管理经济学第四章生产决策分析解析
管理经济学-第四章 生产决策分析.ppt

Y
Y Px X TC0
PyPy0X Nhomakorabea等成本曲线的性质:
u 等成本曲线的斜率由要素的价格决定; u 等成本曲线的位置与总成本大小有关
三 投入要素的最佳组合
u 最佳组合的含义: u 产量一定时成本最低; 或 u 成本一定时产量最大; u 分析工具: 等产量曲线与等成本曲线
u (上式成立前提:要素价格与商品价格皆为常 数)
PQ
Px MPx
一个数量例子:
• 巨浪公司生产袖珍计算器,设备的数量在短期内不
会改变,但可以改变工人的数量。每天产量与工人的数
量之间的关系为:
u
Q 98L 3L2
u 计算器的价格为每只50元,工人每天的工资为30元。该 公司使用多少工人可以使利润达到最大?
规模收益递增的原因
u 专业化分工。规模是专业化分工深度的 决定因素之一。
u 要素的不可任意分割性; u 几何因素的影响; u 规模收益递减的原因 u 管理上的原因
规模收益类型的判断
u 对于齐次生产函数,可以根据生产函数的幂指数次数 来判断。
u
f (kx,ky,kz) k n f (x, y, z)
u生产函数中的产量是指一定技术水平下,一定 数量的投入要素所可能得到的最大产量。(即 理论上的产量) 生产函数的本质是一种技术关 系。当发生技术进步时,生产函数将会发生改 变。
第二节 一种变动要素的生产系统
u 总产量、平均产量与边际产量
u 总产量:一定数量投入要素所获得的全部产量
TP
u 平均产量:每单位投入要素所获得的产量
第三节 多种变动投入要素的 生产系统需要
• 回答的问题:
管理经济学第8版PPT第04章——生产决策分析

根据最优组合的一般原理,最优组合的条件是:
=
即
或
−1
=
=
=
−1
所以,K和L两种投入要素的最优组合比例为aPL/bPK。
• 三、最优投入要素组合的确定
• 2.多种投入要素最优组合的一般原理
例4-5
某出租汽车公司现有小型轿车100辆,大型轿车15辆。如再增加一辆小型轿车,估计每月可增加营业收
7
12
180
8
8
120
9
4
60
10
0
0
185
205
270
340
270
230
180
160
140
120
当工人人数为7时,MRPL=MEL=180。所以,最优工人人数应定为7人。
01
生产函数
04
02
单一可变投入要素的
最优利用
规模与收益的关系
06
05
03
多种投入要素的最优
组合
柯布-道格拉斯生产
函数
生产函数和技术进步
单一可变投入要素的
最优利用
规模与收益的关系
06
05
03
多种投入要素的最优
组合
柯布-道格拉斯生产
函数
生产函数和技术进步
• 一、规模收益的三种类型
• 假定aL+aK=bQ,那么,可以把规模收益分为
三种类型。
• 第一种类型:b>a,规模收益递增。
• 第二种类型:b=a,规模收益不变。
管理经济学-第四讲-生产决策与成本分析资料讲解

长期与短期的划分标准
划分标准:是有无固定投入要素,而非 具体时间的长短。
一定时期内固定要素变动的难易跟企业 所属行业的性质紧密相关,因而短期或 长期的时间跨度一般取决于企业所属的 行业。
总产量、平均产量和 边际产量曲线之间的关系
1、平均产量曲线上的任一点的值, 是总产量曲线上相应点与原点连线 的斜率;因此,在APL曲线在C点达 到最大值。
2、边际产量曲线上的任一点的值,是总 产量曲线上该点切线的斜率。如果边际 产量为正,总产量是增加的;如果边际 产量为负,总产量是减少的;当边际产 量为零时,总产量达到最大值(D点)。 边际产量在L1时为最大,它对应于总产 量曲线上的拐点B。在拐点,总产量函数 从按递增的速度增加改变为按递减的速 度增加。
生产要素:劳动、土地、资本和企业家 才能
第一节 生产函数
一、生产函数 生产函数(Production Function)
在一定时期内,在生产的技术水 平不变的情况下,生产中所投入的 生产要素的数量与其所能达到的最 大产量之间的一一对应的关系。
生产函数的数学表达式
» 假定X1, X2, … X n顺次表示某产品生产
一般情况下,固定要素的数量越多,单 位可变要素平均配置的固定要素也越多, 因而其生产率会更高,表现为边际产量 更大。
平均产量(Average Product)
Labor Average product
a
0
-
b
1
4.00
c
2
5.00
d
3
4.33
e
管理经济学第四_20生产决策_ppt

第4章 生产决策分析
•第1节 什么是生产函数 •第2节 单一可变投入要素的最优利用 •第3节 多种投入要素的最优组合 •第4节 规模与收益的关系 •第5节 柯布-道格拉斯生产函数 •第6节 生产函数和技术进步
2
第1节 什么是生产函数
3
生产函数的概念
• 生产函数反映在生产过程中,一定的投入要素组 合所能生产的最大产量。其数学表达式 为: Q f ( x1 , x2 , xn ) 。 • 不同的生产函数代表不同的技术水平。 • 短期生产函数——至少有一种投入要素的投入量 是固定的;长期生产函数——所有投入要素的投 入量都是可变的。
MPL K L 1 假定在这一期间,该单位增加的全部产量为ΔQ。
Q MPK . K MPL . L Q
MP 式中, K K MPL L 为因增加投入而引起的产量的增加; ΔQ ′为由技术进步引起的产量的增加。 两边均除以Q ,得:
Q MPK K K MPL L L Q Q Q K Q L Q
GA GQ GK GL
52
[例4—7]
Q 假定某企业期初的生产函数为: 5K 0.4 L0.4。在这期间,该 企业资本投入增加了10 %,劳动力投入增加了15%,到期末总 产量增加了20%。(1)在此期间该企业因技术进步引起的产量 增长率是多少? (2)在此期间,技术进步在全部产量增长中做 出的贡献是多大? 解:(1)因技术进步引起的产量增长率为:GA=GQ-αGK -βGL=20 %-0.4×10%-0.6×15% =7% 即在全部产量增长率 20%中,因技术进步引起的产量增长率为7%。 (2)技术进步在全部产量增长中所做的贡献为:GA/GQ× 100%=7%/20%×100%=35% 即在全部产量增长中,有35%是 由技术进步引起的。
管理经济学第四章生产决策分析

生产要素最优组合的应用
生产者行为分析
01
通过分析生产要素最优组合的条件,理解生产者如何选择最优
的生产要素组合以实现利润最大化。
生产要素价格变动的影响
02
生产要素价格变动会导致等成本线移动,进而影响生产要素最
优组合的选择。
生产决策与市场结构
03
在不同的市场结构下,企业面临的等产量线和等成本线的形状
和位置会有所不同,从而影响生产要素最优组合的选择。
绿色生产与可持续发展
清洁能源
采用太阳能、风能等清洁能源,减少对化石燃料的依赖,降低碳 排放。
循环经济
通过循环使用和回收生产过程中的废弃物,降低对原材料的需求, 减少环境污染。
绿色供应链
从原材料采购到产品回收,整个供应链都应遵循绿色原则,确保环 境友好。
企业社会责任与生产决策
员工福利
企业应关注员工的福利待遇,提 供安全、健康的工作环境,保障 员工的权益。
社区参与
企业应积极参与社区活动,为当 地居民创造就业机会,提供培训 和教育支持。
道德与法律
企业应遵守道德和法律规定,避 免任何形式的非法活动,维护企 业声誉。
THANKS FOR WATCHING
感谢您的观看
05 环境因素与生产决策
环境因素对生产决策的影响
资源利用
企业在制定生产决策时,必须考虑资源的有限性。合理利用资源, 避免浪费,是实现可持续发展的关键。
环境法规
随着环保意识的增强,各国政府纷纷制定严格的环保法规。企业必 须遵守这些法规,否则可能面临罚款、声誉损失等风险。
消费者需求
越来越多的消费者关注产品的环保性能。企业需根据消费者需求调整 生产策略,以满足市场需求。
经济学原理第四章生产决策分析

要点二
不完全竞争市场
在不完全竞争市场中,生产者数量较少且产品存在差异, 生产者具有一定的定价权。价格的形成受到生产者之间的 竞争和消费者需求的影响,生产者会根据市场需求和竞争 对手的定价策略来制定价格。
非竞争市场下价格形成过程
垄断市场
在垄断市场中,只有一个生产者提供某种商品或劳务, 该生产者具有完全的定价权。价格的形成完全取决于生 产者的决策,生产者会根据市场需求和成本情况来制定 价格以最大化利润。
04
市场供需关系与价格机制
市场供需关系基本原理
01
供给与需求定义
供给是指在一定价格下,生产者愿意并能够出售的商品或劳务的数量;
需求则是在一定价格下,消费者愿意并能够购买的商品或劳务的数量。
02
供需平衡
当供给与需求相等时,市场达到均衡状态,此时的价格被称为均衡价格,
对应的商品或劳务数量被称为均衡数量。
扶持中小企业
政府通过提供融资支持、税收优惠等措施扶持中 小企业发展,促进市场竞争和就业增长。
技术创新
政府鼓励企业技术创新,提高产业技术水平和竞 争力,促进经济增长。
环保和可持续发展
政府推动产业实现环保和可持续发展,限制高污 染、高耗能产业发展,鼓励清洁能源、环保产业 发展。
政府干预效果评价
资源配置效率
土地和自然资源需求分析
根据生产流程和预期产出,分析所需土地和 自然资源的数量、质量和成本等要求。
土地和自然资源供给分析
评估现有土地和自然资源的可用性、可持续性和成 本等因素,以及外部市场的状况。
土地和自然资源投入决策
基于需求和供给分析,制定土地和自然资源 投入计划,包括获取方式、使用效率、环境 保护和风险管理等策略。
管理经济学005 第四章 生产决策分析____产品产量的最优组合问题

Managerial Economics
产品产量的最优组合
如果一家企业生产多种产品,那么这些产品的 产量如何组合,才能使利润最大?
这类问题就是产品产量的最优组合问题。本章 从两方面来讨论这个问题:
( 1 )首先讨论确定这种最优组合决策的理论方法; ( 2 )讨论确定这种最优组合的实用方法,即线性 规划。
Managerial Economics
产品产量的最优组合
为什么产品 A 的边际转换率会随着 A 产量 的增加而递增呢? 这是因为边际收益递减规律在起作用的缘 故。
Managerial Economics
产品产量的最优组合
有一家地毯工厂,假定条件:
a、只有两种资源-资本和劳动力; b、生产两种产品-手织地毯和机织地毯; c、生产手织地毯主要使用劳动力,生产机织地毯主要使用 资本,也即假设不同的产品所使用的资源构成不同。
产品产量的最优组合
第二节 产品产量最优组合决策的实用方法 ——线性规划法
一、产品产量最优组合的线性规划模型
为了能用线性规划方法来确定产品产量的最优组合,需要对 有关的因素做一些假设。现假设: (1)每种产品的单位产量利润是已知的常数; (2)每种产品所使用的生产方法为已知,而且它们的规模收 益不变,即如果投入要素增加1倍,产量也增加1倍; (3)企业能够得到的投入要素的数量有限,而且已知; (4)企业的目标是谋求利润最大。
Managerial Economics
产品产量的最优组合
假定一家企业生产两种产品,x和y;生产单位产品x的利润 贡献为4万元,生产单位产品y的利润贡献为6万元。企业使 用三种投入要素A,B和C。生产单位产品x要耗用A5个单位, B8个单位(生产产品x不需要耗用C)。生产单位产品y要耗用 A10个单位,B6个单位和C10个单位。企业共拥有A50个 单 位,B48个单位和C40个单位。
管理经济学第四讲生产决策与成本分析

管理经济学第四讲生产决策与成本分析一、引言在管理经济学中,生产决策与成本分析是非常重要的一部分。
生产决策是指企业如何使用有限的资源来生产产品或提供服务以满足市场需求。
成本分析则是对企业生产过程中产生的各项成本进行评估和分析,以了解企业的经济效益和决策结果。
本文将从生产决策和成本分析的角度来探讨这一主题。
二、生产决策生产决策是企业管理中最基本也是最重要的决策之一。
其目标是在给定的资源约束下,选择最优的生产组合以最大化效益。
在进行生产决策时,企业需要考虑以下几个关键因素:1. 生产要素有效的生产决策需要充分了解和合理配置生产要素。
生产要素通常包括劳动力、资本、原材料等。
企业需要考虑如何合理利用这些生产要素来最大化产出。
2. 生产函数生产函数是描述输入与输出之间关系的数学模型。
生产函数可以是线性的、曲线的或者其他形式的。
了解企业的生产函数可以帮助企业确定最佳的生产组合以达到最高的产出效益。
3. 边际产出边际产出是指增加一单位生产要素所能带来的额外产量。
通过计算边际产出,企业可以判断是否还需要增加生产要素,以及增加多少生产要素才能达到最佳效果。
4. 决策标准在进行生产决策时,企业需要根据一定的标准来评估决策方案。
最常用的标准包括利润最大化、成本最小化、资源利用效率等。
企业需要根据自身情况选择适合的决策标准。
三、成本分析成本分析是评估企业生产过程中各项成本的一种方法。
通过成本分析,企业可以了解成本的结构和变化,从而更好地制定经营决策。
成本分析通常包括以下几个方面:1. 成本分类成本可分为固定成本和变动成本。
固定成本是不随产量变化的成本,例如租金、设备折旧等。
变动成本是随产量变化的成本,例如原材料、工人工资等。
了解成本的分类可以帮助企业更好地控制和管理成本。
2. 成本曲线成本曲线是描述成本与产量之间关系的图表。
根据产量的不同,成本曲线可以呈现不同的形状,例如U型、倒U型等。
通过成本曲线,企业可以了解在不同产量水平下的成本变化情况,从而进行成本控制和决策分析。