江苏南京秦淮区2020学年第二学期中考二模(6月5日))数学试卷(Word版)

合集下载

2020-2021学年江苏省中考数学第二次模拟试卷二及答案解析

2020-2021学年江苏省中考数学第二次模拟试卷二及答案解析

江苏省中考数学二模试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中只有一项是符合题目要求的.)1.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>02.若关于x、y的二元一次方程组的解满足,则满足条件的m 的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.13.如图,AB是半圆O的直径,∠DBA=20°,则∠C的大小是()A.70°B.100°C.110°D.140°4.已知a,b是实数,设A=,B=,C=,则下列各式中,错误的是()A.A≤C B.B≥C C.A+B=2C D.A2+B2=C25.国际数学家大会的会标如图1所示,把这个图案沿图中线段剪开后,能拼成如图2所示的四个图形,则其中是轴对称图形的有()A.1个 B.2个 C.3个6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x 轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3πD.6π+6二、填空题(本大题共10小题,每小题3分,共30分,请把答案直接写在答题纸相应位置)7.﹣5的绝对值是.8.根据有关方面统计,2015年全国普通高考报考人数大约9420000人,数据9420000用科学记数法表示为.9.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是.10.有一组数据:1,3,3,4,4,这组数据的方差为.11.不等式组的解集为.12.“微信发红包”是刚刚兴起的一种娱乐方式,为了解所在单位员工春节期间使用微信发红包的情况,小红随机调查了15名同事,结果如表:平均每个红25102050包的钱数(元)人数74211则此次调查中平均每个红包的钱数的众数为元,中位数为元.13.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为.14.在同一直角坐标系中,点A、B分别是函数y=x﹣1与y=﹣3x+5的图象上的点,且点A、B关于原点对称,则点A的横坐标为.15.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.16.在△ABC中,已知AC=6,BC=8,当∠B最大时,AB= .三、解答题(本大题共有10小题,共102分)17.(1)计算:(﹣)﹣1﹣tan45°+(π﹣2016)0﹣(2)化简:.18.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,如果∠AO A1=∠BOB1=α;OA=OA1=a;OB=OB1=b.则线段AB扫过的面积是.19.某校为了解“理化生实验操作”考试的备考情况,随机抽取了一部分九年级学生进行测试,测试结果分为“优秀”、“良好”、“合格”、“不合格”四个等级,分别记为A、B、C、D.根据测试结果绘制了如下尚不完整的统计图.(1)本次测试共随机抽取了名学生.请根据数据信息补全条形统计图;(2)若该校九年级的600名学生全部参加本次测试,请估计测试成绩等级在合格以上(包括合格)的学生约有多少人?20.妈妈买回6个粽子,其中1个花生馅,2个肉馅,3个枣馅.从外表看,6个粽子完全一样,女儿有事先吃.(1)若女儿只吃一个粽子,则她吃到肉馅的概率是;(2)若女儿只吃两个粽子,求她吃到一个枣馅、一个肉馅的概率.21.某市在道路改造过程中,需要铺设一条为2000米的管道,决定由甲、乙两个工程队来完成这一工程,已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设600米所用的天数与乙工程队铺设500米所用的天数相同,甲、乙工程队每天各能铺设多少米?22.如图,正方形ABCD中,E为对角线AC上一点,连结EB、ED,延长BE交AD于点F.(1)求证:∠BEC=∠DEC;(2)当CE=CD时,求证:DF2=FE•FB.23.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).24.在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过A(﹣3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,点Q是CA边上一个动点.(1)求该抛物线的解析式;(2)若点M为抛物线的对称轴上一个动点,求点M的坐标使MQ+MA的值最小.25.【发现】如图1∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图1①)【思考】如图1②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?图中卡通人证明了D不在⊙O外,请你画图证明点D也不在⊙O内.【应用】:利用【发现】和【思考】中的结论解决以下问题:如图2,在Rt△ACB中,∠ACB=90°,CA=6,,若将△ACB绕点A顺时针旋转得Rt△AC′B′,旋转角为α(0°≤α≤180°)连结CC′交BB′于点F,交AB边于点O.(1)请证明:∠BFO=∠CAO.(2)若CA=CO=6,求则OF的长.(3)在运动过程中,请证明F永远是BB′的中点,并直接写出点F的运动路线长.26.在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(0,1),B(4,3),则d(A,⊙O)= ,d(B,⊙O)= .②已知直线l:y=与⊙O的密距d(l,⊙O)=,求b的值.(2)如图2,C为x轴正半轴上一点,⊙C的半径为1,直线y=﹣与x轴交于点D,与y轴交于点E,线段DE与⊙C的密距d(DE,⊙C)<.请直接写出圆心C的横坐标m的取值范围.参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中只有一项是符合题目要求的.)1.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【考点】实数与数轴.【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.2.若关于x、y的二元一次方程组的解满足,则满足条件的m 的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.1【考点】二元一次方程组的解.【分析】方程组两方程相加表示出x+y,代入所求不等式计算确定出m的范围,即可确定出m的正整数值.【解答】解:,①+②得:3(x+y)=﹣3m+6,解得:x+y=﹣m+2,代入得:﹣m+2>,解得:m<,则满足条件的m的所有正整数值是1,故选D3.如图,AB是半圆O的直径,∠DBA=20°,则∠C的大小是()A.70°B.100°C.110°D.140°【考点】圆周角定理.【分析】先根据圆周角定理求出∠ADB的度数,再由直角三角形的性质求出∠A的度数,根据圆内接四边形的性质即可得出结论.【解答】解:∵AB是半圆O的直径,∴∠ADB=90°.∵∠DBA=20°,∴∠DAB=90°﹣20°=70°.∵四边形ABCD是圆内接四边形,∴∠C=180°﹣∠DAB=180°﹣70°=110°.故选C.4.已知a,b是实数,设A=,B=,C=,则下列各式中,错误的是()A.A≤C B.B≥C C.A+B=2C D.A2+B2=C2【考点】实数大小比较.【分析】分两种情况:a≤b,a>b,进行讨论即可求解.【解答】解:当a≤b时,A=a,B=b,C=,则A≤C,B≥C,A+B=2C,无法确定A2+B2=C2;当a>b时,A=b,B=a,C=,则A<C,B>C,A+B=2C,无法确定A2+B2=C2;故选:D.5.国际数学家大会的会标如图1所示,把这个图案沿图中线段剪开后,能拼成如图2所示的四个图形,则其中是轴对称图形的有()A.1个 B.2个 C.3个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【解答】解:图2所示的四个图形中是轴对称图形有①③④,共3个,故选:C.6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x 轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3πD.6π+6【考点】旋转的性质;坐标与图形性质;扇形面积的计算.【分析】画出点A第一次回到x轴上时的图形,根据图形得到点A的路径分三部分,以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A运动的路线与x轴围成的图形的面积就由三个扇形和两个直角三角形组长,于是可根据扇形面积和三角形面积公式计算,然后把计算结果乘以3即可得到答案.【解答】解:点A第一次回到x轴上时,点A的路径为:开始以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A第一次回到x轴上时,点A运动的路线与x轴围成的图形的面积和=×2++2×××=2π+2,所以点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为3(2π+2)=6π+6.故选D.二、填空题(本大题共10小题,每小题3分,共30分,请把答案直接写在答题纸相应位置)7.﹣5的绝对值是 5 .【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.8.根据有关方面统计,2015年全国普通高考报考人数大约9420000人,数据9420000用科学记数法表示为9.42×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9420000=9.42×106,故答案为:9.42×1069.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是30 .【考点】圆锥的计算.【分析】圆锥的底面周长即为侧面展开后扇形的弧长,已知扇形的圆心角,所求圆锥的母线即为扇形的半径,利用扇形的弧长公式求解.【解答】解:将l=20π,n=120代入扇形弧长公式l=中,得20π=,解得r=30.故答案为:30.10.有一组数据:1,3,3,4,4,这组数据的方差为 1.2 .【考点】方差.【分析】根据平均数的计算公式先算出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:这组数据的平均数是:(1+3+3+4+4)÷5=3,则这组数据的方差为:[(1﹣3)2+(3﹣3)2+(3﹣3)2+2(4﹣3)2]=1.2.故答案为:1.2.11.不等式组的解集为﹣1<x≤4 .【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:,解不等式4x+6>1﹣x,得x>﹣1,解不等式3(x﹣1)≤x+5,得:x≤4,故不等式组的解集为:﹣1<x≤4,故答案为:﹣1<x≤4.12.“微信发红包”是刚刚兴起的一种娱乐方式,为了解所在单位员工春节期间使用微信发红包的情况,小红随机调查了15名同事,结果如表:平均每个红25102050包的钱数(元)人数74211则此次调查中平均每个红包的钱数的众数为 2 元,中位数为 5 元.【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:观察发现平均每个红包的钱数为2元的人数为7人,最多,故众数为2元;共15人,排序后位于第8位的红包钱数为中位数,即中位数为5元,故答案为:2,5.13.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为 2 .【考点】反比例函数综合题.【分析】由AB∥x轴可知,A、B两点纵坐标相等,设A(,b),B(,b),则AB=﹣,▱ABCD的CD边上高为b,根据平行四边形的面积公式求解.【解答】解:∵点A在双曲线上,点B在双曲线上,且AB∥x轴,∴设A(,b),B(,b),则AB=﹣,S▱ABCD=(﹣)×b=5﹣3=2.故答案为:2.14.在同一直角坐标系中,点A、B分别是函数y=x﹣1与y=﹣3x+5的图象上的点,且点A、B关于原点对称,则点A的横坐标为﹣1 .【考点】关于原点对称的点的坐标;一次函数图象上点的坐标特征.【分析】设点A的坐标为(a,a﹣1),根据关于原点对称的点的横坐标与纵坐标都互为相反数表示出点B的坐标,然后代入y=﹣3x+5计算即可得解.【解答】解:∵点A在y=x﹣1的图象上,∴设点A的坐标为(a,a﹣1),∵点A、B关于原点对称,∴点B(﹣a,1﹣a),∴﹣3×(﹣a)+5=1﹣a,解得a=﹣1,∴点A的横坐标为﹣1,故答案为:﹣1.15.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【考点】全等三角形的判定与性质;平行线之间的距离;等腰直角三角形;相似三角形的判定与性质.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC 的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD 中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.16.在△ABC中,已知AC=6,BC=8,当∠B最大时,AB= 2.【考点】切线的性质.【分析】以AC为直径作⊙O,当AB为⊙O的切线时,即AB⊥AC时,∠B最大,根据勾股定理即可求出答案.【解答】解:以AC为直径作⊙O,当AB为⊙O的切线时,即AB⊥AC时,∠B最大,此时AB===2.故答案为:2.三、解答题(本大题共有10小题,共102分)17.(1)计算:(﹣)﹣1﹣tan45°+(π﹣2016)0﹣(2)化简:.【考点】分式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)直接根据负整数指数幂、零指数幂以及二次根式和特殊角的三角函数值进行化简求值即可;(2)括号里的式子先通分,然后把除法转化为乘法,再进行约分即可.【解答】解:(1)(﹣)﹣1﹣tan45°+(π﹣2016)0﹣=﹣2﹣1+1﹣4=﹣2﹣4(2)(+)÷+1=(+)÷+1=×+1=+1=18.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,如果∠AO A1=∠BOB1=α;OA=OA1=a;OB=OB1=b.则线段AB扫过的面积是.【考点】作图﹣旋转变换;扇形面积的计算.【分析】(1)先连结AA1和BB1,然后分别作它们的垂直平分线,则两垂直平分线的交点即为点O;(2)根据扇形面积公式,利用线段AB扫过的面积=S扇形BOB1﹣S扇形AOA1进行计算即可.【解答】解:(1)如图,点O为所作;(2)线段AB扫过的面积=S扇形BOB1﹣S扇形AOA1=﹣=.故答案为.19.某校为了解“理化生实验操作”考试的备考情况,随机抽取了一部分九年级学生进行测试,测试结果分为“优秀”、“良好”、“合格”、“不合格”四个等级,分别记为A、B、C、D.根据测试结果绘制了如下尚不完整的统计图.(1)本次测试共随机抽取了60 名学生.请根据数据信息补全条形统计图;(2)若该校九年级的600名学生全部参加本次测试,请估计测试成绩等级在合格以上(包括合格)的学生约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据各等级频数=总数×各等级所占百分比即可算出总数;再利用总数减去各等级人数可得A等级人数,再补图即可;(2)利用样本估计总体的方法,用总人数600乘以样本中测试成绩等级在合格以上(包括合格)的学生所占百分比即可.【解答】解:(1)本次测试随机抽取的学生总数:24÷40%=60,A等级人数:60﹣24﹣4﹣2=30,如图所示;(2)600××100%=580(人),答:测试成绩等级在合格以上(包括合格)的学生约有580人.20.妈妈买回6个粽子,其中1个花生馅,2个肉馅,3个枣馅.从外表看,6个粽子完全一样,女儿有事先吃.(1)若女儿只吃一个粽子,则她吃到肉馅的概率是;(2)若女儿只吃两个粽子,求她吃到一个枣馅、一个肉馅的概率.【考点】列表法与树状图法.【分析】(1)运用古典概率,有六种相等可能的结果,出现鲜肉馅粽子有两种结果,根据概率公式,即可求解;(2)此题可以认为有两步完成,所以可以采用树状图法或者采用列表法;注意题目属于不放回实验,利用列表法即可求解.【解答】解:(1)她吃到肉馅的概率是=;故答案为:;(2)如图所示:根据树状图可得,一共有15种等可能的情况,吃两个粽子,一个枣馅、一个肉馅只有5种情况,所以她吃到一个枣馅、一个肉馅的概率==.21.某市在道路改造过程中,需要铺设一条为2000米的管道,决定由甲、乙两个工程队来完成这一工程,已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设600米所用的天数与乙工程队铺设500米所用的天数相同,甲、乙工程队每天各能铺设多少米?【考点】分式方程的应用.【分析】设乙工程队每天铺设x米,则甲工程队每天铺设(x+20)米,根据甲工程队铺设600米所用的天数与乙工程队铺设500米所用的天数相同建立方程求出其解即可【解答】解:设乙工程队每天铺设x米,则甲工程队每天铺设(x+20)米,由题意,得,解得:x=100.经检验,x=100是原方程的解.则甲工程队每天铺设100+20=120米.答:乙工程队每天铺设100米,则甲工程队每天铺设120米.22.如图,正方形ABCD中,E为对角线AC上一点,连结EB、ED,延长BE交AD于点F.(1)求证:∠BEC=∠DEC;(2)当CE=CD时,求证:DF2=FE•FB.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)利用正方形的性质,根据SAS即可证得:△BEC≌△DEC,得出对应角相等即可;(2)首先证明△FDE∽△FBD,根据相似三角形的对应边的比相等,即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCE=∠DCE,在△BEC和△DEC中,,∴△BEC≌△DEC(SAS),∴∠BEC=∠DEC.(2)证明:连接BD,如图所示.∵CE=CD,∴∠DEC=∠EDC.∵∠BEC=∠DEC,∠BEC=∠AEF,∴∠EDC=∠AEF.∵∠AEF+∠FED=∠EDC+∠ECD,∴∠FED=∠ECD.∵四边形ABCD是正方形,∴∠ECD=∠BCD=45°,∠ADB=∠ADC=45°,∴∠ECD=∠ADB.∴∠FED=∠ADB.又∵∠BFD是公共角,∴△FDE∽△FBD,∴,∴DF2=FE•BF.23.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).【考点】解直角三角形的应用﹣坡度坡角问题.【分析】过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,分别求出DF、BF的长度,在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.【解答】解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==,∵BD=6,∴DF=3,BF=3,∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=3,CF=BE=CD﹣DF=1,在Rt△ACE中,∠ACE=45°,∴AE=CE=3,∴AB=3+1.答:铁塔AB的高为(3+1)m.24.在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过A(﹣3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,点Q是CA边上一个动点.(1)求该抛物线的解析式;(2)若点M为抛物线的对称轴上一个动点,求点M的坐标使MQ+MA的值最小.【考点】轴对称﹣最短路线问题;待定系数法求二次函数解析式.【分析】(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式;(2)设抛物线对称轴于x轴交点为N,过点B作BQ⊥AC于点Q,交抛物线对称轴于点M,此时MQ+MA的值最小.根据角的计算找出∠MBN=∠ACO,∠COA=∠BNM=90°,从而得出△COA∽△BNM,再根据相似三角形的性质结合点A、B、C的坐标即可得出点M的坐标.【解答】解:(1)将点A(﹣3,0)、B(4,0)代入y=ax2+bx+4中,得,解得:,∴该抛物线的解析式为y=﹣x2+x+4.(2)设抛物线对称轴于x轴交点为N,过点B作BQ⊥AC于点Q,交抛物线对称轴于点M,此时MQ+MA的值最小,如图所示.令y=﹣x2+x+4中x=0,则y=4,∴点C(0,4),∵A(﹣3,0),B(4,0),∴AC=5,AO=3,CO=4,BN=AB=,ON=OB﹣BN=.∵∠CAO=∠BAC,∠ACO+∠CAO=90°,∠MBN+∠BAC=90°,∴∠MBN=∠ACO,∵∠COA=∠BNM=90°,∴△COA∽△BNM,∴,∴MN=,∴点M(,).故当点M的坐标为(,)时,MQ+MA的值最小.25.【发现】如图1∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图1①)【思考】如图1②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?图中卡通人证明了D不在⊙O外,请你画图证明点D也不在⊙O内.【应用】:利用【发现】和【思考】中的结论解决以下问题:如图2,在Rt△ACB中,∠ACB=90°,CA=6,,若将△ACB绕点A顺时针旋转得Rt△AC′B′,旋转角为α(0°≤α≤180°)连结CC′交BB′于点F,交AB边于点O.(1)请证明:∠BFO=∠CAO.(2)若CA=CO=6,求则OF的长.(3)在运动过程中,请证明F永远是BB′的中点,并直接写出点F的运动路线长.【考点】圆的综合题.【分析】【思考】假设点D在⊙O内,利用圆周角定理及三角形外角的性质,可证得与条件相矛盾的结论,从而证得点D不在⊙O内;【应用】:(1)过C作CD⊥AB于点D,BH⊥CF于H,由已知条件得到AD=DO,解直角三角形得到AD=AC=2,得到BO=AB﹣AO=18﹣4=14,根据旋转的性质得到AC=AC′,AB=AB′,∠CAC′=∠BAB′,推出A,F,B,C四点共圆,于是得到结论;(2)由等腰三角形的性质得到∠COA=∠CAO,根据三角形的内角和得到∠BOF=∠BFO,根据等腰三角形的性质得到BF=BO=14,于是得到结论;(3)连接AF,根据圆周角定理得到∠ABC=∠AFC根据等腰三角形的性质得到F永远是BB′的中点;根据圆周角定理得到在运动过程中,点F的运动路线是以AB为直径的半圆,即可得到结论.【解答】解:【思考】如图1,假设点D在⊙O内,延长AD交⊙O于点E,连接BE,则∠AEB=∠ACB,∵∠ADB是△BDE的外角,∴∠ADB>∠AEB,∴∠ADB>∠ACB,因此,∠ADB>∠ACB这与条件∠ACB=∠ADB矛盾,∴点D也不在⊙O内,∴点D即不在⊙O内,也不在⊙O外,点D在⊙O上;【应用】:(1)如图2,过C作CD⊥AB于点D,BH⊥CF于H,∵CA=CO,∴AD=DO,在Rt△ACB中,cos∠CAB===,∴AB=3AC=18,在Rt△ADC中:cos∠CAB==,∴AD=AC=2,∴AO=2AD=4,∴BO=AB﹣AO=18﹣4=14,∵△AC′B′是由△ACB旋转得到,∴AC=AC′,AB=AB′,∠CAC′=∠BAB′,∵∠ACC′=,∠ABB′=,∴∠ABB′=∠ACC′,∴A,F,B,C四点共圆,∴∠BFO=∠CAO;(2)∵CA=CO,∴∠COA=∠CAO,又∵∠COA=∠BOF(对顶角相等),∴∠BOF=∠BFO,∴BF=BO=14,∵,∴HF=,∴OF=2HF=;(3)如图2,连接AF,∵A,F,B,C四点共圆,∴∠ABC=∠AFC,∵∠ABC+∠CAB=90°,∴∠BFO+∠AFC=90°,∴AF⊥BB′,∵AB=AB′,∴BF=B′F;∴F永远是BB′的中点;∵∠AFB=90°,∴在运动过程中,点F的运动路线是以AB为直径的半圆,∵CA=6,,∴AB=18,∴点F的运动路线长=×18π=9π.26.在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(0,1),B(4,3),则d(A,⊙O)= 1 ,d(B,⊙O)= 3 .②已知直线l:y=与⊙O的密距d(l,⊙O)=,求b的值.(2)如图2,C为x轴正半轴上一点,⊙C的半径为1,直线y=﹣与x轴交于点D,与y轴交于点E,线段DE与⊙C的密距d(DE,⊙C)<.请直接写出圆心C的横坐标m的取值范围.【考点】圆的综合题.【分析】(1)①连接OB,如图1①,只需求出OA、OB就可解决问题;②设直线l:y=与x轴、y轴分别交于点P、Q,过点O作OH⊥PQ于H,设OH 与⊙O交于点G,如图1②,可用面积法求出OH,然后根据条件建立关于b的方程,然后解这个方程就可解决问题;(2)过点C作CN⊥DE于N,如图2.易求出点D、E的坐标,从而可得到OD、OE,然后运用三角函数可求出∠ODE,然后分三种情况(①点C在点D的左边,②点C 与点D重合,③点C在点D的右边)讨论,就可解决问题.【解答】解:(1)①连接OB,过点B作BT⊥x轴于T,如图1①,∵⊙O的半径为2,点A(0,1),∴d(A,⊙O)=2﹣1=1.∵B(4,3),∴OB==5,∴d(B,⊙O)=5﹣2=3.故答案为1,3;②设直线l:y=与x轴、y轴分别交于点P、Q,过点O作OH⊥PQ于H,设OH 与⊙O交于点G,如图1②,∴P(﹣b,0),Q(0,b),∴OP=|b|,OQ=|b|,∴PQ=|b|.∵S△OPQ=OP•OQ=PQ•OH,∴OH==|b|.∵直线l:y=与⊙O的密距d(l,⊙O)=,∴|b|=2+=,∴b=±4;(2)过点C作CN⊥DE于N,如图2.∵点D、E分别是直线y=﹣与x轴、y轴的交点,∴D(4,0),E(0,),∴OD=4,OE=,∴tan∠ODE==,∴∠ODE=30°.①当点C在点D左边时,m<4.∵xC=m,∴CD=4﹣m,∴CN=CD•sin∠CDN=(4﹣m)=2﹣m.∵线段DE与⊙C的密距d(DE,⊙C)<,∴0<2﹣m<+1,∴1<m<4;②当点C与点D重合时,m=4.此时d(DE,⊙C)=0.③当点C在点D的右边时,m>4.∵线段DE与⊙C的密距d(DE,⊙C)<,∴CD<,∴m﹣4<+1,∴m<∴4<m<.综上所述:1<m<.。

2020年江苏省南京市中考数学二模试卷含答案

2020年江苏省南京市中考数学二模试卷含答案
第 4 页,共 19 页
23. 如图,港口 B 位于港口 A 的南偏西 45°方向,灯塔 C 恰好在 AB 的中点处.一艘海 轮位于港口 A 的正南方向,港口 B 的南偏东 45°方向的 D 处,它沿正北方向航行 18.5km 到达 E 处,此时测得灯塔 C 在 E 的南偏西 70°方向上,求 E 处距离港口 A 有多远? (参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
10.【答案】
【解析】解:原式= =.
第 9 页,共 19 页
故答案为 . 先把二次根式化为最简二次根式,然后合并即可. 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次 根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质, 选择恰当的解题途径,往往能事半功倍.
在点 B 的右侧. (1)求 x 的取值范围; (2)当 AB=2BC 时,x 的值为______.
19. 某校 1200 名学生发起向贫困山区学生捐款活动,为了解捐款情况,学生会随机抽 取了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②.
请根据以上信息,解答下列问题: (1)本次抽样调查的样本容量为______; (2)图①中“20 元”对应扇形的圆心角的度数为______°; (3)估计该校本次活动捐款金额为 15 元以上(含 15 元)的学生人数.
16. 如图,正方形 ABCD 与正方形 CEFG,E 是 AD 的中点,若 AB=2,则点 B 与点 F 之间的距离为______.
三、计算题(本大题共 1 小题,共 7.0 分) 17. 计算(x+ +2)÷(x- ).
第 2 页,共 19 页
四、解答题(本大题共 10 小题,共 81.0 分) 18. 如图,在数轴上点 A、B、C 分别表示-1、-2x+3、xƣ 页

2020年江苏省南京市中考数学二模试卷

2020年江苏省南京市中考数学二模试卷

2020年江苏省南京市中考数学二模试卷一、单选题1.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( ) A .1-B .0C .1D .不存在2.已知点2(1,1)P m -+与点Q 关于原点对称,则点Q 一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.若不等式组12x x k<⎧⎨>⎩有解,则k 的取值范围是( )A .2k <B .2kC .1k <D .12k <4.如图,二次函数2y ax bx c =++的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①0a <,0b >,0c <;②当2x =时,y 的值等于1;③当3x >时,y 的值小于0.正确的是( )A .①②B .①③C .②③D .①②③5.计算99399-的结果更接近( ) A .999B .989C .969D .3396.如图,点P 是O 外任意一点,PM 、PN 分别是O 的切线,M 、N 是切点.设OP 与O 交于点K .则点K 是PMN ∆的( )A .三条高线的交点B .三条中线的交点C .三个角的角平分线的交点D .三条边的垂直平分线的交点二、填空题7.8-的立方根是 . 8.计算:232()x y-= .9.因式分解:32a ab -= .10.如图,O 的半径为2,点A ,B 在O 上,90AOB ∠=︒,则阴影部分的面积为 .11.直线12y x =与双曲线k y x =在第一象限的交点为(,1)a ,则k = .12.已知方程230x mx m --=的两根是1x 、2x ,若121x x +=,则12x x = .13.如图,若正方形EFGH 由正方形ABCD 绕图中某点顺时针旋转90︒得到,则旋转中心应该是 点.14.如图,在四边形ABCD 中,//AD BC ,2AD =,22AB =,以点A 为圆心,AD 为半径的圆与BC 相切于点E ,交AB 于点F ,则DF 的长为 .15.平面直角坐标系中,原点O 关于直线443y x =-+对称点1O 的坐标是 .16.定点O 、P 的距离是5,以点O 为圆心,一定的长为半径画圆O ,过点P 作O 的两条切线,切点分别是B 、C ,则线段BC 的最大值是 . 三、解答题17.先化简,再求值:22212212x x xxx x x--+÷-+-,其中3x=.18.(1)解不等式1132x x--,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x a只有3个负整数解,则a的取值范围是.19.一个不透明箱子中有2个红球,1个黑球和1个白球,四个小球的形状、大小完全相同.(1)从中随机摸取1个球,则摸到黑球的概率为.(2)小明和小贝做摸球游戏,游戏规则如下.游戏规则让小明先从箱子中随机摸取个小球,记下颜色后放回箱子,摇匀后再让小贝随机摸取一个小球,记下颜色,若两人所摸小球的颜色相同,则小明胜:反之,则小贝胜你认为这个游戏公平吗?请说明理由.20.某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?21.如图,等腰三角形ABC中,AB AC=.(1)用尺规作出圆心在直线BC上,且过A、C两点的O;(注:保留作图痕迹,标出点O,并写出作法)(2)若30B∠=︒,求证:AB与(1)中所作O相切.22.现在正是草莓热销的季节,某水果零售商店分两批次从批发市场共购进草莓40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元.(1)设第一、二次购进草莓的箱数分别为a箱、b箱,求a,b的值;(2)若商店对这40箱草莓先按每箱60元销售了x箱,其余的按每箱35元全部售完.①求商店销售完全部草莓所获利润y (元)与x (箱)之间的函数关系式; ②当x 的值至少为多少时,商店才不会亏本. (注:按整箱出售,利润=销售总收入-进货总成本)23.某长方体包装盒的表面积为2146cm ,其展开图如图所示.求这个包装盒的体积.24.如图,已知30ABM ∠=︒,20AB =,C 是射线BM 上一点.(1)在下列条件中,可以唯一确定BC 长的是 ;(填写所有符合条件的序号)①13AC =;②12tan 5ACB ∠=;③ABC ∆的面积为126. (2)在(1)的答案中,选择一个作为条件,画出示意图,求BC 的长.25.某商场经市场调查,发现进价为40元的某童装每月的销售量y (件)与售价x (元)的相关信息如下: 售价x (元) 60 70 80 90 ⋯ 销售量y (件)280260240220⋯(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是 (填一次函数、反比例函数或二次函数),求这个函数关系式; (2)售价为多少元时,当月的利润最大?最大利润是多少?26.(1)如图①,在矩形ABCD 中,4AB =,10AD =,在BC 边上是否存在点P ,使90APD ∠=︒,若存在,请用直尺和圆规作出点P 并求出BP 的长.(保留作图痕迹) (2)如图②,在ABC ∆中,60ABC ∠=︒,12BC =,AD 是BC 边上的高,E 、F 分别为AB ,AC 的中点,当6AD =时,BC 边上是否存在一点Q ,使90EQF ∠=︒,求此时BQ 的长.27.如图,在Rt ABC ∆中,90ACB ∠=︒,8CA =,6CB =,动点P 从C 出发沿CA 方向,以每秒1个单位长度的速度向A 点匀速运动,到达A 点后立即以原来速度沿AC 返回;同时动点Q 从点A 出发沿AB 以每秒1个单位长度向点B 匀速运动,当Q 到达B 时,P 、Q 两点同时停止运动.设P 、Q 运动的时间为t 秒(0)t >.(1)当t 为何值时,//PQ CB ?(2)在点P 从C 向A 运动的过程中,在CB 上是否存在点E 使CEP ∆与PQA ∆全等?若存在,求出CE 的长;若不存在,请说明理由;(3)伴随着P 、Q 两点的运动,线段PQ 的垂直平分线DF 交PQ 于点D ,交折线QB BC CP --于点F .当DF 经过点C 时,求出t 的值.2020年江苏省南京市中考数学二模试卷参考答案与试题解析一、单选题1.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( ) A .1-B .0C .1D .不存在【分析】先根据自然数,整数,有理数的概念分析出a ,b ,c 的值,再进行计算. 【解答】解:最小的自然数是0,最大的负整数是1-,绝对值最小的有理数是0, 0(1)01a b c ∴++=+-+=-.故选:A .【点评】此题的关键是知道最小的自然数是0,最大的负整数是1-,绝对值最小的有理数是0.2.已知点2(1,1)P m -+与点Q 关于原点对称,则点Q 一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据关于原点对称,横纵坐标都互为相反数,进行计算即可. 【解答】解:点2(1,1)P m -+与点Q 关于原点对称,2(1,1)Q m ∴--,∴点Q 一定在第四象限,故选:D .【点评】本题考查了关于原点对称,掌握关于原点对称,横纵坐标都互为相反数是解题的关键.3.若不等式组12x x k <⎧⎨>⎩有解,则k 的取值范围是( )A .2k <B .2kC .1k <D .12k <【分析】根据不等式组的解集为两个不等式解集的公共部分,所以在有解的情况下,k 的值必须小于2.【解答】解:因为不等式组12x x k <⎧⎨>⎩有解,根据口诀可知k 只要小于2即可.故选:A .【点评】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是2x >,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.4.如图,二次函数2y ax bx c =++的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①0a <,0b >,0c <;②当2x =时,y 的值等于1;③当3x >时,y 的值小于0.正确的是( )A .①②B .①③C .②③D .①②③【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【解答】解:①如图所示,抛物线开口方向向下,则0a <. 对称轴在y 轴的右侧,则a 、b 异号,即0b >. 抛物线与y 轴交于负半轴,则0b <. 综上所述,0a <,0b >,0c <. 故①正确;②抛物线与x 轴另一交点横坐标01x <<,∴抛物线的顶点横坐标322x <<. 抛物线开口向下,且过点(1,1),∴点(1,1)关于对称轴对称的点的横坐标大于2, ∴当2x =时,y 的值大于1,故②错误;③观察函数图象,可知:当3x >时,y 的值小于0,故③正确; 故选:B .【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,观察函数图象,逐一分析四个选项的正误是解题的关键. 5.计算99399-的结果更接近( ) A .999B .989C .969D .339【分析】根据因式分解解答即可. 【解答】解:99339699999(91)9-=-≈, 故选:A .【点评】此题考查因式分解,关键是根据提公因式法解答.6.如图,点P 是O 外任意一点,PM 、PN 分别是O 的切线,M 、N 是切点.设OP 与O 交于点K .则点K 是PMN ∆的( )A .三条高线的交点B .三条中线的交点C .三个角的角平分线的交点D .三条边的垂直平分线的交点【分析】连接OM 、ON 、MK 、NK ,根据切线长定理得出PM PN =,易证得POM PON ∆≅∆,得出OP 是MPN ∠的平分线,然后根据圆周角定理证得12PMK MOK ∠=∠,12PNK NOK ∠=∠,12NMK NOK ∠=∠,12MNK MOK ∠=∠,即可证得PMK NMK PNK MNK ∠=∠=∠=∠,从而证得结论. 【解答】解:连接OM 、ON 、MK 、NK ,PM 、PN 分别是O 的切线,PM PN ∴=,PMN PNM ∴∠=∠,OM ON =易证POM PON ∆≅∆, OP ∴是MPN ∠的平分线,由圆周角定理可得12PMK MOK ∠=∠,12PNK NOK ∠=∠,12NMK NOK ∠=∠,12MNK MOK ∠=∠,PMK NMK PNK MNK ∴∠=∠=∠=∠,∴点K 是PMN ∆的三个角的角平分线的交点,故选:C .【点评】本题考查了切线的性质,三角形全等的判定和性质,圆周角定理的应用等,熟练掌握性质定理是解题的关键. 二、填空题7.8-的立方根是 2- .【分析】利用立方根的定义即可求解. 【解答】解:3(2)8-=-, 8∴-的立方根是2-.故答案为:2-.【点评】本题主要考查了立方根的概念.如果一个数x 的立方等于a ,即x 的三次方等于3()a x a =,那么这个数x 就叫做a 的立方根,也叫做三次方根.读作“三次根号a ”其中,a 叫做被开方数,3叫做根指数.8.计算:232()x y -= 638x y- .【分析】直接利用积的乘方运算法则计算得出答案. 【解答】解:263328()x x y y -=-.故答案为:638x y-.【点评】此题主要考查了分式的乘除运算,正确掌握运算法则是解题关键. 9.因式分解:32a ab -= ()()a a b a b +- .【分析】观察原式32a ab -,找到公因式a ,提出公因式后发现22a b -是平方差公式,利用平方差公式继续分解可得.【解答】解:3222()()()a ab a a b a a b a b -=-=+-.【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式. 本题考点:因式分解(提取公因式法、应用公式法).10.如图,O 的半径为2,点A ,B 在O 上,90AOB ∠=︒,则阴影部分的面积为 2π- .【分析】根据90AOB ∠=︒,OA OB =可知OAB ∆是等腰直角三角形,根据OAB OAB S S S ∆=-阴影扇形即可得出结论. 【解答】解:90AOB ∠=︒,OA OB =, OAB ∴∆是等腰直角三角形. 2OA =,290212223602OABOAB S S S ππ∆⋅∴=-=-⨯⨯=-阴影扇形.故答案为2π-.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键. 11.直线12y x =与双曲线k y x =在第一象限的交点为(,1)a ,则k = 2 .【分析】先把(,1)a 代入12y x =中求出a 得到交点坐标,然后把交点坐标代入k y x =中可求出k 的值.【解答】解:把(,1)a 代入12y x =得112a =,解得2a =,把(2,1)代入ky x=得212a =⨯=. 故答案为2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.12.已知方程230x mx m --=的两根是1x 、2x ,若121x x +=,则12x x = 3- . 【分析】根据根与系数的关系结合121x x +=,可求出m 的值,再将其代入123x x m =-中即可求出结论.【解答】解:方程230x mx m --=的两根是1x 、2x , 12x x m ∴+=,123x x m =-,又121x x +=,1m ∴=,1233x x m ∴=-=-.故答案为:3-.【点评】本题考查了根与系数的关系,牢记两根之和等于b a -、两根之积等于ca是解题的关键.13.如图,若正方形EFGH 由正方形ABCD 绕图中某点顺时针旋转90︒得到,则旋转中心应该是 M 点.【分析】根据以M 为旋转中心,把正方形ABCD 顺时针旋转90︒解答即可.【解答】解:若以M 为旋转中心,把正方形ABCD 顺时针旋转90︒,A 点对应点为H ,B 点对应点为E ,C 点对应点为F ,D 点对应点为G ,则可得到正方形EFGH . 故答案为:M【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形的性质.14.如图,在四边形ABCD 中,//AD BC ,2AD =,22AB =A 为圆心,AD 为半径的圆与BC 相切于点E ,交AB 于点F ,则DF 的长为32π.【分析】连接AE ,根据圆的切线的性质可得AE BC ⊥,解Rt AEB ∆可求出ABE ∠,进而得到DAB ∠,然后运用弧长公式就可求出DF 的长度. 【解答】解:连接AE ,如图,AD 为半径的圆与BC 相切于点E ,AE BC ∴⊥,2AE AD ==.在Rt AEB ∆中, 22sin 222AE ABE AB ∠===, 45ABE ∴∠=︒. //AD BC ,180DAB ABE ∴∠+∠=︒, 135DAB ∴∠=︒,∴DF 的长度为135231802ππ⨯=; 故答案为:32π.【点评】本题考查了切线的性质、平行线的性质和等腰直角三角形的判定、特殊三角函数值,熟练掌握圆的切线垂直于过切点的半径和同圆的半径相等是关键.15.平面直角坐标系中,原点O 关于直线443y x =-+对称点1O 的坐标是 96(25,72)25 .【分析】由直线的解析式求得A 、B 的坐标,设1O O 与直线443y x =-+的交点为D ,作1O E x ⊥轴于E ,根据题意1OO AB ⊥,根据三角形面积公式求得OD 的长,即可求得1OO 的长,然后通过三角形相似求得OE 的长,进一步根据勾股定理求得1O E 的长,即可求得对称点1O 的坐标.【解答】解:如图,原点O 关于直线443y x =-+对称点1O ,1OO AB ∴⊥,设1O O 与直线443y x =-+的交点为D ,作1O E x ⊥轴于E ,由直线443y x =-+可知(3,0)A ,(0,4)B ,3OA ∴=,4OB =, 5AB ∴=,1122AOB S OA OB AB OD ∆==,125OA OB OD AB ∴==, 1245OO ∴=, 190ADO O EO ∠=∠=︒,1AOD EOO ∠=∠,AOD ∴∆∽△1O OE ,∴1OO OEOA OD=,即2451235OE =,9625OE ∴=, 17225O E ∴, ∴点1O 的坐标是96(25,72)25, 故答案为96(25,72)25.【点评】本题考查了坐标和图形变化-对称,三角形相似的判定和性质,勾股定理的应用等,求得直线与坐标轴的交点是解题的关键.16.定点O 、P 的距离是5,以点O 为圆心,一定的长为半径画圆O ,过点P 作O 的两条切线,切点分别是B 、C ,则线段BC 的最大值是 5 .【分析】首先说明点C 、B 在以OP 为直径的圆上,根据直径是圆中最长的弦,即可解决问题.【解答】解:PC 、PB 是O 的切线, 90PCO PBO ∴∠=∠=︒,∴点C 、B 在以OP 为直径的圆上,BC 是这个圆的弦,∴当5BC OP ==时,BC 的值最大(直径是圆中最长的弦).故答案为5.【点评】本题考查切线的性质、直径的性质等知识,解题的关键是学会添加辅助圆解决问题,属于中考常考题型. 三、解答题17.先化简,再求值:22212212x x xx x x x --+÷-+-,其中3x =. 【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,将x 的值代入计算即可求出值. 【解答】解:原式2(1)(1)(2)1121(1)211x x x x x xx x x x x +--+=+=+=----,当3x =时,原式4633131==--.【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.18.(1)解不等式1132x x --,并把它的解集在数轴上表示出来; (2)若关于x 的一元一次不等式x a 只有3个负整数解,则a 的取值范围是 43a -<- . 【分析】(1)①去分母;②去括号;③移项;④合并同类项;⑤化系数为1,据此解不等式1132x x --,并把它的解集在数轴上表示出来即可. (2)根据关于x 的一元一次不等式x a 的3个负整数解只能是3-、2-、1-,求出a 的取值范围即可.【解答】解:(1)23(1)6x x --,2336x x ∴-+,解得3x -,这个不等式的解集在数轴上表示如下:.(2)关于x 的一元一次不等式x a 只有3个负整数解,∴关于x 的一元一次不等式x a 的3个负整数解只能是3-、2-、1-,a ∴的取值范围是:43a -<-.故答案为:43a -<-.【点评】此题主要考查了一元一次不等式的整数解,要熟练掌握,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.19.一个不透明箱子中有2个红球,1个黑球和1个白球,四个小球的形状、大小完全相同. (1)从中随机摸取1个球,则摸到黑球的概率为14.(2)小明和小贝做摸球游戏,游戏规则如下.游戏规则让小明先从箱子中随机摸取个小球,记下颜色后放回箱子,摇匀后再让小贝随机摸取一个小球,记下颜色,若两人所摸小球的颜色相同,则小明胜:反之,则小贝胜你认为这个游戏公平吗?请说明理由.【分析】(1)依据箱子中有2个红球,1个黑球和1个白球,从中随机摸取1个球,可得摸到黑球的概率为14;(2)共有16种等可能的结果,其中两人所摸小球的颜色相同的有6种,两人所摸小球的颜色不同的有10种,据此可得小贝胜的可能性大,故这个游戏不公平.【解答】解:(1)箱子中有2个红球,1个黑球和1个白球,从中随机摸取1个球,则摸到黑球的概率为14,故答案为:14;(2)画树状图:共有16种等可能的结果,其中两人所摸小球的颜色相同的有6种,两人所摸小球的颜色不同的有10种,∴两人所摸小球的颜色相同的概率为63168=,两人所摸小球的颜色不同的概率为105168=,∴小贝胜的可能性大,∴这个游戏不公平.【点评】此题考查了列表法或树状图法求概率.判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.20.某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?【分析】设甲机器每小时加工零件x个,则乙机器每小时加工零件(36)x-个,根据工作时间=工作总量÷工作效率结合甲加工80个零件与乙加工100个零件的所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲机器每小时加工零件x个,则乙机器每小时加工零件(36)x-个,根据题意得:8010036x x=-,解得:16x=,经检验,16x=是原方程的解,36361620x∴-=-=.答:甲机器每小时加工零件16个,乙机器每小时加工零件20个.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.如图,等腰三角形ABC中,AB AC=.(1)用尺规作出圆心在直线BC上,且过A、C两点的O;(注:保留作图痕迹,标出点O,并写出作法)(2)若30B∠=︒,求证:AB与(1)中所作O相切.【分析】(1)作线段AC的垂直平分线交BC于O,以O为圆心,OC为半径作O即可;(2)只要证明AB OA⊥即可;【解答】(1)解:如图O即为所求.(2)证明:AB AC=,30B C ∴∠=∠=︒OA OC =, 30OAC C ∴∠=∠=︒, 60AOB OAC C ∴∠=∠+∠=︒, 90ABO AOB ∴∠+∠=︒, 90BAO ∴∠=︒, AB OA ∴⊥,AB ∴是O 的切线.【点评】本题考查作图-复杂作图、等腰三角形的性质、切线的判定、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.现在正是草莓热销的季节,某水果零售商店分两批次从批发市场共购进草莓40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元. (1)设第一、二次购进草莓的箱数分别为a 箱、b 箱,求a ,b 的值;(2)若商店对这40箱草莓先按每箱60元销售了x 箱,其余的按每箱35元全部售完. ①求商店销售完全部草莓所获利润y (元)与x (箱)之间的函数关系式; ②当x 的值至少为多少时,商店才不会亏本. (注:按整箱出售,利润=销售总收入-进货总成本)【分析】(1)根据题意可以得到相应的方程组,从而可以解答本题; (2)①根据题意可以得到y 与x 的函数关系式;②由题意可知,若不亏本,则所获取利润不小于0,从而可以解答本题. 【解答】解:(1)由题意可得, 405070040a b a b +=⎧⎨+=⎩, 解得,1030a b =⎧⎨=⎩,即a ,b 的值分别是10,30;(2)①由题意可得,6035(40)1050304025300y x x x =+--⨯-⨯=-,即商店销售完全部草莓所获利润y (元)与x (箱)之间的函数关系式是25300y x =-; ②商店要不亏本,则0y ,253000x ∴-,解得,12x ,答:当x 的值至少为12时,商店才不会亏本.【点评】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想和不等式的性质解答.23.某长方体包装盒的表面积为2146cm ,其展开图如图所示.求这个包装盒的体积.【分析】分别表示出长方体的各侧面面积,进而得出等式求出答案.【解答】解:设高为x cm ,则长为(132)x cm -,宽为1(142)2x cm -.由题意,得11[(132)(142)(142)(132)]214622x x x x x x --+-+-⨯=,解得:12x =,29x =-(舍去),∴长为:9cm ,宽为:5cm .长方体的体积为:395290cm ⨯⨯=,答:这个包装盒的体积为390cm .【点评】此题主要考查了几何体的展开图以及几何体的表面积,正确表示出长方体的侧面积是解题关键.24.如图,已知30ABM ∠=︒,20AB =,C 是射线BM 上一点.(1)在下列条件中,可以唯一确定BC 长的是 ②③ ;(填写所有符合条件的序号)①13AC =;②12tan 5ACB ∠=;③ABC ∆的面积为126. (2)在(1)的答案中,选择一个作为条件,画出示意图,求BC 的长.【分析】(1)根据AC 的长大于点A 到直线的距离可判断①,利用AAS 可判断②,根据平行线间的距离可判断③;(2)②:先求得cos 103BD AB B ==,再求得25tan 6AD CD ACB ==∠即可;③:作CE AB ⊥,根据面积得出12.6CE =,由sin CEBC B=可得答案.【解答】解:(1)①以点A 为圆心、13为半径画圆,与BM 有两个交点,不唯一;②由12tan 5ACB ∠=知ACB ∠的大小确定,在ABC ∆中,ACB ∠、B ∠及AB 确定,此时的三角形唯一;③AB 的长度和三角形的面积均确定,则点C 到AC 的距离即可确定,则BM 上的点C 是唯一的; 故答案为:②③;(2)方案一:选② 作AD BC ⊥于D ,则90ADB ADC ∠=∠=︒. 在Rt ABD ∆中,90ADB ∠=︒,sin 10AD AB B ∴==,cos 103BD AB B == 在Rt ACD ∆中,90ADC ∠=︒,25tan 6AD CD ACB ∴==∠.256BC BD CD ∴=+=. 方案二:选③,作CE AB ⊥于E ,则90BEC ∠=︒. 由12ABC S AB CE ∆=得12.6CE =. 在Rt BEC ∆中,90BEC ∠=︒,25.2sin CEBC B∴==. 【点评】本题主要考查解直角三角形,熟练掌握三角函数的定义是解题的关键. 25.某商场经市场调查,发现进价为40元的某童装每月的销售量y (件)与售价x (元)的相关信息如下:(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是 一次函数 (填一次函数、反比例函数或二次函数),求这个函数关系式; (2)售价为多少元时,当月的利润最大?最大利润是多少?【分析】(1)由x 的值每增加10元时,y 的值均减小20件知这个函数为一次函数,待定系数法求解可得;(2)根据“总利润=单件利润⨯销售量”列出函数解析式,再配方成顶点式依据二次函数的性质是解题的关键.【解答】解:(1)由表可知,x 的值每增加10元时,y 的值均减小20件, 据此可知y 与x 的函数关系为一次函数, 设该一次函数为y k = x b +, 代入(60,280)和(70,260),得:6028070260k b k b +=⎧⎨+=⎩,解得:2400k b =-⎧⎨=⎩,2400y x ∴=-+,将(80,240),(90,220)代入上式等式成立; 故答案为:一次函数.(2)设月利润为w 元,则2(40)(40)(2400)2(120)12800w x y x x x =-=--+=--+,20-<,∴当120x =时,w 有最大值12800,答:当售价定为120元时,利润最大,最大值为12800元.【点评】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式及根据相等关系列出函数解析式是解题的关键.26.(1)如图①,在矩形ABCD 中,4AB =,10AD =,在BC 边上是否存在点P ,使90APD ∠=︒,若存在,请用直尺和圆规作出点P 并求出BP 的长.(保留作图痕迹) (2)如图②,在ABC ∆中,60ABC ∠=︒,12BC =,AD 是BC 边上的高,E 、F 分别为AB ,AC 的中点,当6AD =时,BC 边上是否存在一点Q ,使90EQF ∠=︒,求此时BQ 的长.【分析】(1)以AB 为直径作圆,交BC 于1P ,2P ,点1P 、2P 为所求的点; (2)如图②中,因为EF 分别为AB 、AC 的中点,推出//EF BC ,162EF BC ==,因为6AD =,AD BC ⊥,推出EF 与BC 间距离为3,推出以EF 为直径的O 与BC 相切,推出BC 上符合条件的点Q 只有一个,记O 与BC 相切于点Q ,连接OQ ,过点E 作EG BC ⊥,垂足为G ,想办法求出BQ 即可;【解答】解:(1)如图①所示,点1P 、2P 为所求的点;在矩形ABCD 中,连接1AP 、1DP ,10AD BC ==,4AB CD ==, 设1BP x =,则110PC x =-, 190APD ∠=︒, 1190APB CPD ∴∠+∠=︒, 1190BAP APB ∠+∠=︒, 11BAP CPD ∴∠=∠, 又90B C ∠=∠=︒, 1ABP ∴∆∽△1PCD , ∴11BPAB PC CD =, ∴4104xx =-, 解得:12x =,28x =,BP ∴的长是2或8.(2)如图②中,EF 分别为AB 、AC 的中点, //EF BC ∴,162EF BC ==, 6AD =,AD BC ⊥,EF ∴与BC 间距离为3,∴以EF 为直径的O 与BC 相切,BC ∴上符合条件的点Q 只有一个,记O 与BC 相切于点Q ,连接OQ ,过点E 作EG BC ⊥,垂足为G ,3EG OE ∴==,∴四边形EOQG 为正方形,在Rt EBG ∆中,60B ∠=︒,3EG =, 3BG ∴=,33BQ ∴=+.【点评】本题考查作图-复杂作图、直角三角形斜边中线的性质、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 27.如图,在Rt ABC ∆中,90ACB ∠=︒,8CA =,6CB =,动点P 从C 出发沿CA 方向,以每秒1个单位长度的速度向A 点匀速运动,到达A 点后立即以原来速度沿AC 返回;同时动点Q 从点A 出发沿AB 以每秒1个单位长度向点B 匀速运动,当Q 到达B 时,P 、Q 两点同时停止运动.设P 、Q 运动的时间为t 秒(0)t >.(1)当t 为何值时,//PQ CB ?(2)在点P 从C 向A 运动的过程中,在CB 上是否存在点E 使CEP ∆与PQA ∆全等?若存在,求出CE 的长;若不存在,请说明理由;(3)伴随着P 、Q 两点的运动,线段PQ 的垂直平分线DF 交PQ 于点D ,交折线QB BC CP --于点F .当DF 经过点C 时,求出t 的值.【分析】(1)根据勾股定理求出AB ,根据平行线分线段成比例定理列出比例式,计算即可; (2)根据全等三角形的性质得到90PQA ∠=︒,根据相似三角形的性质求出PE ,根据勾股定理计算;(3)分P 由C 向A 运动和P 由A 向C 运动两种情况,根据线段垂直平分线的性质、相似三角形的性质计算.【解答】解:(1)如图1,CP AQ t ==,则8AP t =-, 在Rt ABC ∆中,由勾股定理可得10AB =, //PQ CB ,∴AP AQAC AB=,即8810t t -=, 解得,409t =, ∴当409t =时,//PQ CB ; (2)存在,如图2,由题意可知CP AQ t ==,又90PCE ∠=︒, 要使CEP ∆与PQA ∆全等,只有90PQA ∠=︒这一种情况, 此时CE PQ =,PE AP =, PQA BCA ∆∆∽,∴AP AQ AB AC =,即8108t t-=,解得,329t =, 则4089PE AP t ==-=, 在Rt PCE ∆中,由勾股定理可得83CE =;(3)①当P 由C 向A 运动时,CQ CP AQ t ===, QCA QAC ∴∠=∠, QCB QBC ∴∠=∠, CQ BQ t ∴==, 12BQ AQ AB ∴==, 即2AB t =, 解得5t =;②如图3,当P 由A 向C 运动时,过Q 作QG CB ⊥交CB 于点G , 16CQ CP t ==-,10BQ t =-,则BQ GQ BA CA =,即10108t GQ-=, 解得,4(10)5GQ t =-,同理可求得3(10)5BG t =-,36(10)5GC t ∴=--,在Rt CGQ ∆中,由勾股定理可得:222CG GQ CQ +=, 即22234[6(10)][(10)](16)55t t t --+-=-,解得10t =,综上可知满足条件的t 的值为5和10.【点评】本题考查的是相似三角形的判定和性质、勾股定理的应用,掌握相似三角形的判定定理和性质定理是解题的关键.。

2020南京市秦淮区中考数学二模试卷含答案

2020南京市秦淮区中考数学二模试卷含答案

将③代入②,得2+2y+y=1.···················································································3 分 23
解这个方程,得 y=0.·····························································································4 分
24.(8 分)已知二次函数 y x2 2mx m2 3 ( m 是常数). (1)求证:不论 m 为何值,该函数的图像与 x 轴没有公共点; (2)把该函数的图像沿 y 轴向下平移________个单位长度后,得到的函数的图像与 x 轴只有一个公共点.
25.(8 分)如图, AB 是 e O 的直径,点 C 、 D 在 e O 上,弧 CD =弧 BD ,过点 D 作 EF⊥AC ,垂直为 E , 交 AB 的延长线于点 F . (1)求证:直线 EF 是 e O 的切线;
7. 2
8.a
12.有一个角是 60°的等腰三 13.矩形
角形是等边三角形
9. 14.110
10.14 15.2 或 4
11.y=-6 x
16.8 5
三、解答题(本大题共 11 小题,共计 88 分)
17.(本题 6 分)
解法一:由①,得 x=2+2y.③·····························································································1 分
将 y=0 代入①,得 x=2.························································································ 5 分

2020年江苏省南京市秦淮区中考数学第二阶段质检试卷(二模) (解析版)

2020年江苏省南京市秦淮区中考数学第二阶段质检试卷(二模) (解析版)

2020年江苏省南京市秦淮区中考数学第二阶段质检试卷(二模)一、选择题(共6小题).1.(2分)的值等于()A.B.﹣C.±D.2.(2分)若圆锥的母线长为4,底面圆的半径为3,那么该圆锥的高是()A.1B.C.5D.73.(2分)数据76,78,80,82,84的方差是()A.2.4B.4C.4.8D.84.(2分)在平面直角坐标系中,将函数y=﹣x2的图象先向右平移1个单位,再向上平移5个单位后,得到的图象的函数表达式是()A.y=﹣(x+1)2+5B.y=﹣(x﹣1)2+5C.y=﹣(x+1)2﹣5D.y=﹣(x﹣1)2﹣55.(2分)若x=﹣1是不等式2x+m≤0的解,则m的值不可能是()A.0B.1C.2D.36.(2分)如图,∠ACD是△ABC的外角,∠BAC=80°,∠ABC和∠ACD的平分线相交于点E,连接AE,则∠CAE的度数是()A.35°B.40°C.50°D.55°二、填空题(共10小题,每小题2分,满分20分)7.(2分)计算×﹣的结果是.8.(2分)计算(﹣a)3÷(﹣a2)的结果是.9.(2分)若分式的值为零,则x=.10.(2分)某校初中女子篮球队共有11名队员,她们的年龄情况如下:年龄/岁12131415人数1334则该篮球队队员年龄的中位数是岁.11.(2分)在平面直角坐标系中,将反比例函数y=的图象沿着x轴折叠,得到的图象的函数表达式是.12.(2分)结合如图,“∵∠B=60°,AB=AC,∴△ABC是等边三角形.”在这个推理过程中所使用的几何定理是.13.(2分)依次连接菱形各边中点所得到的四边形是.14.(2分)如图,将⊙O的内接三角形ABC绕点B顺时针旋转40°后得到△A′BC′,其中点C′恰好落在⊙O上,则∠A的度数是.15.(2分)在半径为2的圆中,弦AB、AC的长度分别是2、2,则弦BC的长度是.16.(2分)如图,过正方形ABCD的中心O的直线分别交DC、AB于点E、F,将该正方形沿直线EF折叠,点A、D分别落在点A′、D′的位置,连接A′C.若AB=8,DE=1,则A′C的长是.三、解答题(共11小题,满分88分)17.(6分)解方程组:.18.(6分)解不等式组:.19.(8分)如图,点E、F分别在▱ABCD的边AB、CD的延长线上,且BE=DF,连接AC、EF、AF、CE,AC与EF交于点O.(1)求证:AC、EF互相平分;(2)若EF平分∠AEC,判断四边形AECF的形状并证明.20.(8分)在一个不透明的袋子中有1个红球,2个白球和若干个黑球.小明将袋子中的球摇匀后,从中任意摸出一个球,记下颜色后放回袋中并摇匀,在多次重复以上操作后,小明统计了摸到红球的频率,并绘制了如折线统计图:(1)袋子中一共有个球;(2)若从该袋中同时摸出2个球,求摸出的2个球都是白球的概率.21.(8分)某水果店购进A、B两种不同产地的苹果,分别花费了540元和500元,其中A种苹果的进货单价比B种苹果的进货单价低10%,A种苹果的进货数量比B种苹果的进货数量多20千克.求A种苹果的进货单价.22.(8分)“科技兴国”.科技企业在社会生产生活中的地位越来越重要.调查某科技企业五年以来的研发成本和年度利润率,将相关数据绘制成统计图和统计表:2015年﹣2019年利润率:年份利润率2015年 6.3%2016年 5.2%2017年 6.7%2018年9.1%2019年17.4%(1)2019年度该企业总成本是亿元;(2)求该企业五年以来的年平均研发成本;(3)根据统计图和统计表中的信息,进行综合分析,写出两个不同类型的结论.23.(10分)如图,某野外生态考察小组早晨7点整从A营地出发,准备前往正东方向的B营地,由于一条南北向河流的阻挡(图中阴影部分),他们需要从C处过桥,经过测量得知,A、B之间的距离为13km,∠A和∠B的度数分别是37°和53°,桥CD的长度是0.5km,图中的区域CDFE近似看做一个矩形区域.(1)求CE的长;(2)该考察小组希望到达B营地的时间不迟于中午12点,则他们的行进速度至少是多少?(结果保留1位小数)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).24.(8分)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?25.(8分)如图,AB是⊙O的直径,点C、D在⊙O上,=,过点D作EF⊥AC,垂足为E,交AB的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若AE=1,∠F=30°,则⊙O半径长为.26.(8分)用充电器给某手机充电时,其屏幕的起始画面如图①.经测试,在用快速充电器和普通充电器对该手机充电时,其电量E(单位:%)与充电时间t(单位:h)的函数图象分别为图②中的线段AB、AC.(1)求线段AB、AC对应的函数表达式;(2)已知该手机正常使用时耗电量为10%/h,在用快速充电器将其充满电后,正常使用ah,接着再用普通充电器将其充满电,其“充电﹣耗电﹣充电”的时间恰好是6h,求a 的值.27.(10分)数学概念如图①,AE是△ABC的角平分线,D是直线BC上一点,如果点D满足DA=DE,那么点D叫做△ABC的边BC上的“阿氏点”.概念理解(1)在图②中,利用直尺和圆规作△ABC的边BC上的“阿氏点”,用字母D表示(不写作法,保留作图痕迹);性质探究(2)在(1)中,求证:△DAB∽△DCA;知识运用(3)如图③,四边形ABCD内接于⊙O,对角线AC、BD相交于点E,以D为圆心,DA为半径的圆恰好经过点C,且与BD交于点F.①求证:点D是△ABE的边BE上的“阿氏点”;②若BE=,DE=2,AE=3,则⊙D和⊙O的半径长分别为,.参考答案一、选择题(共6小题).1.(2分)的值等于()A.B.﹣C.±D.【分析】根据算术平方根解答即可.解:,故选:A.2.(2分)若圆锥的母线长为4,底面圆的半径为3,那么该圆锥的高是()A.1B.C.5D.7【分析】根据圆锥的定义,利用勾股定理即可求出圆锥的高.解:因为圆锥的母线长为4,底面圆的半径为3,根据勾股定理,得圆锥的高是=.故选:B.3.(2分)数据76,78,80,82,84的方差是()A.2.4B.4C.4.8D.8【分析】结合方差公式先求出这组数据的平均数,然后代入公式求出即可.解:平均数为:(76+78+80+82+84)÷5=80,方差为:S2=[(76﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2+(84﹣80)2]=8.故选:D.4.(2分)在平面直角坐标系中,将函数y=﹣x2的图象先向右平移1个单位,再向上平移5个单位后,得到的图象的函数表达式是()A.y=﹣(x+1)2+5B.y=﹣(x﹣1)2+5C.y=﹣(x+1)2﹣5D.y=﹣(x﹣1)2﹣5【分析】根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式形式写出即可.解:∵函数y=﹣x2的图象先向右平移1个单位,再向上平移5个单位,∴平移后的抛物线的顶点坐标为(1,5),∴平移后得到的函数关系式为y=﹣(x﹣1)2+5.故选:B.5.(2分)若x=﹣1是不等式2x+m≤0的解,则m的值不可能是()A.0B.1C.2D.3【分析】解不等式2x+m≤0得x≤﹣,根据x=﹣1是不等式2x+m≤0的解得出﹣1≤﹣,解之可得答案.解:∵2x+m≤0,∴2x≤﹣m,则x≤﹣,∵x=﹣1是不等式2x+m≤0的解,∴﹣1≤﹣,解得m≤2,故选:D.6.(2分)如图,∠ACD是△ABC的外角,∠BAC=80°,∠ABC和∠ACD的平分线相交于点E,连接AE,则∠CAE的度数是()A.35°B.40°C.50°D.55°【分析】根据三角形的外角性质解答即可.解:∵∠BAC=80°,∴∠ABC+∠BCA=180°﹣80°=100°,∴∠BAC的外角=100°,∵∠ABC和∠ACD的平分线相交于点E,∴∠CAE=50°,故选:C.二、填空题(共10小题,每小题2分,满分20分)7.(2分)计算×﹣的结果是.【分析】先利用二次根式的乘法运算,然后化简后合并即可.解:原式=﹣2=3﹣2=.故答案为.8.(2分)计算(﹣a)3÷(﹣a2)的结果是a.【分析】根据幂的乘方法则和同底数幂的除法法则进行计算便可.解:原式=﹣a3÷(﹣a2)=+a3÷a2=a,故答案为a.9.(2分)若分式的值为零,则x=1.【分析】直接利用分式的值为零则分子为零分母不等于0,进而得出答案.解:∵分式的值为零,∴x2﹣x=0且x≠0,解得:x=1.故答案为:1.10.(2分)某校初中女子篮球队共有11名队员,她们的年龄情况如下:年龄/岁12131415人数1334则该篮球队队员年龄的中位数是14岁.【分析】根据中位数的概念求解可得.解:∵一共有11个数据,其中位数为第6个数据,∴这组数据的中位数为14岁,故答案为:14.11.(2分)在平面直角坐标系中,将反比例函数y=的图象沿着x轴折叠,得到的图象的函数表达式是y=﹣.【分析】根据反比例函数的对称性直接回答即可.解:∵反比例函数y=的图象位于一三象限,∴将反比例函数y=的图象沿着x轴折叠后得到的图象位于二四象限,∴得到的图象的函数表达式是y=﹣,故答案为:y=﹣.12.(2分)结合如图,“∵∠B=60°,AB=AC,∴△ABC是等边三角形.”在这个推理过程中所使用的几何定理是有一个角是60°的等腰三角形是等边三角形.【分析】根据等边三角形的判定方法得到答案即可.解:“∵∠B=60°,AB=AC,∴△ABC是等边三角形.”在这个推理过程中所使用的几何定理是:有一个角是60°的等腰三角形是等边三角形,故答案为:有一个角是60°的等腰三角形是等边三角形.13.(2分)依次连接菱形各边中点所得到的四边形是矩形.【分析】连接AC、BD交于O,根据三角形的中位线定理推出EF∥BD∥HG,EH∥AC ∥FG,得出四边形EFGH是平行四边形,根据菱形性质推出AC⊥BD,推出EF⊥EH,即可得出答案.解:连接AC、BD交于O,∵E、F、G、H分别是AB、AD、CD、BC的中点,∴EF∥BD,FG∥AC,HG∥BD,EH∥AC,∴EF∥HG,EH∥FG,∴四边形EFGH是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∵EF∥BD,EH∥AC,∴EF⊥EH,∴∠FEH=90°,∴平行四边形EFGH是矩形,故答案为:矩形.14.(2分)如图,将⊙O的内接三角形ABC绕点B顺时针旋转40°后得到△A′BC′,其中点C′恰好落在⊙O上,则∠A的度数是110°.【分析】连接CC',由旋转的性质可得∠CBC'=40°,BC=BC',由等腰三角形的性质可得∠BC'C=70°,由圆内接四边形的性质可求解.解:如图,连接CC',∵将⊙O的内接三角形ABC绕点B顺时针旋转40°后得到△A′BC′,∴∠CBC'=40°,BC=BC',∴∠BC'C=70°,∵四边形ABC'C是圆内接四边形,∴∠A+∠CC'B=180°,∴∠A=110°,故答案为:110°.15.(2分)在半径为2的圆中,弦AB、AC的长度分别是2、2,则弦BC的长度是2或4.【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.连接OC,OB,∵OE⊥AC,OD⊥AB,∴AE=AC=,AD=AB=1,AE=CE,AD=BD,∴sin∠AOE==,sin∠AOD==,∴∠AOE=60°,∠AOD=30°,∵OC=OA=OB,∴∠AOE=∠COE,∠AOD=∠BOD,当AB,AC在圆心O的异侧时,∠BOC=180°,∴BC是直径,∴BC的长度为4;当AB,AC′在圆心O的同侧时,∠BOC′=120°﹣60°=60°,∵OB=OC′,∴△OBC′是等边三角形,∴BC=OA,∴BC的长度为2;∴弦BC的长度是2或4;故答案为:2或4.16.(2分)如图,过正方形ABCD的中心O的直线分别交DC、AB于点E、F,将该正方形沿直线EF折叠,点A、D分别落在点A′、D′的位置,连接A′C.若AB=8,DE=1,则A′C的长是.【分析】连接AC、BD与EF交于点O,作EM⊥BD于M′,连接OA′,AA′交EF 于N.求出Rt△EMO的三边,由△AA′C∽△OME,可得,即可解决问题.解:连接AC、BD与EF交于点O,作EM⊥BD于M′,连接OA′,AA′交EF于N,∵DE=1,AB=8,∴DM=EM=,OD=4,∴OM=,在Rt△OME中,OE===5,∵OA=OA′=OC,∴∠AA′C=90°,∵∠DOA=90°,∴∠EOM+∠AON=90°,∵∠OAN+∠AON=90°,∴∠EOM=∠CAA′,∵∠AA′C=∠OME,∴△AA′C∽△OME,∴,∴=,∴CA′=.故答案为:.三、解答题(共11小题,满分88分)17.(6分)解方程组:.【分析】可用加减法或代入法求解.解:(法一)由①,得x=2+2y.③将③代入②,得+=1.解这个方程,得y=0.将y=0代入①,得x=2.所以原方程组的解是;(法二)②×6,得3x+2y=6.③①+③,得4x=8.解这个方程,得x=2.将x=2代入①,得y=0.所以原方程组的解是.18.(6分)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:,解不等式①,得x≤1,解不等式②,得x>﹣2,所以不等式组的解集是﹣2<x≤1.19.(8分)如图,点E、F分别在▱ABCD的边AB、CD的延长线上,且BE=DF,连接AC、EF、AF、CE,AC与EF交于点O.(1)求证:AC、EF互相平分;(2)若EF平分∠AEC,判断四边形AECF的形状并证明.【分析】(1)要证明线段AC与EF互相平分,可以把这两条线段作为一个四边形的对角线,然后证明这个四边形是平行四边形即可;(2)要证四边形AECF是菱形,根据一组邻边相等的平行四边形是菱形即可.解:(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.又∵BE=DF,∴AB+BE=DC+DF,即AE=CF.∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.∴AC、EF互相平分.(2)四边形AECF是菱形.证明:∵AB∥DC,∴∠AEO=∠CFO.∵EF平分∠AEC,∴∠AEO=∠CEO.∴∠CEO=∠CFO.∴CE=CF.∵四边形AECF是平行四边形,∴四边形AECF是菱形.20.(8分)在一个不透明的袋子中有1个红球,2个白球和若干个黑球.小明将袋子中的球摇匀后,从中任意摸出一个球,记下颜色后放回袋中并摇匀,在多次重复以上操作后,小明统计了摸到红球的频率,并绘制了如折线统计图:(1)袋子中一共有5个球;(2)若从该袋中同时摸出2个球,求摸出的2个球都是白球的概率.【分析】(1)根据摸到红球的频率,可以得到黑球的个数,进而可得袋子中一共有5个球;(2)根据枚举法即可求摸出的2个球都是白球的概率.解:(1)观察折线统计图可知:摸到红球的频率稳定在0.2,设袋子中有x个黑球,所以=0.2,解得x=2,所以袋子中一共有5个球.故答案为:5;(2)解:将2个白球分别记作“白1”、“白2”,2个黑球分别记作“黑1”、“黑2”.从袋中同时摸出2个球,可能出现的结果有10种,即(红,白1),(红,白2),(红,黑1),(红,黑2),(白1,白2),(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2),(黑1,黑2),并且它们出现的可能性相同.其中2个球都是白球(记为事件A)的结果有1种,即(白1,白2),所以P(A)=.21.(8分)某水果店购进A、B两种不同产地的苹果,分别花费了540元和500元,其中A种苹果的进货单价比B种苹果的进货单价低10%,A种苹果的进货数量比B种苹果的进货数量多20千克.求A种苹果的进货单价.【分析】设B种苹果的进货单价为x元/千克,则A种苹果的进货单价为(1﹣10%)x 元/千克,根据数量=总价÷单价结合用540元购进的A种苹果比用500元购进的B种苹果多20千克,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设B种苹果的进货单价为x元/千克,则A种苹果的进货单价为(1﹣10%)x元/千克,依题意,得:﹣=20,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴(1﹣10%)×5=4.5(元/千克).答:A种苹果的进货单价是4.5元/千克.22.(8分)“科技兴国”.科技企业在社会生产生活中的地位越来越重要.调查某科技企业五年以来的研发成本和年度利润率,将相关数据绘制成统计图和统计表:2015年﹣2019年利润率:年份利润率2015年 6.3%2016年 5.2%2017年 6.7%2018年9.1%2019年17.4%(1)2019年度该企业总成本是17亿元;(2)求该企业五年以来的年平均研发成本;(3)根据统计图和统计表中的信息,进行综合分析,写出两个不同类型的结论.【分析】(1)用2019年研发成本除以研发成本占总成本的百分比可得;(2)根据算术平均数的定义求解可得;(3)本题答案不唯一,合理即可.解:(1)2019年度该企业总成本是5.1÷(1﹣70%)=17(亿元),故答案为:17.(2)(0.5+1.2+2+3.5+5.1)÷5=2.46(亿元).该企业五年以来的年平均研发成本为2.46亿元.(3)①该企业2019年的总成本为17亿元,2019年的利润率是17.4%,所以2019年的利润是17×17.4%=2.958(亿元).②该企业近五年的研发成本分别是0.5亿元、1.2亿元、2亿元、3.5亿元、5.1亿元,年利润率分别是6.3%、5.2%、6.7%、9.1%、17.4%,可以看出增加研发成本短期会使得年利润率下降,但是长期能使得年利润率大幅上升.说明:★两个结论各,但应注意“综合分析”.★静态写实型,直接陈述图中信息的,得0分,例如:“2019年的研发成本为5.1亿元”.★只写出一个结论,对某一组数据进行分析,例如:“5年来研发成本逐年上升”,或者两组数据建立联系的,例如参考答案中的①或②.★两个不同类型结论中,两个都是对某一组数据进行分析,例如:“5年来研发成本逐年上升”和“5年来利润率第一年下降然后逐年上升”.★两个不同类型结论中,有一个类型是对某一组数据进行分析,例如:“5年来利润率第一年下降然后逐年上升”,另一类型是两组数据建立联系的,例如参考答案中的①或②.23.(10分)如图,某野外生态考察小组早晨7点整从A营地出发,准备前往正东方向的B营地,由于一条南北向河流的阻挡(图中阴影部分),他们需要从C处过桥,经过测量得知,A、B之间的距离为13km,∠A和∠B的度数分别是37°和53°,桥CD的长度是0.5km,图中的区域CDFE近似看做一个矩形区域.(1)求CE的长;(2)该考察小组希望到达B营地的时间不迟于中午12点,则他们的行进速度至少是多少?(结果保留1位小数)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).【分析】(1)设CE=DF=x,由题意可知:CD=EF=0.5,根据锐角三角函数的定义即可求出答案.(2)根据路程、速度以及时间之间的等量关系即可求出答案.解:(1)设CE=DF=x,由题意可知:CD=EF=0.5,在Rt△ACE中,∴tan37°=,∴AE=在Rt△DBF中,tan37°=,∴BF=DF•tan37°,∴+0.5+0.75x=13,解得:x=6,即CE=6.(2)由题意可知:行进时间最多5小时,∴行进速度至少为=2.6km/h,答:他们的行进速度至少是2.6km/h24.(8分)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?【分析】(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.【解答】(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.25.(8分)如图,AB是⊙O的直径,点C、D在⊙O上,=,过点D作EF⊥AC,垂足为E,交AB的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若AE=1,∠F=30°,则⊙O半径长为.【分析】(1)连接AD,OD,由=,得∠DAB=∠DAC,根据等腰三角形的性质得到∠DAO=∠ODA,等量代换得到∠DAC=∠ODA,推出AE∥OD,于是得到结论;(2)设⊙O的半径为r,根据30度角所对直角边等于斜边一半即可得到结论.解:(1)证明:连接OD,AD.∵=,∴∠DAB=∠DAC,∵EF⊥AC,∴∠E=90°.在⊙O中,∵OA=OD,∴∠DAO=∠ODA,∴∠ODA=∠DAC,∴OD∥AE,∴∠ODF=∠E=90°,即OD⊥EF,又∵点D在⊙O上,∴直线EF是⊙O的切线.(2)在Rt△AEF中,AE=1,∠F=30°,∴AF=2AE=2,在Rt△ODF中,∠F=30°,∴OF=2OD,∴OB=BF=OD=AF=.则⊙O半径长为.故答案为:.26.(8分)用充电器给某手机充电时,其屏幕的起始画面如图①.经测试,在用快速充电器和普通充电器对该手机充电时,其电量E(单位:%)与充电时间t(单位:h)的函数图象分别为图②中的线段AB、AC.(1)求线段AB、AC对应的函数表达式;(2)已知该手机正常使用时耗电量为10%/h,在用快速充电器将其充满电后,正常使用ah,接着再用普通充电器将其充满电,其“充电﹣耗电﹣充电”的时间恰好是6h,求a 的值.【分析】(1)利用待定系数法可求解析式;(2)由“充电﹣耗电﹣充电”的时间恰好是6h,列出方程可求解.解:(1)设线段AB的函数表达式为E1=k1t+b1,将(0,20),(2,100)代入E1=k1t+b1,可得,∴线段AB的函数表达式为:E1=40t+20;设线段AC的函数表达式为E2=k2t+b2,将(0,20),(6,100)代入E2=k2t+b2,可得,∴线段AC的函数表达式为:E2=t+20;(2)根据题意,得×(6﹣2﹣a)=10a,解得a=.答:a的值为.27.(10分)数学概念如图①,AE是△ABC的角平分线,D是直线BC上一点,如果点D满足DA=DE,那么点D叫做△ABC的边BC上的“阿氏点”.概念理解(1)在图②中,利用直尺和圆规作△ABC的边BC上的“阿氏点”,用字母D表示(不写作法,保留作图痕迹);性质探究(2)在(1)中,求证:△DAB∽△DCA;知识运用(3)如图③,四边形ABCD内接于⊙O,对角线AC、BD相交于点E,以D为圆心,DA为半径的圆恰好经过点C,且与BD交于点F.①求证:点D是△ABE的边BE上的“阿氏点”;②若BE=,DE=2,AE=3,则⊙D和⊙O的半径长分别为3,.【分析】(1)如图1,先作∠BAC的平分线AE,交BC于点E,再作AE的垂直平分线交直线BC于点D,则点D即为所求;(2)如图2,连接AD,证明∠DAC=∠B,由公共角∠ADC=∠ADC,可得结论;(3)①如图3,连接AF,先证明AF平分∠BAC,根据AD=DF和阿氏点的定义可得结论;②如图4,由等腰三角形的判定得BC的长,根据相似三角形,列比例式计算AD和CE 的长,连接OC,OD,设⊙O的半径为r,根据勾股定理列方程可解答.【解答】(1)解:如图1,点D即为所求.(2)证明:如图2,连接AD,∵AE平分∠BAC,∴∠BAE=∠CAE.∵DA=DE,∴∠DAE=∠DEA.∵∠B=∠DEA﹣∠BAE,∠DAC=∠DAE﹣∠CAE,∴∠B=∠DAC,又∵∠ADC=∠ADC,∴△DAB∽△DCA;(3)①证明:如图3,连接AF,在⊙D中,∵DA=DF,∴∠DAF=∠DFA,在⊙O中,∵DA=DC,∴∠DAC=∠DCA,∵∠DCA=∠DBA,∴∠DAC=∠DBA,∵∠BAF=∠DFA﹣∠DBA,∠CAF=∠DAF﹣∠DAC,∴∠BAF=∠CAF,即AF是△ABE的角平分线,又∵DA=DF,∴点D是△ABE的边BE上的“阿氏点”;②如图4,∵∠EAD=∠DBA,∠ADE=∠ADB,∴△AED∽△BAD,∴,∴AD2=ED•BD=2×(+2)=9,∵AD>0,∴AD=3,即⊙D的半径为3,∵CD=AD,∴CD=3,∵AE=AD=3,∴∠AED=∠ADE=∠BEC=∠BCE,∴BC=BE=,同理得:△CED∽△BCD,∴,即,∴CE=,∴AC=AE+CE=+3=,连接OD,OC,OD交AC于点M,∵AD=CD,∴OD⊥AC,∴CM=AC=,∴DM==,Rt△OCM中,OC2=OM2+CM2,设OC=r,则r2=(r﹣)2+()2,解得:r=,即⊙O的半径为,故答案为:3,.。

2020-2021学年江苏省南京市中考数学二模试卷及答案解析

2020-2021学年江苏省南京市中考数学二模试卷及答案解析

江苏省南京市中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.在下列实数中,无理数是()A.sin45°B.C.0.3 D.3.142.计算(2a2)3的结果是()A.2a5B.2a6C.6a6D.8a63.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是()分数50 60 70 80 90 100人数1 2 8 13 14 4A.70,80 B.70,90 C.80,90 D.90,1004.如图,一个由5个大小相同、棱长为1的正方体搭成的几何体,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为5 D.俯视图的面积为35.如图,四边形ABCD内接于⊙O,∠A=100°,则劣弧的度数是()A.80°B.100°C.130°D.160°6.如图,在平面直角坐标系xOy中,函数y=x的图象为直线l,作点A1(1,0)关于直线l的对称点A2,将A2向右平移2个单位得到点A3;再作A3关于直线l的对称点A4,将A4向右平移2个单位得到点A5;….则按此规律,所作出的点A2015的坐标为()A.(1007,1008)B.(1008,1007)C.(1006,1007)D.(1007,1006)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.﹣3的倒数是,﹣3的绝对值是.8.使式子1+有意义的x的取值范围是.9.分解因式:4a2﹣16= .10.计算(﹣)×= .11.改写命题“对角线互相平分的四边形是平行四边形”:如果,那么.12.如图,在直角坐标系中,点A、B、C的坐标分别为(0,3)、(4,3)、(0,﹣1),则△ABC外接圆的圆心坐标为.13.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧的长度为.14.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于点A(﹣1,2)和点B.当y1<y2时,自变量x的取值范围是.15.某剧院举办文艺演出.经调研,如果票价定为每张30元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票就减少20张.要使门票收入达到38500元,票价应定为多少元?若设票价为x元,则可列方程为.16.如图,等边△ABC中,BC=6,D、E分别在BC、AC上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)计算:(﹣2)2+(﹣π)0+|1﹣|;(2)解方程组:.18.化简:(1+)÷.19.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m= ,n= ,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.20.一个不透明的袋中,装有编号为①、②、③、④的四个球,它们除了编号外其余都相同.(1)从袋中任意摸出一个球,摸到编号为奇数的球的概率为;(2)从袋中任意摸出两个球,求摸到的球编号都为奇数的概率.21.如图,矩形ABCD中,对角线AC的垂直平分线交AD、BC于点E、F,AC与EF交于点O,连结AF、CE.(1)求证:四边形AFCE是菱形;(2)若AB=3,AD=4,求菱形AFCE的边长.22.如图,在一笔直的海岸线上有A、B两个观测点,B在A的正东方向,AB=4km.从A测得灯塔C在北偏东60°的方向,从B测得灯塔C在北偏西27°的方向,求灯塔C与观测点A的距离(精确到0.1km).(参考数据:sin27°≈0.45,cos27°≈0.90,tan27°≈0.50,≈1.73)23.从南京到某市可乘坐普通列车,行驶路程是520千米;也可乘坐高铁,行驶路程是400千米.已知高铁的平均速度是普通列车平均速度的2.5倍,且从南京到该市乘坐高铁比乘坐普通列车要少用3小时.求高铁行驶的平均速度.24.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP 上,且BC=PC.(1)求证:直线BC是⊙O的切线;(2)若OA=3,AB=2,求BP的长.25.已知二次函数y=x2﹣ax﹣2a2(a为常数,且a≠0).(1)证明该二次函数的图象与x轴的正半轴、负半轴各有一个交点;(2)若该二次函数的图象与y轴的交点坐标为(0,﹣2),试求该函数图象的顶点坐标.26.如图①,梯形ABCD中,AD∥BC,∠C=90°,BA=BC.动点E、F同时从点B出发,点E沿折线BA﹣AD﹣DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:(1)AD= cm,BC= cm;(2)求a的值,并用文字说明点N所表示的实际意义;(3)直接写出当自变量t为何值时,函数y的值等于5.27.如图1,对于平面上小于等于90°的∠MON,我们给出如下定义:若点P在∠MON的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON的“点角距”,记作d (∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角为∠xOy.(1)已知点A(5,0)、点B(3,2),则d(∠xOy,A)= ,d(∠xOy,B)= .(2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=5,画出点P运动所形成的图形.(3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=x(x≥0).①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值;②在图4中,抛物线y=﹣x2+2x+经过A(5,0)与点D(3,4)两点,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求当d(∠xOT,Q)取最大值时点Q 的坐标.江苏省南京市中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.在下列实数中,无理数是()A.sin45°B.C.0.3 D.3.14【考点】无理数.【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【解答】解:∵0.3、3.14是有限小数,∴0.3、3.14是有理数;∵,0.是循环小数,∴是有理数;∵sin45°=是无限不循环小数,∴sin45°是无理数.故选:A.【点评】此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.计算(2a2)3的结果是()A.2a5B.2a6C.6a6D.8a6【考点】幂的乘方与积的乘方.【分析】根据即的乘方法则,即可解答.【解答】解:(2a2)3=23•a6=8a6,故选:D.【点评】本题考查了积的乘方,解决本题的关键是熟记积的乘方法则.3.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是()分数50 60 70 80 90 100人数1 2 8 13 14 4A.70,80 B.70,90 C.80,90 D.90,100【考点】众数;中位数.【分析】根据中位数与众数的定义进行解答即可.【解答】解:把这组数据从小到大排列,最中间两个数的平均数是(80+80)÷2=80,则该班学生成绩的中位数是80;90出现了14次,出现的次数最多,则众数是90;故选C.【点评】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.4.如图,一个由5个大小相同、棱长为1的正方体搭成的几何体,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为5 D.俯视图的面积为3【考点】简单组合体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.【解答】解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、从上面看,可以看到4个正方形,面积为4,故D选项错误.故选:B.【点评】本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.5.如图,四边形ABCD内接于⊙O,∠A=100°,则劣弧的度数是()A.80°B.100°C.130°D.160°【考点】圆内接四边形的性质.【分析】先根据圆内接四边形的性质求出∠C的度数,再由圆周角与弧的关系即可得出结论.【解答】解:∵四边形ABCD是圆内接四边形,∠A=100°,∴∠C=180°﹣100°=80°,∴劣弧=160°.故选D.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.6.如图,在平面直角坐标系xOy中,函数y=x的图象为直线l,作点A1(1,0)关于直线l的对称点A2,将A2向右平移2个单位得到点A3;再作A3关于直线l的对称点A4,将A4向右平移2个单位得到点A5;….则按此规律,所作出的点A2015的坐标为()A.(1007,1008)B.(1008,1007)C.(1006,1007)D.(1007,1006)【考点】规律型:点的坐标.【分析】根据对称和平移,可得A1的坐标(1,0),A3的坐标(2,1),A5的坐标(3,2),A7的坐标(4,3),根据观察,发现规律:A点的横坐标是顺序,纵坐标是顺序减1,根据规律,可得答案.【解答】解:由题意可知:A1(1,0),A3(2,1),A5(3,2),A7(4,3),点的横坐标为:=1008,纵坐标为:1007,∴A2015的坐标是:(1008,1007).∴点A2015故选:B.【点评】本题考查了轴对称,利用对称、平移发现规律是解题关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.﹣3的倒数是﹣,﹣3的绝对值是 3 .【考点】倒数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣3的倒数是﹣,﹣3的绝对值是3,故答案为:,3.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.使式子1+有意义的x的取值范围是x≥﹣2 .【考点】二次根式有意义的条件.【分析】根据二次根式的被开方数是非负数,即可解答.【解答】解:根据题意,得x+2≥0,解得x≥﹣2,故答案为:x≥﹣2.【点评】本题考查了二次根式的意义和性质、概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.分解因式:4a2﹣16= 4(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式4,进而利用平方差公式进行分解即可.【解答】解:4a2﹣16=4(a2﹣4)=4(a+2)(a﹣2).故答案为:4(a+2)(a﹣2).【点评】此题主要考查了提公因式法与公式法的综合运用,熟练掌握公式形式是解题关键.10.计算(﹣)×= 2﹣2 .【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的乘法法则运算.【解答】解:原式=﹣2=2﹣2.故答案为2﹣2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.改写命题“对角线互相平分的四边形是平行四边形”:如果四边形的对角线互相平分,那么这个四边形是平行四边形.【考点】命题与定理.【分析】如果后面应是命题中的条件,那么后面是由条件得到的结论.【解答】解:原命题的条件是:四边形的对角线互相平分,结论是这个四边形是平行四边形;如果四边形的对角线互相平分,那么这个四边形是平行四边形.四边形的对角线互相平分,这个四边形是平行四边形.【点评】本题考查了命题与定理的知识,解决本题的关键是准确找到所给命题的条件和结论.12.如图,在直角坐标系中,点A、B、C的坐标分别为(0,3)、(4,3)、(0,﹣1),则△ABC外接圆的圆心坐标为(2,1).【考点】三角形的外接圆与外心;坐标与图形性质.【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,∵点A、B、C的坐标分别为(0,3)、(4,3)、(0,﹣1),的坐标是(2,1).∴O1故答案为:(2,1).【点评】此题考查了垂径定理的推论以及三角形的外心的性质,利用垂径定理的推论得出是解题关键.13.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧的长度为π.【考点】正多边形和圆.【分析】连接OM,ON,首先根据切线的性质和正五边形的性质求得圆心角的度数,然后利用弧长公式进行计算.【解答】解:如图:连接OM,ON,∵⊙O与正五边形ABCDE的边AB、AE相切于点M、N,∴OM⊥AB,ON⊥AC,∵∠A=108°,∴∠MON=72°,∵半径为1,∴劣弧的长度为:=π,故答案为π.【点评】本题考查了正多边形和圆的知识,解题的关键是能够连接OM和ON,从而求得劣弧所在扇形的圆心角,利用扇形弧长公式求解.14.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于点A(﹣1,2)和点B.当y1<y2时,自变量x的取值范围是﹣1<x<0或x>1 .【考点】反比例函数与一次函数的交点问题.【分析】根据对称性由A的坐标确定出B坐标,根据两点横坐标,利用函数图象即可确定出当y1>y2时的变量x的取值范围.【解答】解:由题意及A(﹣1,2),利用对称性得:B(1,﹣2),根据图象得:当y1>y2时的变量x的取值范围为﹣1﹣1<x<0或x>1.故答案为﹣1<x<0或x>1.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握数形结合思想是解本题的关键.15.某剧院举办文艺演出.经调研,如果票价定为每张30元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票就减少20张.要使门票收入达到38500元,票价应定为多少元?若设票价为x元,则可列方程为x[1200﹣20(x﹣30)]=38500 .【考点】由实际问题抽象出一元二次方程.【专题】销售问题.【分析】可设票价应定为x元,根据票价×销售的票数=获得门票收入,即可列出一元二次方程.【解答】解:设票价应定为x元,依题意有x[1200﹣30(x﹣30)]=38500,故答案为:x[1200﹣20(x﹣30)]=38500.【点评】此题考查一元二次方程的实际运用,找出销售问题中的基本数量关系是解决问题的关键.16.如图,等边△ABC中,BC=6,D、E分别在BC、AC上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为2.【考点】轨迹.【分析】因为MN是三角形EMN的中位线,所以MN∥BD,所以在运动过程中线段MN所扫过的区域为梯形,然后分别求得梯形的上底、下底和高,然后利用公式计算即可.【解答】解:在运动过程中线段MN所扫过的区域面积如图阴影所示:∵MN是△BDE的中位线.∴MN===1,且MN∥BD.同理:M′N′=3,且M′N′∥BD∴四边形MNN′M′为梯形.MG=MB•sin30°=1×=,N′F=N′C•sin30°=3×=.∴梯形MNN′M′的高==.∴梯形MNN′M′的面积=(FN﹣MG)=×=2.故答案为:2.【点评】本题主要考查轨迹的问题,由三角形中位线的性质判断出MN扫过的区域的形状是解题的关键.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)计算:(﹣2)2+(﹣π)0+|1﹣|;(2)解方程组:.【考点】实数的运算;零指数幂;解二元一次方程组.【专题】计算题.【分析】(1)原式第一项利用乘方的意义计算,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)方程组利用加减消元法求出解即可.【解答】解:(1)原式=4+1+﹣1=4+;(2),①×2+②,得5x=5,即x=1,将x=1代入①,得y=﹣1,则原方程组的解为.【点评】此题考查了实数的运算,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.18.化简:(1+)÷.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m= 30 ,n= 20 ,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是90°;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【分析】(1)根据条形图和扇形图确定B组的人数环绕所占的百分比求出样本容量,求出m、n的值;(2)求出C组”所占的百分比,得到所对应的圆心角的度数;(3)求出不合格人数所占的百分比,求出该校本次听写比赛不合格的学生人数.【解答】解:(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20;(2)“C组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.【点评】本题考查的是频数分布表、条形图和扇形图的知识,利用统计图获取正确信息是解题的关键.注意频数、频率和样本容量之间的关系的应用.20.一个不透明的袋中,装有编号为①、②、③、④的四个球,它们除了编号外其余都相同.(1)从袋中任意摸出一个球,摸到编号为奇数的球的概率为;(2)从袋中任意摸出两个球,求摸到的球编号都为奇数的概率.【考点】列表法与树状图法.【分析】(1)用奇数球的个数除以球的总个数即可求得编号为奇数的概率;(2)将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)∵共有4个球,为奇数的有2个,∴P(编号为奇数)==;(2)从袋中任意摸出两个球,有①②、①③、①④、②③、②④,③④共6种可能,且都是等可能的,其中,都为奇数只有①③一种可能,所以摸到的球的编号都为奇数的概率为.【点评】本题考查了概率的求法,能够将所有等可能的结果列举出来是解答本题的关键,难度不大.21.如图,矩形ABCD中,对角线AC的垂直平分线交AD、BC于点E、F,AC与EF交于点O,连结AF、CE.(1)求证:四边形AFCE是菱形;(2)若AB=3,AD=4,求菱形AFCE的边长.【考点】菱形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质;勾股定理;矩形的性质.【分析】(1)由矩形的性质得出AD∥BC,∠EAO=∠FCO,证明△AEO≌△CFO,得出AE=CF,证出四边形AFCE是平行四边形,再由对角线AC⊥EF,即可得出结论;(2)设AF=CF=x,则BF=4﹣x,在Rt△ABF中,根据勾股定理得出方程,解方程即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAO=∠FCO,∵EF是AC的垂直平分线,∴AO=CO,∠EOA=∠FOC=90°,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴AE=CF,∴四边形AFCE是平行四边形,又∵AC⊥EF,∴四边形AFCE是菱形;(2)解:∵四边形AFCE是菱形,∴AF=CF,设AF=CF=x,则BF=4﹣x,在Rt△ABF中,AF2=AB2+BF2,即x2=32+(4﹣x)2,解得x=,∴菱形AFCE的边长为.【点评】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定与性质、勾股定理、线段垂直平分线的性质;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.22.如图,在一笔直的海岸线上有A、B两个观测点,B在A的正东方向,AB=4km.从A测得灯塔C在北偏东60°的方向,从B测得灯塔C在北偏西27°的方向,求灯塔C与观测点A的距离(精确到0.1km).(参考数据:sin27°≈0.45,cos27°≈0.90,tan27°≈0.50,≈1.73)【考点】解直角三角形的应用-方向角问题.【分析】如图,过点C作CD⊥AB,构建直角△ACD和直角△BCD.通过解Rt△BDC得到BD=0.5CD.通过解Rt△ADC得到AD=CD,所以由AB=4km科研求得CD的长度.最后通过解Rt△ADC来求AC的长度.【解答】解:如图,过点C作CD⊥AB,则∠BCD=27°,∠ACD=60°,在Rt△BDC中,由tan∠BCD=,∴BD=CD tan27°=0.5CD.在Rt△ADC中,由tan∠ACD=∴AD=CD•tan60°=CD.∵AD+BD=CD+0.5CD=4,∴CD=.在Rt△ADC中,∵∠ACD=60°,∴∠CAD=30°,∴AC=2CD=≈3.6.∴灯塔C与观测点A的距离为3.6km.【点评】此题主要考查了解直角三角形﹣方向角问题的应用,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.从南京到某市可乘坐普通列车,行驶路程是520千米;也可乘坐高铁,行驶路程是400千米.已知高铁的平均速度是普通列车平均速度的2.5倍,且从南京到该市乘坐高铁比乘坐普通列车要少用3小时.求高铁行驶的平均速度.【考点】分式方程的应用.【分析】设普通列车的平均速度为x千米/时,则高铁的平均速度是2.5x千米/时,根据题意可得,乘坐高铁行驶400千米比乘坐普通列车行驶520千米少用3小时,据此列方程求解.【解答】解:设普通列车的平均速度为x千米/时,则高铁的平均速度是2.5x千米/时,依题意,得+3=,解得:x=120,经检验,x=120是原方程的解,且符合题意,则2.5x=300.答:高铁行驶的平均速度是300千米/时.【点评】本题考查了分式方程的应用,解答本题案的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP 上,且BC=PC.(1)求证:直线BC是⊙O的切线;(2)若OA=3,AB=2,求BP的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连结OB.由等腰三角形的性质得到∠A=∠OBA,∠P=∠CBP,由于OP⊥AD,得到∠A+∠P=90°,于是得到∠OBA+∠CBP=90°,求得∠OBC=90°结论可得;(2)连结DB.由AD是⊙O的直径,得到∠ABD=90°,推出Rt△ABD∽Rt△AOP,得到比例式=,即可得到结果.【解答】(1)证明:连结OB.∵OA=OB,∴∠A=∠OBA,又∵BC=PC,∴∠P=∠CBP,∵OP⊥AD,∴∠A+∠P=90°,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣(∠OBA+∠CBP)=90°,∵点B在⊙O上,∴直线BC是⊙O的切线,(2)解:如图,连结DB.∵AD是⊙O的直径,∴∠ABD=90°,∴Rt△ABD∽Rt△AOP,∴=,即=,AP=9,∴BP=AP﹣BA=9﹣2=7.【点评】本题考查了切线的判定,相似三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.25.已知二次函数y=x2﹣ax﹣2a2(a为常数,且a≠0).(1)证明该二次函数的图象与x轴的正半轴、负半轴各有一个交点;(2)若该二次函数的图象与y轴的交点坐标为(0,﹣2),试求该函数图象的顶点坐标.【考点】抛物线与x轴的交点.【分析】(1)令y=0可求得方程的两个根一正一负,可证得结论;(2)把(0,﹣2)代入抛物线的解析可求得a的值,进一步可求得其顶点坐标.【解答】(1)证明:y=x2﹣ax﹣2a2=(x+a)(x﹣2a),令y=0,则x1=﹣a,x2=2a,、x2的值必为一正一负,∵a≠0,x1∴该二次函数的图象与x轴的正半轴、负半轴各有一个交点;(2)解:由题意,得﹣2a2=﹣2,所以a=1或﹣1.当a=1时,y=x2﹣x﹣2=(x﹣)2﹣,顶点坐标为(,﹣),当a=﹣1时,y=x2+x﹣2=(x+)2﹣,顶点坐标为(﹣,﹣),该函数图象的顶点坐标为(,﹣)或(﹣,﹣).【点评】本题主要考查二次函数与x轴的交点和顶点坐标,掌握二次函数与x轴交点的横坐标是对应一元二次方程的两根是解题的关键.26.如图①,梯形ABCD中,AD∥BC,∠C=90°,BA=BC.动点E、F同时从点B出发,点E沿折线BA﹣AD﹣DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:(1)AD= 2 cm,BC= 5 cm;(2)求a的值,并用文字说明点N所表示的实际意义;(3)直接写出当自变量t为何值时,函数y的值等于5.【考点】四边形综合题;动点问题的函数图象.【分析】(1)此题的关键是要理解分段函数的意义,OM段是曲线,说明E、F分别在BA、BC 上运动,此时y、t的关系式是二次函数;MN段是线段,且平行于t轴,那么此时F运动到终点C,且E在线段AD上运动,此时y为定值;NP段是线段,此时y、t的函数关系式是一次函数,此时E在线段CD上运动,此时y值随t的增大而减小;根据上面的分析,可知在MN之间时,E 在线段AD上运动,在这个区间E点运动了2秒,所以AD=2cm;根据OM段的函数图象知:当t=5时,E、F分别运动到A、C两点,那么AB=BC=5;(2)利用待定系数法分别求两个解析式.【解答】解:(1)由图可知:OM段为抛物线,此时点E、F分别在BA、BC上运动;当E、A重合,F、C重合时,t=5s,∴AB=BC=5cm;故答案为:2,5;(2)过A作AH⊥BC,H为垂足,由已知BH=3,BA=BC=5,∴AH=4∴当点E、F分别运动到A、C时△EBF的面积为:×BC×AH=×5×4=10,即a的值为10,点N所表示的实际意义:当点E运动7s时到达点D,此时点F沿BC已运动到点C并停止运动,这时△EBF的面积为10 cm2;(3)当点E在BA上运动时,设抛物线的解析式为y=at2,把M点的坐标(5,10)代入得a=,∴y=t2,0<t≤5;当点E在DC上运动时,设直线的解析式为y=kt+b,把P(11,0),N(7,10)代入,得11k+b=0,7k+b=10,解得k=﹣,b=,所以y=﹣t+,(7≤t<11)把y=5分别代入y=t2和y=﹣t+得,5=t2和5=﹣t+,解得:t=或t=9.【点评】此题主要考查了分段函数的应用、梯形的性质以及函数解析式的求法,能够正确的理解分段函数的意义是解答此题的关键.27.如图1,对于平面上小于等于90°的∠MON,我们给出如下定义:若点P在∠MON的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON的“点角距”,记作d (∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角为∠xOy.(1)已知点A(5,0)、点B(3,2),则d(∠xOy,A)= 5 ,d(∠xOy,B)= 5 .(2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=5,画出点P运动所形成的图形.(3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=x(x≥0).①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值;②在图4中,抛物线y=﹣x2+2x+经过A(5,0)与点D(3,4)两点,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求当d(∠xOT,Q)取最大值时点Q 的坐标.【考点】二次函数综合题.【分析】(1)首先根据点A(5,0)到x轴的距离是0,到y轴的距离是5,可得d(∠xOy,A)=0+5=5;然后根据点B(3,2)到x轴的距离是2,到y轴的距离是3,求出d(∠xOy,B)的值是多少即可.(2)首先设点P的坐标是(x,y),然后根据d(∠xOy,P)=5,可得x+y=5,据此求出点P运动所形成的图形即可.(3)①首先作CE⊥OT于点E,CF⊥x轴于点F,延长FC交OT于点H,则CF=1,然后设直线OT 对应的函数关系式为y=x(x≥0),求出点H的坐标为H(4,),进而求出CH,OH的值各。

备战2020中考南京市中考二模数学试卷及答案【含多套模拟】

备战2020中考南京市中考二模数学试卷及答案【含多套模拟】

中学数学二模模拟试卷一、选择题(本题共5小题,每题3分,共15分)1、把a 3-ab 2分解因式的正确结果是( )A (a+ab)(a -ab)B a (a 2-b 2)C a(a+b)(a -b)D a(a -b)22、在函数21-=x y 中,自变量x 的取值范围是( ) A x ≥2 B x>2 C x ≤2 D x<23、已知:如图1,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8m , OC=5m ,则DC 的长为( )(A )3cm (B )2.5cm (C )2cm (D )1cm4、某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是( )A 正三角形B 正五边形C 等腰梯形D 菱形5、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修后,因怕耽误上课,他比修车前加快了骑车速度继续匀速行驶,正面是行驶路程S(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是( )(A) (B) (C) (D) 二、填空题(本题共5小题,每小题4分,共20分) 6、函数12++=x x y 中自变量x 的取值范围为___ 7、求值:︒⨯︒45cos 2260sin 21= 8、已知点P (-2,3),则点P 关于x 轴对称的点坐标是 . 9、如果圆锥的底面圆的半径是8,母线的长是15,那么这个圆锥侧面展开图的扇形的圆心角的度数是 。

10、已知:如图2,⊙O 的半径为l ,C 为⊙O 上一点,以C 为圆心,以1为半径作弧与⊙O 相交于A 、B 两点,则图中阴影部分的面积是 . 三、解答题(本题共5小题,每小题6分,共30分) 11、先化简,再求值:24422222-++-÷+-yxy x y x y x y x .其中c =2-2,y =22-1 图1图212、制作铁皮桶,需在一块三角形余料上截取一个面积最大的圆,请画出该圆。

(江苏卷) 2020年中考数学第二次模拟考试(参考答案)

(江苏卷) 2020年中考数学第二次模拟考试(参考答案)
2020 年中考数学第二次模拟考试【江苏卷】
数学·参考答案
1
2
3
4
5
6
AABDAC
7.–1 8.1.1×103 9. x 1 10.1 11.﹣15
13.17
14. 8 15
15.60
17.【解析】
1
1 x
x2 1 x
16. 9 或 5 52
12. 2 5
= x 1 x2 1 xx x+1
= x2 1 x+1
x y 9000, 则 1.1x 0.9 y 9000,
x 4500,
解得
y
4500,
数学 第 3页(共 9页) 3
答:原计划拆建各 4500 平方米.
(2)计划资金 y1=4500×80+4500×800=3960000(元),
实用资金 y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+324000=3636000(元),
AD
在 Rt△ADB 中,tan∠ABD= ,
BD
∴BD=
AD tan ABD
x tan 180

AD
在 Rt△ACD 中,tan∠ACD= ,
CD
∴CD=
AD tan ACD
x tan 140

∵BC=CD﹣BD,
x
x
∴ tan140 ﹣ tan180 =6,
40
∴4x﹣ x=6.
13
解这个方程,得 x=6.5.
=
( x+1)( x-1)
1 = x 1 .
3(x 2) 2x 5①
18.【解析】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018 年秦淮区二模
数 学 2018.06.05
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分)
1.计算10 + ( -24) ÷ 8 + 2 ⨯ ( -6) 的结果是 ( ) A . -5 B . -1 C . 1
D . 5
2.计算 26 ⨯ (22 )3
÷ 24 的结果是 ( )
A . 23
B . 27
C . 28
D . 29 3.已知圆锥的母线长为 12,底面圆半径为 6,则圆锥的侧面积是 ( )
A . 24π
B . 36π
C . 70π
D . 72π
4.甲、乙两位射击运动员参加射击训练,各射击 20 次,成绩如下表所示:
甲 乙
设甲、乙两位运动员射击成绩的方差分别为 S 甲 2 和 S 乙 2 ,则下列说法正确的是( ) A .S 甲 2 <S 乙 2 B .S 甲 2= S 乙 2 C .S 甲 2> S 乙 2 D . 无法比较S 甲 2 和 S 乙 2的大小 5.某农场开挖一条 480m 的渠道,开工后,每天比原计划多挖 20m ,结果提前 4 天完成任务.若 设原计划每天挖 x m ,根据题意,下列方程正确的是 ( )
A .480480420x x -=-
B .480480
20+4x x -= C .4804804+20x x -=
D .480480
204x x -=-
6.下列函数的图像和二次函数 y = a ( x + 2)2
+ 3 ( a 为常数, a ≠ 0 )的图像关于点 (1,0)对称的是 ( )
A . y = -a ( x - 4)2 - 3
B . y = -a ( x - 2)2
- 3
C . y = a ( x - 4)2 - 3
D . y = a ( x - 2)2
- 3
二、填空题(本大题共 10 题,每小题 2 分,共 20 分)
7.10 =
, 2-2 = .
8.每年四、五月间,南京街头杨絮飞舞,如漫天飞雪,给市民生活带来了不少烦恼.据测定, 杨絮纤维的直径约为 0.0000105 m ,将 0.0000105 用科学计数法可表示为 .
9在实数范围内有意义,则 x 的取值范围是 .
10.分解因式 b 3 - b 的结果是

11.若 A (1,m )在反比例函数y =2x
的图像上,则 m 的值为 .
12.如图,AB 是半圆的直径,C 、D 是半圆上的两个点,若∠BAD =55°,
则∠ACD = °.
(第 12 题)
(第 13 题)
13.如图,CF 、CH 是正八边形 ABCDEFGH 的对角线,则∠HCF =
°.
14.已知 x 与代数式 ax 2 + bx + c 的部分对应值如下表:

b c
a
+的值是 .
15.如图,在菱形 ABCD 中,对角线 AC 、BD 相交于点 O ,点 E 、F 、G 、H 分别在 AD 、AB 、
BC 、CD 上,且四边形 EFGH 为正方形,若 AC = 24 , BD = 10 ,则正方形 EFGH 的边长 是 .
D
C
(第 15 题) 16.四边形 ABCD 的对角线 AC 、BD 的长分别为 m 、n .当 AC ⊥BD 时,可得四边形 ABCD 的
面积 S =12
mn ;当
AC 与 BD 不垂直时,设它们所夹的锐角为θ ,则四边形 ABCD 的面积 S =
.(用含 m 、n 、θ 的式子表示)
三、解答题(本大题共 11 小题,共 88 分)
17.(6 分)解不等式组2(2)3312
3x x x x -≤-⎧⎪
+⎨⎪⎩,并写出不等式组的整数解.
18.(6 分)计算
2211
(2)()a a a a -+
÷-
19.(8 分)某校有3000 名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图
根据以上信息,回答下列问题:
⑴ 参与本次问卷调查的学生共有人,其中选择B 类的人数有人.
⑵ 在扇形统计图中,求E 类对应的扇形圆心角 的度数,并补全条形统计图.
⑶ 若将A、C、D、E 这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学
生人数.
20.(8 分)甲、乙、丙三名同学准备去公园游玩,他们每人分别从玄武湖公园和莫愁湖公园中随机选择一家.
⑴丙同学选择去玄武湖公园游玩的概率是.
⑵求甲、乙、丙三名同学恰好选择了同一家公园的概率.
21.(8 分)有下列命题
①一组对边平行,一组对角相等的四边形是平行四边形.
②两组对角分别相等的四边形是平行四边形.
③一组对边相等,一组对角相等的四边形是平行四边形.
④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.
⑴上述四个命题中,是真命题的是(填写序号);
⑵请选择一个真命题进行证明.(写出已知、求证,并完成证明)
已知:.
求证:

证明:
(第21 题)
22.(8 分)按要求完成下列尺规作图(不写作法,保留作图痕迹).
⑴如图①,线段AB 沿某条直线l 折叠后,点A 恰好落在A ' 处,求作直线l .
⑵如图②,线段MN 绕某个点O 顺时针旋转60°后,点M 恰好落在点M ' 处,求作点O.
A'
M'
① ②
(第22 题)
23.(8 分)如图,长度为6m 的梯子AB 斜靠在垂直于地面的墙OM 上,梯子和水平地面的夹角为60°.若将梯子的顶端A 竖直向下移动,记移动后的位置为A ' ,底端B 移动后的位置为B ' .研究发现:当AA ' ≤ 0.9 m 时,梯子可保持平衡,当AA ' > 0.9 m 时,梯子失去平衡滑落至地面.在平衡状态下,求梯子与地面的夹角∠A ' B ' O的最小值.
1.73 ,sin 45︒40 ' ≈ 0.715 ,cos 45︒40 ' ≈ 0.699 ,sin 44︒20 ' ≈ 0.699 ,
cos 44︒20 ' ≈ 0.715 ,sin 20︒30 ' ≈ 0.35 ,cos 20︒30 ' ≈ 0.94 )
(第23 题)
24.(8 分)已知函数y =-x2 +(m- 2)x +1 (m 为常数).
⑴求证:该函数与x 轴有两个交点.
⑵当m 为何值时,该函数图像的顶点纵坐标有最小值?最小值是多少?
25.(8 分)如图,在△ABC 中,AB=AC,以AB 为直径作⊙O,分别交AC、BC 于点D、E,点F 在AC 的延长线上,且∠A=2∠CBF.
⑴求证:BF 与⊙O 相切.
⑵若BC =CF = 4 ,求BF 的长度.
(第25 题)
26.(10 分)甲、乙两车同时从A 地出发,匀速开往B 地.甲车行驶到B 地后立即沿原路线以原速度返回A 地,到达A 地后停止运动;当甲车到达A 地时,乙车恰好到达B 地,并停止运动.已知甲车的速度为150km/h.设甲车出发x h 后,甲、乙两车之间的距离为y km,图中的折线OMNQ 表示了整个运动过程中y 与x 之间的函数关系.
⑴A、B 两地的距离是km,乙车的速度是km/h;
⑵指出点M 的实际意义,并求线段MN 所表示的y 与x 之间的函数表达式;
⑶当两车相距150km 时,直接写出x 的值.
y
1 2 3 4 5 67 8 9x/h
(第26 题)
27.(10 分)
我们知道,对于线段a、b、c,如果a2 =b ⋅c ,那么线段a 叫作线段b 和c 的比例中项.
⑴观察下列图形:
①如图①,在△ABC 中,∠C=90°,CD⊥AB,垂足为D;
②如图②,在△ABC 中,AB=BC,∠B=36°,∠ACB 的平分线交AB 于点D;
③如图③,A 是⊙O 外一点,AC 与⊙O 相切,切点为C,过点A 作射线,分别于⊙O
相交于点B、D.
其中,AC 是AD 和AB 的比例中项的是(填写序号).
B
①②③
⑵ 如图④,直线 l 与⊙O 相切于点 A ,B 是 l 上一点,连接 OB ,C 是 OB 上一点.若⊙O 的半径 r 是 OB 与 OC 的比例中项,请用直尺和圆规作出点 C .(保留作图痕迹, 不写作法)
l
④ ⑤
⑶ 如图⑤,A 是⊙O 1 外一点,以 O 1 A 为直径的⊙ O 2 交⊙ O 1 于点 B 、C , O 1 A 与 BC 交于点 D ,
E 为直线 BC 上一点(点 E 不与点 B 、C 、D 重合),作直线 O 1 E ,与⊙ O 2 交于点
F , 若⊙ O 的半径是 r ,求证: r 是 O E 与 O F 的比例中项.。

相关文档
最新文档