高一数学期中考试
2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
2024-2025学年上期高一年级期中考试数学试题

2024-2025学年上期高一年级期中考试数学试题(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、考号填写在答题卡上相应的位置。
2.作答时,全部答案在答题卡上完成,答在本试卷上无效。
3.考试结束后,只交答题卡,试卷由考生带走。
一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若集合,集合,,则A ∪(C U B )=( )A .B .C .D .2.“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知,,则( )A .B .C .D .4.已知函数,( )A .B .C .D .15.函数的定义域为( )A .B .C .D .6.为提高生产效率,某公司引进新的生产线投入生产,投入生产后,除去成本,每条生产线生产的产品可获得的利润(单位:万元)与生产线运转时间(单位:年)满足二次函{}1,2,3,4U ={}1,2A ={}2,3B ={}2{}1,3{}1,2,4{}1,2,302x <<13x -<<0a b >>d c <0ac bd >>ac bd >a c b d +>+0a cb d +>+>211,1()1,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩((2))f f =15-151-()()01f x x =-2,3⎛⎫+∞ ⎪⎝⎭()2,11,3∞⎡⎫⋃+⎪⎢⎣⎭()2,11,3∞⎛⎫⋃+ ⎪⎝⎭2,3⎡⎫+∞⎪⎢⎣⎭s t数关系:,现在要使年平均利润最大,则每条生产线运行的时间t 为( )年.A .7B .8C .9D .107.已知函数,且,则实数的取值范围是( )A .B .C .D .8.德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数f (x )={1, x ∈Q0, x ∈C R Q 被称为狄利克雷函数,其中为实数集,为有理数集,以下关于狄利克雷函数的四个结论中,正确的个数是( )个.①函数偶函数;②函数的值域是;③若且为有理数,则对任意的恒成立;④在图象上存在不同的三个点,,,使得∆ABC 为等边角形. A .1B .2C .3D .4二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的有( )A .命题“,”的否定是“,”B .若,则C .命题“,”是假命题D .函数是偶函数,且在上单调递减.10.下列选项中正确的有( )A .已知函数是一次函数,满足,则的解析式可能为B .与表示同一函数C .函数的值域为224098s t t =-+-()()4f x x x =+()()2230f a f a +-<a ()3,0-()3,1-()1,1-()1,3-R Q ()f x ()f x ()f x {}0,10T ≠T ()()f x T f x +=x R ∈()f x A B C 1x ∀>20x x ->1x ∃≤20x x -≤a b >22ac bc ≥Z x ∀∈20x >21y x =()0,∞+()f x ()()98f f x x =+()f x ()34f x x =--||()x f x x =1,0()1,0x g x x >⎧=⎨-≤⎩()2f x x =+(,4]-∞D .定义在上的函数满足,则11.下列命题中正确的是( )A .若,,,则B .已知,,,则的最小值是C .若,则的最小值为4D .若,,,则的最小值为三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.已知集合,若,则实数13.已知函数,则的单调增区间为14.若定义在上的函数同时满足;①为奇函数;②对任意的,,且,都有.则称函数具有性质P .已知函数具有性质P ,则不等式的解集为 .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.已知集合,.(1)当时,求,,A ∩(C R B ); (2)若,求实数m 的取值范围.16.已知关于x 的不等式的解集为.(1)求m ,n 的值;(2)正实数a ,b 满足,求的最小值.R ()f x 2()()1f x f x x --=+()13x f x =+0a >0b >21a b +=ab 0a >0b >32a b +=12a b a b+++20ab >4441a b ab ++0a >0b >31132a b a b+=++2+a b 165{}21,2,1A a a a =---1A -∈a =()2f x x x x =-+()f x (,0)(0,)-∞+∞ ()f x ()f x 1x 2(0,)x ∈+∞12x x ≠x f x x f x x x -<-211212()()0()f x ()f x 2(4)(2)2f x f x x --<+{}27|A x x =-<<{}|121B x m x m =+≤≤-4m =A B ⋂A B A B B = 2200x mx --<{}2|x x n -<<2na mb +=115a b+17.已知幂函数为偶函数.(1)求的解析式; (2)若在上是单调函数,求实数的取值范围.18.已知函数.(1)证明:函数是奇函数;(2)用定义证明:函数在上是增函数;(3)若关于的不等式对于任意实数恒成立,求实数的取值范围.19.已知函数(1)证明:,并求函数的值域;(2)已知为非零实数,记函数的最大值为.①求;②求满足的所有实数.()()2157m f x m m x -=-+()f x ()()3g x f x ax =--[]1,3a ()31x f x x x =++()f x ()f x ()0,∞+x ()()2310f ax ax f ax ++-≥x a ()()f x g x ==()()222f x g x =+()f x a ()()()x x h f g x a =-()m a ()m a ()1m a m a ⎛⎫= ⎪⎝⎭a。
湖南省长沙市2024-2025学年高一上学期期中考试 数学含答案

2024年下学期期中考试试卷高一数学(答案在最后)时量:120分钟分值:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{1,2}A =,{,}B xy x A y A =∈∈,则集合B 中元素的个数为()A.4B.3C.2D.12.设,a b ∈R ,则“a b =”是“22a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.命题“a ∃∈R ,210ax +=有实数解”的否定是()A.a ∀∈R ,210ax +≠有实数解 B.a ∃∈R ,210ax +=无实数解C.a ∀∈R ,210ax +=无实数解D.a ∃∈R ,210ax +≠有实数解4.已知集合{1,2}M =,{1,2,4}N =,给出下列四个对应关系:①1y x=,②1y x =+,③y x =,④2y x =,请由函数定义判断,其中能构成从M 到N 的函数的是()A.①②B.①③C.②④D.③④5.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是()A. B.C. D.6.若0a >,0b >,且4a b +=,则下列不等式恒成立的是()A.02a << B.111a b+≤2≤ D.228a b +≤7.已知定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则满足()0xf x <的x 的取值范围是()A.(,2)(2,)-∞-+∞B.(0,2)(2,)+∞ C.(2,0)(2,)-+∞ D.(,2)(0,2)-∞-8.若函数2(21)2(0)()(2)1(0)b x b x f x x b x x -+->⎧=⎨-+--≤⎩,为在R 上的单调增函数,则实数b 的取值范围为()A.1,22⎛⎤⎥⎝⎦ B.1,2⎛⎫+∞⎪⎝⎭C.[]1,2 D.[2,)+∞二、多选题:本题共3题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全选对的得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()bf x x x=+,下列说法正确的是()A.若1b =,则函数()f x 的最小值为2B.若1b =,则函数()f x 在(1,)+∞上单调递增C.若1b =-,则函数()f x 的值域为RD.若1b =-,则函数()f x 是奇函数10.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的部分图象如图所示,则()A.0abc >B.0a b +>C.0a b c ++< D.不等式20cx bx a -+>的解集为112x x ⎧⎫⎨⎬⎩⎭-<<11.定义在R 上的函数()f x 满足()()()f x f y f x y +=+,当0x <时,()0f x >.则下列说法正确的是()A.(0)0f = B.()f x 为奇函数C.()f x 在区间[],m n 上有最大值()f n D.()2(21)20f x f x -+->的解集为{31}x x -<<三、填空题,本题共3小题,每小题5分,共15分.12.若36a ≤≤,12b ≤≤,则a b -的范围为________.13.定义在R 上的函数()f x 满足:①()f x 为偶函数;②()f x 在(0,)+∞上单调递减;③(0)1f =,请写出一个满足条件的函数()f x =________.14.对于一个由整数组成的集合A ,A 中所有元素之和称为A 的“小和数”,A 的所有非空子集的“小和数”之和称为A 的“大和数”.已知集合{1,0,1,2,3}B =-,则B 的“小和数”为________,B 的“大和数”为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合{3}A x a x a =≤≤+,集合{1B x x =<-或5}x >,全集R U =.(1)若A B =∅ ,求实数a 的取值范围;(2)若命题“x A ∀∈,x B ∈”是真命题,求实数a 的取值范围.16.(15分)已知幂函数()2()253mf x m m x =-+是定义在R 上的偶函数.(1)求()f x 的解析式;(2)在区间[]1,4上,()2f x kx >-恒成立,求实数k 的取值范围.17.(15分)已知关于x 的不等式(2)[(31)]0mx x m ---≥.(1)当2m =时,求关于x 的不等式的解集;(2)当m ∈R 时,求关于x 的不等式的解集.18.(17分)为促进消费,某电商平台推出阶梯式促销活动:第一档:若一次性购买商品金额不超过300元,则不打折;第二档:若一次性购买商品金额超过300元,不超过500元,则超过300元部分打8折;第三档:若一次性购买商品金额超过500元,则超过300元,不超过500元的部分打8折,超过500元的部分打7折.若某顾客一次性购买商品金额为x 元,实际支付金额为y 元.(1)求y 关于x 的函数解析式;(2)若顾客甲、乙购买商品金额分别为a 、b 元,且a 、b 满足关系式45085b a a =++-320(90)a ≥,为享受最大的折扣力度,甲、乙决定拼单一起支付,并约定折扣省下的钱平均分配.当甲、乙购买商品金额之和最小时,甲、乙实际共需要支付多少钱?并分析折扣省下来的钱平均分配,对两人是否公平,并说明理由.(提示:折扣省下的钱=甲购买商品的金额+乙购买商品的金额-甲乙拼单后实际支付的总额)19.(17分)经过函数性质的学习,我们知道:“函数()y f x =的图象关于原点成中心对称图形”的充要条件是“()y f x =是奇函数”.(1)若()f x 为定义在R 上的奇函数,且当0x <时,2()1f x x =+,求()f x 的解析式;(2)某数学学习小组针对上述结论进行探究,得到一个真命题:“函数()y f x =的图象关于点(,0)a 成中心对称图形”的充要条件是“()y f x a =+为奇函数”.若定义域为R 的函数()g x 的图象关于点(1,0)成中心对称图形,且当1x >时,1()1g x x=-.(i )求()g x 的解析式;(ii )若函数()f x 满足:当定义域为[],a b 时值域也是[],a b ,则称区间[],a b 为函数()f x 的“保值”区间,若函数()tg()(0)h x x t =>在(0,)+∞上存在保值区间,求t 的取值范围.2024年下学期期中考试参考答案高一数学1.B2.A3.C4.D【详解】对于①,1y x =,当2x =时,1N 2y =∉,故①不满足题意;对于②,1y x =+,当1x =-时,110N y =-+=∉,故②不满足题意;对于③,y x =,当1x =时,1y N =∈,当2x =时,2N y =∈,故③满足题意;对于④,2y x =,当1x =时,1y N =∈,当2x =时,4N y =∈,故④满足题意. D.5.A6.C 【详解】因为0a >,0b >,当3a =,1b =时,3ab =,1114133a b +=+=,2210a b +=,所以ABC 选项错误.由基本不等式a b +≥22a b+≤=,选C.7.A 【详解】定义在R 上的奇函数()f x 在(,0)-∞上单调递减,故函数在(0,)+∞上单调递减,且(2)0f =,故(2)(2)0f f -=-=,函数在(2,0)-和(2,)+∞上满足()0f x <,在(,2)-∞-和(0,2)上满足()0f x >.()0xf x <,当0x <时,()0f x >,即(,2)x ∈-∞-;当0x >时,()0f x <,即(2,)x ∈+∞.综上所述:(,2)(2,)x ∈-∞-+∞ .故选A.8.C 【详解】21020221b b b ->⎧⎪-⎪≥⎨⎪-≥-⎪⎩,解得12b ≤≤.∴实数b 的取值范围是[]1,2,故选C.9.BCD 10.ACD11.ABD解:因为函数()f x 满足()()()f x f y f x y +=+,所以(0)(0)(0)f f f +=,即2(0)(0)f f =,则(0)0f =;令y x =-,则()()(0)0f x f x f +-==,故()f x 为奇函数;设12,x x ∈R ,且12x x <,则1122122()()()()f x f x x x f x x f x =-+=-+,即1212())()(0f x f x f x x -=->,所以()f x 在R 上是减函数,所以()f x 在区间[],m n 上有最大值()f m ;由2(21)(2)0f x f x -+->,得2(23)(0)f x x f +->,由()f x 在R 上减函数,得2230x x +-<,即(3)(1)0x x +-<,解得31x -<<,所以2(21)(2)0f x f x -+->的解集为{31}x x -<<,故选ABD.12.[1,5]13.21x -+(答案不唯一)14.5,80【详解】由题意可知,B 的“小和数”为(1)01235-++++=,集合B 中一共有5个元素,则一共有52个子集,对于任意一个子集M ,总能找到一个子集M ,使得M M B = ,且无重复,则M 与M 的“小和数”之和为B 的“小和数”,这样的子集对共有54222=个,其中M B =时,M =∅,考虑非空子集,则子集对有421-对,则B 的“大和数”为4(21)5580-⨯+=.故答案为:5;80.15.【详解】(1)因为3a a <+对任意a ∈R 恒成立,所以A ≠∅,又A B =∅ ,则135a a ≥-⎧⎨+≤⎩,解得12a -≤≤;(2)若x A ∀∈,x B ∈是真命题,则有A B ⊆,则31a +<-或5a >,所以4a <-或5a >.16.【详解】(1)因为2()(253)mf x m m x =-+是幂函数,所以22531m m -+=,解得2m =或12,又函数为偶函数,故2m =,2()f x x =;(2)原题可等价转化为220x kx -+>对[1,4]x ∈恒成立,分离参数得2k x x <+,因为对[1,4]x ∈恒成立,则min 2(k x x<+,当0x >时,2x x +≥=当且仅当2x x=即x =时取得最小值.故k <17.【详解】(1)解:当2m =时,不等式可化为(1)(5)0x x --≥解得1x ≤或5x ≥,所以当2m =时,不等式的解集是{1x x ≤或5}x ≥.(2)①当0m =时,原式可化为2(1)0x -+≥,解得1x ≤-;②当0m <时,原式可化为2((31)]0x x m m ---≤,令231m m =-,解得23m =-或1;1)当23m <-时,231m m -<.故原不等式的解为231m x m -≤≤;2)当23m =-时,解得3x =-;3)当203m -<<时,231m m <-,原不等式的解为231x m m≤≤-;③当0m >时,原式可化为2((31)]0x x m m---≥,1)当01m <<时,231m m >-,2x m∴≥或31x m ≤-;2)当1m =时,不等式为2(2)0x -≥,x ∈R ;3)当1m >时,231m m <-,31x m ∴≥-或2x m≤.综上,当23m <-时,原不等式的解集为231x m x m ⎧⎫⎨⎬⎩⎭-≤≤;当23m =-时,不等式的解集为{}3x x =-;当203m -<<时,解集为231x x m m ⎧⎫⎨⎬⎩⎭≤≤-;当0m =时,解集为{}1x x ≤-;当01m <<时,不等式的解集是{2x x m ≥或31}x m ≤-;当1m =时,不等式的解集为R ;当1m >时,解集是{31x x m ≥-或2}x m≤.18.【详解】(1)由题意,当0300x <≤时,y x =;当300500x <≤时,3000.8(300)0.860y x x =+-=+;当500x <时,3000.8(500300)0.7(500)0.7110y x x =+-+-=+.综上,,03000.860,300500 0.7110,500x x y x x x x <≤⎧⎪=+<≤⎨⎪+<⎩.(2)甲乙购买商品的金额之和为4502320(90)85a b a a a +=++≥-.45045023202(85)3201708585a b a a a a +=++=-+++--490230490550≥=⋅+=(元)当且仅当4502(85)85a a -=-即8515a -=±时,原式取得最小值.此时100a =(或70a =,舍去),550450b a =-=(元)因为550500>,则拼单后实付总金额0.7550110495M =⨯+=(元)故折扣省下来的钱为55049555-=(元).则甲乙拼单后,甲实际支付5510072.52-=(元),乙实际支付55450422.52-=(元)而若甲乙不拼单,因为100300<,故甲实际应付100a '=(元);300450500<<,乙应付0.845060420b '=⨯+=(元).因为420元<422.5元,若按照“折扣省下来的钱平均分配”的方式,则乙实付金额b 比不拼单时的实付金额b '还要高,因此该分配方式不公平.(能够答出“乙购买的商品的金额是甲购买商品的金额的4.5倍,则乙应减的价钱应是甲的4.5倍,故不公平”之类的答案的可酌情给分)答:当甲、乙的购物金额之和最小时,甲、乙实际共需要支付495元.若按“折扣省下来的钱平均分配”的方式拼单,则拼单后乙实付422.5元,比不拼单时的实付420元还要高,因此这种方式对乙不公平.19.【详解】(1)()f x 为定义在R 上的奇函数,当0x >时,0x -<,所以()()f x f x =--()2211x x ⎡⎤=--+=--⎣⎦,又()00f =,所以()221,00,01,0x x f x x x x ⎧+<⎪==⎨⎪-->⎩;(2)(i )因为定义域为R 的函数()g x 的图象关于点()1,0成中心对称图形,所以()1y g x =+为奇函数,所以()()11g x g x +=--,即()()2g x g x =--,1x <时,21x ->,所以()()1121122g x g x x x ⎛⎫=--=--=-+ ⎪--⎝⎭.所以()11,111,12x xg x x x ⎧-≥⎪⎪=⎨⎪-+<⎪-⎩;(ii )()()()11,1tg 011,12t x x h x x t t x x ⎧⎛⎫⋅-≥ ⎪⎪⎪⎝⎭==>⎨⎛⎫⎪⋅-+< ⎪⎪-⎝⎭⎩,a )当()0,1x ∈时,()11()11022h x t t t x x ⎛⎫⎛⎫=⋅-+=⋅--> ⎪ --⎝⎭⎝⎭在()0,1单调递增,当()[,]0,1a b ⊆时,则112112t a a t bb ⎧⎛⎫⋅--= ⎪⎪-⎪⎝⎭⎨⎛⎫⎪⋅--= ⎪⎪-⎝⎭⎩,即方程112t x x ⎛⎫⋅--= ⎪-⎝⎭在()0,1有两个不相等的根,即()220x t x t +--=在()0,1有两个不相等的根,令()()()22,0m x x t x t t =+-->,因为()()0011210m t m t t ⎧=-<⎪⎨=+--=-<⎪⎩,所以()220x t x t +--=不可能在()0,1有两个不相等的根;b )当()1,x ∈+∞时,()()110h x t t x ⎛⎫=⋅-=> ⎪⎝⎭在()1,+∞单调递增,当()[,]1,a b ⊆+∞时,则1111t a a t bb ⎧⎛⎫⋅-= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩,即方程11t x x ⎛⎫⋅-= ⎪⎝⎭在()1,+∞有两个不相等的根,即20x tx t -+=在()1,+∞有两个不相等的根,令()()2,0n x x tx t t =-+>,则有()2110022212n t t t t t n t t t⎧=-+>⎪⎪⎪⎛⎫⎛⎫⎛⎫=-⋅+<⎨ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪>⎪⎩,解得4t >.c )当01a b <<<时,易知()g x 在R 上单调递增,所以()()()tg 0h x x t =>在()0,+∞单调递增,此时11211t a a t bb ⎧⎛⎫⋅--= ⎪⎪-⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩,即()()()()()2222211221111111211112111a a a a a t a a a a a b b b t b b b b ⎧---+-====-+⎪⎪----⎨-+-+⎪===-++⎪---⎩令()()()11,011r a a a a =--+<<-,则易知()r a 在()0,1递减,所以()()00r a r <=即0t <,又1b >时,()112241t b b =-++≥=-,当且仅当()111b b -=-,即2b =时取等,以()()110111241t a a t b b ⎧=-+<⎪⎪-⎨⎪=-++≥⎪-⎩,此时无解;t 的范围是()4,+∞.。
广东省深圳市2024-2025学年高一上学期期中考试数学试卷(含答案)

2024-2025学年高一年级第一学期中考试数学试卷考试时长:120分钟 卷面总分:150分本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-11题,共58分,第Ⅱ卷为12-19题,共92分.全卷共计100分.考试时间为120分钟.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A.B.C.D.2.命题“”的否定是( )A. B.C.D.3.已知幂函数图象过点,则等于( )A.12B.19C.24D.364.已知函数在区间上是增函数,在区间上是减函数,则等于()A.B.1C.17D.255.已知命题“,使”是假命题,则实数的取值范围为( )A.B.C.D.6.若是偶函数且在上单调递增,又,则不等式的解集为( )A. B.或C.或 D.或7.若函数的定义域为,则函数的定义域为( )A. B. C. D.{}1,0,1,2,3,{12}A B xx =-=-<∣…A B ⋂={}1,0-{}1,0,1-{}0,1{}0,1,22,12x x x ∀∈>-R 2,12x x x ∀∈<-R 2,12x x x ∀∈-R …2,12x x x ∃∈-R …2,12x x x∃∈<-R ()fx )2P ()6f ()245f x x mx =-+[)2,∞-+(,2]∞--()1f 7-x ∃∈R ()()22210m x m x -+-+...m 6m >26m <<26m < (2)m …()f x [)0,∞+()21f -=()1f x >{22}x x -<<∣{2xx <-∣2}x >{2xx <-∣02}x <<{2xx >∣20}x -<<()21f x -[]3,1-y ={}131,2⎛⎤ ⎥⎝⎦35,22⎛⎤ ⎥⎝⎦51,2⎛⎤⎥⎝⎦8.若,且,则的最小值为( )A.B.C.D.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.命题“,都有”的否定是“,使得”B.当时,的最小值为C.若不等式的解集为,则D.“”是“”的充分不必要条件10.下列说法正确的是( )A.与B.命题,则C.已知函数在上是增函数,则实数的取值范围是D.函数的值域为11.已知函数,则下列判断中正确的有( )A.存在,函数有4个根B.存在常数,使为奇函数C.若在区间上最大值为,则的取值范围为或D.存在常数,使在上单调递减三、填空题:本题共3小题,每小题5分,共15分.12.已知集合,集合,若,则__________.13.已知函数在上单调递减,则实数的取值范围是__________.a b >2ab =22(1)(1)a b ab-++-24-4-2-0x ∀>21x x >-0x ∃…21x x -…1x >121x x +-2+220ax x c ++>{12}xx -<<∣2a c +=1a >11a<y =y =:,01x p x x ∀∈>-R :,01x p x x ⌝∃∈≤-R ()()()2511x ax x f x ax x ⎧---≤⎪=⎨>⎪⎩R a []3,1--1y x =-+1,2∞⎡⎫+⎪⎢⎣⎭(),f x x x a a =-∈R k ∈R ()y f x k =-a ()f x ()f x []0,1()1f a 2a ≤-2a ≥a ()f x []1,3{}1,3,2A m =-{}23,B m =B A ⊆m =()1ax f x x a-=-()2,∞+a14.若函数在区间上有最大值,则实数的取值范围是__________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知:关于的不等式的解集为:不等式的解集为.(1)若,求;(2)若是的必要不充分条件,求的取值范围.16.(15分)某开发商计划2024年在泉州开发新的游玩项目,全年需投入固定成本300万元,若该项目在2024年有万人游客,则需另投入成本万元,且该游玩项目的每张门票售价为60元.(1)求2024年该项目的利润(万元)关于人数(万人)的函数关系式(利润=销售额-成本);(2)当2024年的游客为多少时,该项目所获利润最大?最大利润是多少.17.(15分)已知满足.(1)求的最小值;(2)若恒成立,求的取值范围.18.(17分)已知函数是定义在上的奇函数,且.(1)求函数的解析式;(2)判断函数在(上的单调性,并用定义证明;(3)解不等式.19.(17分)设定义在上的函数满足:①对,都有;②当时,;③不存在,使得.()()()2224,02,0x x x f x x x ⎧-+>⎪=⎨≤⎪⎩()1,32a a --a p x ()224300x ax a a -+>…,A q 502x x -≤-B 1a =A B ⋂p q a x ()R x ()()225,(05)20100,(520),90061565,20x R x x x x x x x ⎧⎪<<⎪=+-≤<⎨⎪⎪+-≥⎩()W x x ,0x y >6x y +=3y x y+()2244x y m x y +≥+m ()24ax b f x x +=+()2,2-()115f =()f x ()f x 2,2)-()()210f t f t +->R ()f x ,x y ∀∈R ()()()()()1f x f y f x y f x f y ++=+0x >()0f x >x ∈R ()1f x =(1)求证:为奇函数;(2)求证:在上单调递增;2024-2025学年第一学期期中考试高一年级数学试卷答案一、选择题(共小题)题号1234567891011()f x ()f x R 11选项B C D D C B D D BCD AD BC三、填空题(共3小题)12.13.14.四、解答题(共5小题)15.解:(1):关于的不等式的解集为:不等式的解集为.当时,,解得,所以,又,所以,解得,所以,所以;(2)若是的必要不充分条件,则是的真子集,由(1)知时,集合,所以,则,又时,,符合是的真子集,时,,符合是的真子集,所以,综上,实数的取值范围为.16.解:(1)某开发商计划2024年全年投入固定成本300万元,若该项目在2024年有万人游客,则需另投入成本万元,且,该游玩项目的每张门票售价为60元,则,又,2-(,1)(1,2]∞--⋃[)0,1p x ()224300x ax a a -+>…,A q 502x x --…B 1a =2430x x -+…13x ……{}13A xx =∣ (5)02x x --…()()52020x x x ⎧--⎨-≠⎩…25x <…{25}B xx =<∣…{23}A B xx ⋂=<∣…p q B A ()22{25},4300B xx x ax a a =<-+>∣……0a >{}3A xa x a =∣……235a a ⎧⎨⎩ (5)23a ……2a ={}26A xx =∣……B A 53a =553A x x ⎧⎫=⎨⎬⎩⎭……B A 523a ……a 523aa ⎧⎫⎨⎬⎩⎭……x ()R x ()225,0520100,52090061565,20x R x x x x x x x ⎧⎪<<⎪=+-<⎨⎪⎪+-⎩……()()60300W x x R x =--()225,0520100,52090061565,20x R x x x x x x x ⎧⎪<<⎪=+-<⎨⎪⎪+-⎩……所以,即W ;(2)当时,单调递增,且当时,所以,当时,,则在上单调递增,所以,当时,,当且仅当即时等号成立,故,,综上,游客为30万人时利润最大,最大为205万.17.解:(1),当且仅当,即时取等号,即取得最小值.(2)由,得,即,不等式恒成立,即恒成立,()()26030025,056030020100,5209006030061565,20x x W x x x x x x x x x ⎧⎪--<<⎪⎪=--+-<⎨⎪⎛⎫⎪--+- ⎪⎪⎝⎭⎩……()260325,0540200,520900265,20x x x x x x x x x ⎧⎪-<<⎪=-+-<⎨⎪⎪--+⎩……05x <<60325y x =-5x =25y =-()25W x <-520x <…()2240200(20)200W x x x x =-+-=--+()W x ()5,20()200W x <20x …()900900265265265205W x x x x x ⎛⎫=--+=-++-+= ⎪⎝⎭ (900)x x=30x =()max 205W x =20520025>>- ()33211211213113122y y x y x x y x y x y x y x y x y ⎛⎫⎛⎫⎛⎫++=+-=+-=++-=++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭113122⎛+-=+ ⎝…2y xx y=()62,61x y =-=3y x y +12+0,0,6x y x y >>+=60x y =->06y <<()2244x y m x y ++…2244x y m x y++…,当且仅当,即时取等号,因此当时,取得最小值,则,所以的取值范围.18.解:(1)函数是定义在上的奇函数,则,即,因为,解得,则,经检验,是奇函数.(2)在(上为增函数,证明如下:设,则,由于,则,即,又,则有,则在上是增函数.(3)由题意可得,在上为单调递增的奇函数,由可得,所以,解得,,故的范围为.19.解:(1)证明:的定义域为,关于原点对称,令,得,解得或,又不存在,使得,故,令,得,故,即,因此为奇函数;()()()2222225(2)322804(6)4512364363232y y x y y y y y x y y y y +-+++-+-+===++++()5163253282323333y y ⎡⎤=++-⋅=⎢⎥+⎣⎦…1622y y +=+2y =4,2x y ==2244x y x y ++8383m …m 83m m ⎧⎫⎨⎬⎩⎭ (2)4ax bx ++()2,2-()004bf ==0b =()11145a f ==+1a =()24xf x x =+()f x ()f x 2,2)-22m n -<<<()()()()()()222244444m n mn m nf m f n m n m n ---=-=++++22m n -<<<0,4m n mn -<<40mn ->()()22440m n++>()()0f m f n -<()f x ()2,2-()f x ()2,2-()()210f t f t +->()()()211f t f t f t >--=-2212t t >>->-131t <<t 1,13⎛⎫ ⎪⎝⎭()f x R 0x y ==()()()220010f f f =+()00f =()01f =±x ∈R ()1f x =()00f =y x =-()()()()()()001f x f x f x x f f x f x +--===+-()()0f x f x +-=()()f x f x -=-()f x(2)证明:时,,则,当且仅当,等号成立,又不存在,使得,则,于是时,,又为奇函数,则时,,于是对,任取,则,而,又,则,于是,故,因此在上单调递增;0x >0,022x x f ⎛⎫>> ⎪⎝⎭()22212212x f x x f x f x f ⎛⎫ ⎪⎛⎫⎝⎭=+= ⎪⎛⎫⎝⎭+ ⎪⎝⎭…12x f ⎛⎫= ⎪⎝⎭x ∈R ()1f x =12x f ⎛⎫≠ ⎪⎝⎭0x >()01f x <<()f x 0x <()()()1,0f x f x =--∈-(),11x f x ∀∈-<<R 12x x <()21210,0x x f x x ->->()()()()()()()()()()212121212121011f x f x f x f x f x x f x x f x f x f x f x +--⎡⎤-=+-==>⎣⎦+--()()()12,1,1f x f x ∈-()()()121,1f x f x ∈-()()1210f x f x ->()()()()21210,f x f x f x f x ->>()f x R。
福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)

厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。
江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。
3.考试结束后,请将答题卡交监考人员。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每题给出的四个选项中只有一项是最符合题意的。
1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。
江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.考查范围:必修第一册第一章至第三章第二节。
2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。
2024-2025学年四川省成都市九县区高一上学期期中考试数学试卷含答案

2024~2025学年度上期高中2024级期中考试数学考试时间120分钟,满分150分一,选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22A x x =∈-≤≤Z ,{}03B x x =∈≤≤Z ,则A B = ()A.{}1,2 B.{}0,1,2 C.{}1,0,1,2- D.{}2,1,0,1,2,3--2.若命题p :x ∀∈R ,2230x x -+>,则p ⌝为()A.x ∀∈R ,2230x x -+< B.x ∀∈R ,2230x x -+≤C.x ∃∈R ,2230x x -+< D.x ∃∈R ,2230x x -+≤3.下列四个命题中的真命题有()①若a b >,c d >,则a c b d +>+②若a b >,c d >,则ac bd>③若a b >,则22ac bc >④若a b >,则()()2211a cbc +>+A.②③B.②④C.①④D.③④4.函数()2441xf x x =-+的图象大致为()A.B. C.D.5.函数()f x =的定义域为()1,2,则ab =()A.2B.-2C.-1D.16.已知()f x 为定义在R 上的奇函数,当0x ≤时,()221f x x x a =++-,则()1a f +=()A.-2B.-1C.1D.17.高一某班共有45名学生,该班参加数学强基班的学生有25人,参加物理强基班的学生有18人,既参加数学强基班又参加物理强基班的学生有8人,则既没有参加数学强基班又没有参加物理强基班的学生有()A.10人B.11人C.12人D.13人8.集合{}1,3,5,7M =的所有子集中的元素之和为()A.126B.128C.130D.132二,选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1已知集合{|0}A x x =>,{
}||
|2x B y y ==,则A
C B =( )
A. {|0}x x <
B. {|01}x x <<
C. {|12}x x ≤≤
D. {|01}x x ≤≤
2已知集合4
1|22x A x -⎧⎫
=≥⎨⎬⎩⎭
,集合{}2|3100B x x x =--≤,求A ∩B =( ) A. ∅
B. [3,5]
C. [-2,3]
D. (3,5)
3下列函数中,既是偶函数,又在(0,+∞)上单调递增的是( ) A. x
x
y e e -=-
B. 2
1y x =-
C. 2
x
y -=
D. ln y x =
4已知函数41()2
x x
f x -=,()0.32a f =,()
0.3
0.2b f =,()0.3log 2c f =,则a 、b 、c 的大小关系为( ) A. c b a << B. b a c << C. b c a << D. c a b << 5已知函数f (x )的定义域为[-2,3]
,则函数2()g x = )
A. (,1)
(2,)-∞-+∞ B. [6,1)(2,3]--⋃
C. [1)-⋃
D. [2,1)(2,3]--⋃
6 若f (x )满足对任意的实数a 、b 都有()()()f a b f a f b +=且()12f =,则
(2)(4)(6)
(2018)
(1)(3)(5)
(2017)
f f f f f f f f ++++
=( )
A. 1008
B. 2018
C. 2014
D. 1009
7若函数2()2f x x ax =-+在区间[0,1]上是增函数,在区间[3,4]上是减函数,则实数a 的取值范围是( ) A.(0,3)
B. (1,3)
C. [1,3]
D. [0,4]
8 用{}min ,a b 表示a ,b 两个数中的最小值,设{}()min 2,4f x x x =---,则f (x )的最大值为( ) A. -2
B. -3
C. -4
D. -6
9已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f 13⎛⎫ ⎪⎝⎭
的x 的取值范围是( ) A. 12,
33⎛⎫
⎪⎝⎭
B. 12,
33⎡⎫
⎪⎢⎣⎭
C. 12,23⎛⎫
⎪⎝⎭
D. 12,
23⎡⎫
⎪⎢⎣⎭
10已知定义域为R 的函数121
()2x x f x m +-+=+是奇函数,则不等式()(1)0f x f x ++>解集为( )
A. 1
{|}2
x x <-
B. {|2}x x <-
C. 122x x ⎧
⎫-<<-⎨⎬⎩
⎭
D. {}
0x x <
11已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x
f x =-,则()f m 的值为( )
A. -15
B. -7
C. 3
D. 15
12已知f (x )是定义在(-∞,0)∪(0,+∞)上的偶函数,若f (x )在(0,+∞)上单调递减,且()10f -=,则不等式
(1)()0x f x -≤的解集为( )
A. {|10}x x -≤<
B. {|1}x x ≥-
C. {|10x x -≤< 或0}x >
D. { | 0}x x >
13已知a R ∈,函数()2
f x ax x =-,若存在[]0,1t ∈,使得()()22f t f t +-≤成立,则实数a 的取值范围为( ) A. [0,1]
B. (-∞,1]
C. 0,12
⎡⎤⎢⎥⎣⎦
D. 12
,⎛-∞⎤ ⎥⎝
⎦
14已知函数的定义域为R ,且对任意的12,x x 且12x x ≠都有()()()11120f x f x x x -->⎡⎤⎣⎦成立,若
()()2211f x f m m +>--对x ∈R 恒成立,则实数m 的取值范围是( )
A. ()1,2-
B. []1,2-
C. (,1)
(2,)-∞-+∞
D. (][),12,-∞-⋃+∞
15 定义在R 上的偶函数f (x ),对任意的()12,,0x x ∈-∞,都有()()()12120x x f x f x --<⎡⎤⎣⎦,(1)0f -=,则不等式()0xf x <的解集是( )
A. (1,1)-
B. (,1)(1,)-∞-+∞
C. (1,0)(1,)
-⋃+∞
D.
(,1)(0,1)-∞-
16若1)f x =f (x )的解析式为( )
A. 2()f x x x =-
B. 2()(0)f x x x x =-≥
C. ()2
()1f x x x x =-≥
D. 2()f x x x =+
17已知函数()()()()()24112111x
a x f x x a x x ⎧--<⎪=⎨+-+≥⎪⎩
在R 上是增函数,则实数a 的取值范围为( ) A.[1,+∞) B.[0,1] C.[1,3)
D. [0,3)
18化简()11
11
2
32
240,0a b a b a b ⎛⎫⎛⎫÷>> ⎪ ⎪⎝⎭⎝⎭
结果为( ) A. a B. b C.
a
b
D.
b a
19已知集合{|12}A x x =≤≤,集合{|}B x x a =≥,若A B B ⋃=,则实数a 的取值范围是_______.
20已知集合{}
2
(2)(1)(21)0A x x
m x m m =-++-+≤.集合B x y ⎧⎪==
⎨⎪⎩. (Ⅰ)当1m =时,求A B ;
(Ⅱ)若B A ⊆,求实数m 的取值范围.
21已知集合{}|22A x a x a =-≤≤+,{}
|14B x x x =≤≥或. (1)当3a =时,求A ∩B ; (2)若A B =∅,求实数a 的取值范围.
22计算:(1
)
6
+213
298⨯+lg500lg 0.5-;
(2
)13
012412()81()10(23003
--++-⨯ (3)()
2
2
3
0332018328-⎛⎫⎛⎫-+⋅+ ⎪ ⎪
⎝⎭⎝⎭
(4
)2
2333(0.9)()(3)28
--+⋅+
(5
)(10
11
5
3
52443-
-⎛⎫
⎛⎫
⨯-+-- ⎪ ⎪⎝⎭
⎝⎭
;
23已知()y f x =是定义域为R 的奇函数,当[)0,x ∈+∞时,()2
2f x x x =-. (1)写出函数()y f x =的解析式;
(2)若方程()f x a =恰3有个不同的解,求a 的取值范围.
24已知函数()1515
x
x
f x -=+. (1)写出f (x )的定义域;(2)判断f (x )的奇偶性;
(3)已知f (x )在定义域内为单调减函数,若对任意的t R ∈,不等式(
)(
)
2
2
220f t t f t k -+-<恒成立,求实数k 的取值范围.
25已知函数32
()31
x x a a f x bx ⋅+-=++是定义在R 上的奇函数,a ,b R ∈
(1)判断函数f (x )的单调性;
(2)若对任意的k ∈R ,不等式22(2)(1)0f k t f kt t -+++≥恒成立,求实t 数的取值范围.
26已知函数222,0,
()0,
0,,0x x x f x x x mx x ⎧-+>⎪
==⎨⎪+<⎩
是奇函数. (1)求实数m 的值;
(2)若函数f (x )在区间[1,2]a --上是单调增函数,求实数a 的取值范围; (3)求不等式()()
0f x f x x
--<的解集.
27已知二次函数f (x )的最小值为1,(0)(2)3f f ==. (1)求f (x )的解析式;
(2)若f (x )在区间[2,1]a a +上不单调,求a 的取值范围; (3)若[,2]x t t ∈+,试求()y f x =的最小值.
28已知函数()21
ax f x x
+=,其中a R ∈.
(1)若(0,1]a ∈,判断函数f (x )在(0,1]上的单调性,并用定义加以证明; (2)若1a =,不等式()
2
()0mf x f x ->在122x ⎡⎤
∈⎢⎥⎣⎦
,上恒成立,求实数m 的取值范围.
29设函数()2
22f x x tx =-+,且函数f (x )的图象关于直线1x =对称.
(1)求函数f (x )在区间[0,4]上的最小值; (2)设()()f x h x x
=
,不等式()220x x
h k -⋅≥在[]1,1x ∈-上恒成立,求实数k 的取值范围.。