证明:延长AD到F,使DF=AD,连接BF(如图)。
因为AD是中线,所以BD=DC=AC,又因为DF=AD,所以BD=BF,所以AB>BF。
由三角形的三边关系,在三角形ABF中,有AB+BF>AF,即2AD<AB+AC,证毕。
2)因为AD是中线,所以BD=DC=AC,又因为DF=AD,所以BD=BF,所以AB>BF。
由相似三角形ADC和FDB,得到∠CAD=∠F,由边的大小关系可得到∠BAD>∠DAC,证毕。
3)同(2),由相似三角形ADC和FDB,得到AE/AD=BF/BD<1,即AE<AD,证毕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倍长中线法
知识网络详解:
中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.
所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)
倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。
【方法精讲】常用辅助线添加方法——倍长中线
△ABC中
方式1:延长AD
到E,AD是BC边中线
使DE=AD,
连接BE
方式2:间接倍长
作CF⊥AD于F,延长MD到
作BE⊥AD的延长线于使DN=MD,
连接BE 连接CN
经典例题讲解:
例1:△ABC中,AB=5,AC=3,求中线AD的取值范围
例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE
例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF
例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠
B
A
B
F
D
E
C
例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE
自检自测:
1、如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE.
2、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.
E D
A
B
F
E
A
B
C
3、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+
4、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.
第 14 题图
D
F C
B
E
A
D
A
B
C
M
T
E。