异方差性的检验及处理方法

合集下载

异方差性在回归分析的影响

异方差性在回归分析的影响

异方差性在回归分析的影响在回归分析中,异方差性是一个重要的概念,指的是误差项的方差不是恒定的,而是随着自变量的变化而变化。

异方差性会对回归分析的结果产生影响,导致参数估计不准确甚至失真,从而影响对模型的解释和预测能力。

本文将从异方差性的定义、影响、检验以及处理方法等方面展开讨论。

一、异方差性的定义在回归分析中,我们通常假设误差项具有同方差性,即误差项的方差是恒定的。

然而,在实际应用中,误差项的方差可能会随着自变量的变化而发生变化,这种情况被称为异方差性。

异方差性通常表现为误差项的方差与自变量的水平相关,即方差不是常数。

二、异方差性的影响1. 参数估计的不准确性:异方差性会导致参数估计的不准确性,使得回归系数的估计偏离真实值,从而影响对自变量与因变量之间关系的解释。

2. 统计检验的失真:异方差性会使得回归模型的显著性检验结果失真,可能导致错误的结论,影响对模型整体拟合优度的评估。

3. 预测精度的下降:异方差性会影响对未来观测值的预测精度,使得预测结果不可靠,降低模型的预测能力。

三、异方差性的检验为了检验回归模型是否存在异方差性,可以采用以下方法:1. 图形诊断法:通过残差图、残差与预测值的散点图等图形来观察残差的分布情况,如果残差呈现出明显的异方差性模式,就可以怀疑模型存在异方差性。

2. 统计检验法:利用异方差性检验统计量,如White检验、Goldfeld-Quandt检验、Breusch-Pagan检验等,对模型的异方差性进行显著性检验。

四、处理异方差性的方法当检验结果表明模型存在异方差性时,可以采取以下方法进行处理:1. 加权最小二乘法(Weighted Least Squares, WLS):通过对残差进行加权,使得残差的方差与自变量的水平相关,从而消除异方差性。

2. 变量转换:对自变量或因变量进行对数变换、平方根变换等,使得变量的方差变化较小,减轻异方差性的影响。

3. 引入干扰项:在模型中引入干扰项,如虚拟变量、交互项等,来控制异方差性的影响。

实验四异方差性的检验与处理

实验四异方差性的检验与处理

实验四异方差性的检验与处理集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]实验四 异方差性的检验及处理(2学时)一、实验目的(1)、掌握异方差检验的基本方法; (2)、掌握异方差的处理方法。

二、实验学时:2学时 三、实验要求(1)掌握用MATLAB 软件实现异方差的检验和处理; (2)掌握异方差的检验和处理的基本步骤。

四、实验原理1、异方差检验的常用方法(1) 用X-Y 的散点图进行判断(2). 22ˆ(,)(,)e x e y 或的图形 ,),x )i i y i i ((e 或(e 的图形)(3) 等级相关系数法(又称Spearman 检验)是一种应用较广的方法,既可以用于大样本,也可与小样本。

检验的三个步骤 ① ˆt t y y=-i e②|i x i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21ni i d =∑s 26r =1-n(n -1)③ 做等级相关系数的显着性检验。

n>8时,/2(2),t t n α>-反之,若||i i e x 说明与之间存在系统关系,异方差问题存在。

(4) 帕克(Park)检验帕克检验常用的函数形式:若在统计上是显着的,表明存在异方差性。

2、异方差性的处理方法: 加权最小二乘法 如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:121(i i p pi iy x x uf xβββ=+⋅++⋅+在该模型中:即满足同方差性。

于是可以用OLS估计其参数,得到关于参数12,,,pβββ的无偏、有效估计量。

五、实验举例例101i i iy x u=++若用线性模型,研究不同收入家庭的消费情况,试问原数据有无异方差性如果存在异方差性,应如何处理解:(一)编写程序如下:(1)等级相关系数法(详见文件)%%%%%%%%%%%%%%% 用等级相关系数法来检验异方差性 %%%%%%%%[data,head]=xlsread('');x=data(:,1); %提取第一列数据,即可支配收入xy=data(:,2); %提取第二列数据,即居民消费支出yplot(x,y,'k.'); % 画x和y的散点图xlabel('可支配收入x(千元)') % 对x轴加标签ylabel('居民消费支出y(千元)') % 对y轴加标签%%%%%%%% 调用regres函数进行一元线性回归 %%%%%%%%%%%%xdata=[ones(size(x,1),1),x]; %在x矩阵最左边加一列1,为线性回归做准备[b,bint,r,rint,s]=regress(y,xdata);yhat=xdata*b; %计算估计值y% 定义元胞数组,以元胞数组形式显示系数的估计值和估计值的95%置信区间head1={'系数的估计值','估计值的95%置信下限','估计值的95%置信上限'};[head1;num2cell([b,bint])]% 定义元胞数组,以元胞数组形式显示y的真实值,y的估计值,残差和残差的95%置信区间head2={'y的真实值','y的估计值','残差','残差的95%置信下限','残差的95%置信上限'};[head2;num2cell([y,yhat,r,rint])]% 定义元胞数组,以元胞数组形式显示判定系数,F统计量的观测值,检验的P值和误差方差的估计值head3={'判定系数','F统计量的观测值','检验的P值','误差方差的估计值'};[head3;num2cell(s)]%%%%%%%%%%%%% 残差分析 %%%%%%%%%%%%%%%%%%figure;rcoplot(r,rint) % 按顺序画出各组观测值对应的残差和残差的置信区间%%% 画估计值yhat与残差r的散点图figure;plot(yhat,r,'k.') % 画散点图xlabel('估计值yhat') % 对x轴加标签ylabel('残差r') % 对y轴加标签%%%%%%%%%%%% 调用corr函数计算皮尔曼等级相关系数res=abs(r); % 对残差r取绝对值[rs,p]=corr(x,res,'type','spearman')disp('其中rs为皮尔曼等级相关系数,p为p值');(2)帕克(park)检验法(详见文件)%%%%%%%%%%%%%%% 用帕克(park)检验法来检验异方差性 %%%%%%%[data,head]=xlsread(''); %导入数据x=data(:,1);y=data(:,2);%%%%%% 调用regstats函数进行一元线性回归,linear表带有常数项的线性模型,r表残差ST=regstats(y,x,'linear',{'yhat','r','standres'});scatter(x,.^2) % 画x与残差平方的散点图xlabel('可支配收入(x)') % 对x轴加标签ylabel('残差的平方') %对y轴加标签%%%%%%% 对原数据x和残差平方r^2取对数,并对log(x)和log(r^2)进行一元线性回归ST1=regstats(log(.^2),log(x),'linear',{'r','beta','tstat','fstat'})% 输出参数的估计值% 输出回归系数t检验的P值% 输出回归模型显着性检验的P值(3)加权最小二乘法(详见文件)%%%%%%%%%%% 调用robustfit函数作稳健回归 %%%%%%%%%%%%[data,head]=xlsread(''); % 导入数据x=data(:,1);y=data(:,2);% 调用robustfit函数作稳健回归,返回系数的估计值b和相关统计量stats[b,stats]=robustfit(x,y) %调用函数作稳健回归% 输出模型检验的P值%%% 绘制残差和权重的散点图 %%%%%%%plot,,'o') %绘制残差和权重的散点图xlabel('残差')ylabel('权重'(二)实验结果与分析:第一步::用OLS方法估计参数,并保留残差(1)散点图图可支配收入(x)居民消费支出(y)散点图因每个可支配收入x的值,都有5个居民消费收入y与之对应,所以上述散点图呈现此形状。

stata异方差检验和解决命令

stata异方差检验和解决命令

stata异方差检验和解决命令在数据分析中,异方差是一个常见的问题。

异方差指不同样本的方差不相等,这会导致统计结果的不准确性。

Stata提供了许多方法来检验和解决异方差问题。

一、异方差检验检验异方差通常使用Breusch-Pagan-Godfrey(BPG)检验或White检验。

这里以BPG检验为例,该检验的原假设是方差相等,备择假设是方差不相等。

命令格式:estat hettest示例代码:reg y x1 x2 x3estat hettest如果p值小于0.05,则拒绝原假设,说明存在异方差问题。

二、异方差稳健标准误当检测到异方差问题时,可以使用异方差稳健标准误来解决。

异方差稳健标准误在计算系数的标准误时考虑了异方差问题,从而提高了结果的准确性。

命令格式:robust示例代码:reg y x1 x2 x3, robust使用robust命令后,结果中的Standard Error一栏即为异方差稳健标准误。

三、异方差稳健回归如果异方差问题比较严重,只使用异方差稳健标准误可能无法解决问题。

此时可以使用异方差稳健回归。

命令格式:robust示例代码:reg y x1 x2 x3, vce(robust)使用vce(robust)参数后,回归结果中的系数和标准误都是异方差稳健的,并且t值和p值也已经经过了调整。

总结:通过Breusch-Pagan-Godfrey检验或White检验可以检验异方差问题,如果存在异方差问题,可以使用异方差稳健标准误或异方差稳健回归来解决。

在使用robust命令时,不需要进行任何假设检验,因为参数已经考虑了异方差问题。

异方差性的检验及处理方法

异方差性的检验及处理方法

异方差性的检验及处理方法异方差性是指随着自变量变化,因变量的方差不保持恒定,即方差存在不均匀的变化趋势。

在统计分析中,如果忽视了异方差性,可能会导致误差的不准确估计,从而影响对因变量的显著性检验和参数估计结果的准确性。

为了避免异方差性给统计分析带来的影响,需要进行异方差性的检验和处理。

下面将介绍几种常用的异方差性检验及处理方法。

一、异方差性的检验方法:1.绘制残差图:绘制因变量的残差(观测值与拟合值之差)与自变量的散点图,观察残差是否随着自变量的变化而存在明显的模式。

如果残差图呈现出锥形或漏斗形状,则表明存在异方差性。

2.帕金森检验:帕金森检验是一种常用的检验异方差性的方法。

该方法的原理是通过对残差进行变换,判断变换后的残差是否与自变量相关。

3. 布罗斯-佩根检验(Breusch-Pagan test):布罗斯-佩根检验是一种常用的检验异方差性的方法。

该方法的原理是通过计算残差与自变量的相关系数,进而判断是否存在异方差性。

4. 品尼曼检验(Leve ne’s test):品尼曼检验是一种非参数的检验方法,可以用于检验不同组别的方差是否存在显著差异。

二、异方差性的处理方法:1.变量转换:通过对因变量和自变量进行变换,可以使数据满足异方差性的假设。

比如可以对因变量进行对数转换或平方根转换,对自变量进行标准化处理等。

2.使用加权最小二乘法(WLS):加权最小二乘法是一种可以处理异方差性的回归分析方法。

该方法的原理是通过对残差进行加权,使得残差的方差与自变量无关。

3.使用广义最小二乘法(GLS):广义最小二乘法是一种可以处理异方差性的回归分析方法。

该方法的原理是通过对残差进行加权,使得残差的方差可以通过自变量的一个线性组合来估计。

4.进行异方差性的鲁棒估计:鲁棒估计是一种对异常值和异方差性具有较好鲁棒性的估计方法。

通过使用鲁棒估计,可以减少异方差性对参数估计的影响。

综上所述,异方差性是统计分析中需要重视的问题。

第二节 异方差性检验

第二节 异方差性检验
ˆ ˆ ˆ ˆ ˆ 2 ˆ 2 ˆ et2 = α1 +α2 X 2t +α3 X 3t +α4 X 2t +α5 X 3t +α6 X 2t X 3t
3.计算 利用求回归估计式得到辅助回归函数的可决系 数 nR2 , n 为样本容量。 4.提出假设 H0 : 2 = ...= 6 = 0, H1 : (j= 2,,3,...,6)不全为零 j

et a0 a1 xt h vt 步骤:
h 1, 2, 1 , 2
1、应用OLS估计回归模型并求残差e t ; 2、分别建立 et 对每个解释变量的各种回归方程; 3、检验每个回归方程参数1的显著性,如果参数1显著不为零, 则随机项存在异方差,反之,随机项具有等方差性。 帕克提出如下假定函数形式: et2 a0 xa1 e vt t 即lnet2 a 0 a1lnx t v t
之间是否有相关关系。 X
如果随着 X 的增加, 的离散程度为逐渐增大(或 Y 减小)的变化趋势,则认为存在递增型(或递减型)的 异方差。
(二)残差图形分析 设一元线性回归模型为:
Yi β1 β2 X i ui
运用OLS法估计,得样本回归模型为:
ˆ ˆ ˆ Yi = β1 + β2 X i
其中vt 为随机误差项。
2 σt2 = α1 +α2 X 2t +α3 X 3t +α4 X 2t +α5 X 32t +α6 X 2t X 3t +vt
1.求回归估计式并计算 ˆ 用OLS估计线性回归模型,计算残差 et Yt - Yt ,并求残差 的平方 et2 。
2.求辅助函数 et2 作为异方差 σ t2 的估计,并建立 用残差平方 2 的辅助回归,即 X 2t , X 3t , X 2t , X 32t , X 2t X 3t

异方差实验报告步骤(3篇)

异方差实验报告步骤(3篇)

第1篇一、实验目的1. 掌握异方差性的基本概念和检验方法。

2. 学会运用统计软件进行异方差的检验和修正。

3. 提高对计量经济学模型中异方差性处理能力的实践应用。

二、实验原理1. 异方差性:在回归分析中,若回归模型的误差项(残差)的方差随着自变量或因变量的取值而变化,则称模型存在异方差性。

2. 异方差性的检验方法:图形检验、统计检验(如F检验、Breusch-Pagan检验、White检验等)。

3. 异方差性的修正方法:加权最小二乘法(WLS)、广义最小二乘法(GLS)等。

三、实验步骤1. 数据准备1. 收集实验所需数据,确保数据质量和完整性。

2. 对数据进行初步处理,如剔除异常值、缺失值等。

2. 模型设定1. 根据研究问题,选择合适的回归模型。

2. 利用统计软件(如Eviews、Stata等)进行初步的回归分析。

3. 异方差性检验1. 图形检验:绘制散点图,观察残差与自变量或因变量的关系,初步判断是否存在异方差性。

2. 统计检验:- F检验:检验回归系数的显著性。

- Breusch-Pagan检验:检验残差平方和与自变量或因变量的关系。

- White检验:检验残差平方和与自变量或因变量的多项式关系。

4. 异方差性修正1. 若检验结果表明存在异方差性,则需对模型进行修正。

2. 选择合适的修正方法:- 加权最小二乘法(WLS):根据残差平方与自变量或因变量的关系,计算权重,加权最小二乘法进行回归分析。

- 广义最小二乘法(GLS):根据残差平方与自变量或因变量的关系,选择合适的方差结构,广义最小二乘法进行回归分析。

5. 结果分析1. 对修正后的模型进行回归分析,观察回归系数的显著性、拟合优度等指标。

2. 对实验结果进行分析,解释实验现象,验证研究假设。

6. 实验报告撰写1. 撰写实验报告,包括以下内容:- 实验目的- 实验原理- 实验步骤- 实验结果- 分析与讨论- 结论2. 实验报告应结构清晰、逻辑严谨、语言简洁。

异方差性的检验及处理方法

异方差性的检验及处理方法

实验四异方差性【实验目的】掌握异方差性的检验及处理方法【实验内容】建立并检验我国制造业利润函数模型【实验步骤】【例1】表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。

一、检验异方差性⒈图形分析检验⑴观察销售利润(Y)与销售收入(X)的相关图(图1):SCA T X Y图1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。

这说明变量之间可能存在递增的异方差性。

⑵残差分析首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。

在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。

图2 我国制造业销售利润回归模型残差分布图2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。

⒉Goldfeld-Quant检验⑴将样本按解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本)⑵利用样本1建立回归模型1(回归结果如图3),其残差平方和为2579.587。

SMPL 1 10LS Y C X图3 样本1回归结果⑶利用样本2建立回归模型2(回归结果如图4),其残差平方和为63769.67。

SMPL 19 28LS Y C X图4 样本2回归结果⑷计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72,21RSS RSS 和分别是模型1和模型2的残差平方和。

取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而44.372.2405.0=>=F F ,所以存在异方差性⒊White 检验⑴建立回归模型:LS Y C X ,回归结果如图5。

图5 我国制造业销售利润回归模型⑵在方程窗口上点击View\Residual\Test\White Heteroskedastcity,检验结果如图6。

时序预测中的异方差性检验方法探讨(十)

时序预测中的异方差性检验方法探讨(十)

时序预测是统计学和经济学中一个重要的课题,通常用来预测未来某一时间点的数值。

然而,在进行时序预测时,我们经常会遇到异方差性的问题。

异方差性指的是时间序列数据的方差不是恒定的,而是随时间变化的情况。

在异方差性存在的情况下,传统的预测方法可能会出现问题,因此需要采用一些特殊的方法来进行检验和处理。

本文将探讨时序预测中的异方差性检验方法,为读者提供一些参考和借鉴。

一、异方差性的检验方法在进行时序预测之前,我们首先需要检验数据是否存在异方差性。

常用的异方差性检验方法包括LM检验、BP检验和White检验。

LM检验是利用残差平方和的序列进行检验,其原假设是数据不存在异方差性。

BP检验是对LM检验的一种改进,可以检验更多的异方差性形式。

White检验是一种广义的异方差性检验方法,适用于多元回归模型。

通过对数据进行这三种检验,我们可以初步判断数据是否存在异方差性,并选择合适的处理方法。

二、异方差性的处理方法一旦确定数据存在异方差性,我们需要对数据进行处理,以确保预测模型的准确性。

常用的异方差性处理方法包括加权最小二乘法、异方差稳健标准误差和变换方法。

加权最小二乘法是一种根据异方差性的严重程度对数据进行加权的方法,可以有效减少异方差性对预测结果的影响。

异方差稳健标准误差是一种对参数估计的标准误差进行修正的方法,可以提高参数估计的准确性。

变换方法是通过对原始数据进行变换,使其满足异方差性的假设,从而得到更准确的预测结果。

通过选择合适的处理方法,我们可以有效处理数据的异方差性,提高预测模型的准确性。

三、异方差性对时序预测的影响异方差性对时序预测模型的影响是不可忽视的。

在存在异方差性的情况下,传统的预测方法可能会出现参数估计偏误、标准误差过低等问题,导致预测结果的不准确性。

因此,及时发现和处理数据的异方差性是非常重要的。

通过合适的异方差性检验和处理方法,我们可以有效降低异方差性对时序预测的影响,得到更准确的预测结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四异方差性
【实验目的】
掌握异方差性的检验及处理方法
【实验容】
建立并检验我国制造业利润函数模型
【实验步骤】
【例1】表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。

表1 我国制造工业1998年销售利润与销售收入情况
行业名称销售利润销售收入行业名称销售利润销售收入
食品加工业187.25 3180.44 医药制造业238.71 1264.1
食品制造业111.42 1119.88 化学纤维制品81.57 779.46
饮料制造业205.42 1489.89 橡胶制品业77.84 692.08
烟草加工业183.87 1328.59 塑料制品业144.34 1345
纺织业316.79 3862.9 非金属矿制品339.26 2866.14
服装制品业157.7 1779.1 黑色金属冶炼367.47 3868.28
皮革羽绒制品81.7 1081.77 有色金属冶炼144.29 1535.16
木材加工业35.67 443.74 金属制品业201.42 1948.12
家具制造业31.06 226.78 普通机械制造354.69 2351.68
造纸及纸品业134.4 1124.94 专用设备制造238.16 1714.73 印刷业90.12 499.83 交通运输设备511.94 4011.53 文教体育用品54.4 504.44 电子机械制造409.83 3286.15
石油加工业194.45 2363.8 电子通讯设备508.15 4499.19
化学原料纸品502.61 4195.22 仪器仪表设备72.46 663.68
一、检验异方差性
⒈图形分析检验
⑴观察销售利润(Y)与销售收入(X)的相关图(图1):SCAT X Y
图1 我国制造工业销售利润与销售收入相关图
从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也
逐步扩大。

这说明变量之间可能存在递增的异方差性。

⑵残差分析
首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。

在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。

图2 我国制造业销售利润回归模型残差分布
图2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。

⒉Goldfeld-Quant检验
⑴将样本按解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本)
⑵利用样本1建立回归模型1(回归结果如图3),其残差平方和为2579.587。

SMPL 1 10
LS Y C X
图3 样本1回归结果
⑶利用样本2建立回归模型2(回归结果如图4),其残差平方和为63769.67。

SMPL 19 28
LS Y C X
图4 样本2回归结果
⑷计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72,21RSS RSS 和分别是模型1和模型2的残差平方和。


05
.0=α时,查F 分布表得
44.3)1110,1110(05.0=----F ,而
44.372.2405.0=>=F F ,所以存在异方差性
⒊White 检验
⑴建立回归模型:LS Y C X ,回归结果如图5。

图5 我国制造业销售利润回归模型
⑵在方程窗口上点击View\Residual\Test\White Heteroskedastcity,检验结果如图6。

图6 White 检验结果
其中F 值为辅助回归模型的F 统计量值。

取显著水平
05.0=α,由于
2704.699.5)2(2205.0=<=nR χ,所以存在异方差性。

实际应用中可以直接观察相伴概率
p 值的大小,若p 值较小,则认为存在异方差性。

反之,则认为不存在异方差性。

⒋Park 检验
⑴建立回归模型(结果同图5所示)。

⑵生成新变量序列:GENR LNE2=log(RESID^2)
GENR LNX=logx
⑶建立新残差序列对解释变量的回归模型:LS LNE2 C LNX ,回归结果如图7所示。

图7 Park 检验回归模型
从图7所示的回归结果中可以看出,LNX 的系数估计值不为0且能通过显著性检验,即随即误差项的方差与解释变量存在较强的相关关系,即认为存在异方差性。

⒌Gleiser 检验(Gleiser 检验与Park 检验原理相同) ⑴建立回归模型(结果同图5所示)。

⑵生成新变量序列:GENR E=ABS(RESID)
⑶分别建立新残差序列(E )对各解释变量(X/X^2/X^(1/2)/X^(-1)/ X^(-2)/ X^(-1/2))的回归模型:LS E C X ,回归结果如图8、9、10、11、12、13所示。

图8
图9
图10
图11
图12
图13
由上述各回归结果可知,各回归模型中解释变量的系数估计值显著不为0且均能通过显著性检验。

所以认为存在异方差性。

R确定异方差类型
⑷由F值或2
R值确定异方差的具体形式。

本例中,图10所示的回归Gleiser检验中可以通过F值或2
R)最大,可以据次来确定异方差的形式。

方程F值(2
二、调整异方差性
⒈确定权数变量
根据Park检验生成权数变量:GENR W1=1/X^1.6743
根据Gleiser检验生成权数变量:GENR W2=1/X^0.5
另外生成:GENR W3=1/ABS(RESID)
GENR W4=1/ RESID ^2
⒉利用加权最小二乘法估计模型
在Eviews命令窗口中依次键入命令:
W) Y C X
LS(W=
i
或在方程窗口中点击Estimate\Option按钮,并在权数变量栏里依次输入W1、W2、W3、W4,回归结果图14、15、16、17所示。

图14
图15
图16
图17
⒊对所估计的模型再进行White检验,观察异方差的调整情况
对所估计的模型再进行White检验,其结果分别对应图14、15、16、17的回归模型(如图18、19、20、21所示)。

图18、19、21所对应的White检验显示,P值较大,所以接收不存在异方差的原假设,即认为已经消除了回归模型的异方差性。

图20对应的White检验
nR的值,这表示异方差性已经得到很好的解决。

没有显示F值和2
图18
图19
图20
图21。

相关文档
最新文档