平行四边形的面积案例及反思
平行四边形的面积教学反思8篇版

《平行四边形的面积教课反省》平行四边形的面积教课反省(一):平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教课的,平行四边形的面积公式推导方法的掌握,对学习后边三角形、梯形面积公式拥有重要的作用,全部平行四边形面积公式的推导,是本节课的要点。
教课中透过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后边学习新知识打下基础。
新课突出了三个环节,一是指引学生初步研究,透过提出一个客观的实质问题,假如有一块很大很大的平行四边形草地,还可以用数方格的方法计算它的面积吗?小组议论。
用问题激起学生再次研究,能够把要研究的平行四边形转变为我们学过的什么图形呢?二透过学生实质操作,用不一样方法把平行四边形转变为长方形,并透过操作,察看,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。
三是指引学生会用公式正确计算平行四边形面积,解决实质问题,在练习中,一定要做到一练一小结,提示学生要注意的问题。
平行四边形的面积公式是几何图形面积计算第一次运用转变思想方法推导得出的。
所以,本节课让学生形象直观地理解什么是转变,深刻理解转变的实质,就显得尤其重要。
关于转变思想,本节课不在是浸透的朦模糊胧,而是把这类学习方法明亮化,让转变本事成为学生思想的主角,并看作学习的一个要点让学生掌握。
我第一出示三个图形让学生透过比较,在直观的基础上,利用图形的转变,直接说出了它们的面积,浸透了转变的数学思想方法。
这样,学生应付计算平行四边形面积这一新问题,就很自然地获取了两种猜想:用平行四边形相邻两边相乘(从前学习的长方形面积计算公式等知识的负迁徙)和用平行四边形的底乘以高(转变思想方法的运用)。
从而,教师提出问题:同一个平行四边形的面积如何会有两个答案呢?激发学生进一步去研究。
迫使学生动脑筋想方法,用割补方法进行问题转变,考证了用底乘高的猜想是正确的,透过察看图形的动向变化,从比较中发现用相邻两边相乘是错误的。
平行四边形面积的教学反思范文模板11篇(人教版平行四边形的面积教学设计及反思)

平行四边形面积的教学反思范文模板11篇(人教版平行四边形的面积教学设计及反思)下面是整理的平行四边形面积的教学反思11篇(人教版平行四边形的面积教学设计及反思),供大家参考。
平行四边形面积的教学反思1《平行四边形的面积》这一课是在学生掌握了平行四边形、三角形、梯形这些图形的特征以及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开展学习的。
通过本节课的学习要使学生掌握平行四边形的面积公式,能准确计算平行四边形的面积。
通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
在解决实际问题的过程中,感受数学与生活的.联系,培养学生的数学应用意识。
于是,我尝试放手让学生自主探索发现平行四边形面积的计算。
通过工作室专家们的鼓励与指导,通过反思,我将坚定朝着以下几个方面努力。
一、注重师生互动、生生互动。
最好的教学是最适合学生发展的教学,了解学生、研究学生、分析学生、激励学生,是教师永远的工作,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,同时获得广泛的数学活动经验。
互动是一种师生之间双向沟通的教学方法,就是把教学活动看作是师生之间进行的一种真诚,和谐的交往沟通。
通过优化“师生互动”的方式,即可以调节师生关系及其相互作用,形成和谐的师生互动、生生互动,学习个体与教学中介的互动,更能提升学生人际交往能力强化人与社会的相互影响;还可以产生教学共振,让教学效果达到潜移默化的提高。
二、注重语言的变化,学会放手。
在课堂中,教师的一个表情、一个动作、一个手势可以改变很多,可以控制或调节课堂气氛节奏,增强教学效果,还可以促进师生间、生生间的情感交流。
在本节课中我没有完全放开,语言、动作、课堂,今后也要加强自身的学习增强数学素养。
在课堂当中也要学会放手,我们工作室古主任一直强调“三让”让出讲台、让出话筒、让出黑板,就是要让学生多说,让出课堂,多让孩子发言,自主发言,充分发挥学生的主体作用。
数学平行四边形的面积教学反思优秀5篇

数学平行四边形的面积教学反思优秀5篇《平行四边形的面积》教学反思篇一教学目标:1. 探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。
2. 让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。
教学重点:探究平行四边形的面积计算公式。
教学难点:充分理解剪拼成的充分理解剪拼成的长方形与原平行四边形之间和关系。
教学具准备:平行四边形纸片、尺子、剪刀、课件教学过程一、谈话,揭题:1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?2、揭题:平行四边形的面积。
二、探究新知:问题(一)要求这个()的面积,你认为必须知道哪些条件?1、同桌交流2、反馈:①长边×短边=10×7=70平方厘米②底×高=10×6=60平方厘米3、引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?4、学生动手验证(小组合作)5、请小组代表说明验证过程问题(二)为什么要沿着高将平行四边形剪开?问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的`面积,你还能剪拼吗?1、引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?2、推导公式:平行四边形的面积=底×高3、小结问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?1、动态演示:,引导发现周长不变,面积变大了。
2、动态演示:,发现面积变小了。
3、要求平行四边形的面积,现在你认为必须知道哪些条件?问题(六)是不是所有平行四边形的面积都等于底×高呢?让学生拿出各自的平行四边形,动手剪拼,看看行不行。
三、应用新知1.左图平行四边形的面积=?2.解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?四、总结:1.回想一下今天我们是怎样学习平行四边形的面积?2.你还想学习哪些知识呢?平行四边形的面积教学反思篇二一、精心创设情境。
数学平行四边形的面积教学反思精选10篇

数学平行四边形的面积教学反思精选10篇《平行四边形的面积》优秀教学反思篇一在教学设计时,我创设一个把长方形变成平行四边形,猜测面积是否变化的情境,激发学生的探究欲望。
学生根据以前学过的知识自然会想到用数方格的方法求面积,但我没想到学生在数平行四边形的底和高时,有些难度,此时我进行了适当的指导,体现了教师的主导作用。
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。
”本节课的教学重点为“探究平行四边形的面积公式”,难点设立为“理解平等四边形的面积计算公式的推导过程”。
为了突出重点,突破难点,我先引导学生自主探索,然后让学生交流,对学生难以理解的平行四边形与长方形的关系,我又利用课件演示,并让学生在观察的基础上交流评议,最后学生分组边剪拼边说平行四边形面积公式的推导过程。
这样让学生亲身经历操作过程,在交流演示中理解掌握了平行四边形面积的求法,在语言描述过程中锻炼了自己的语言表达能力。
在这个环节里我注重的是让学生动手实践和自主探索发现规律,让学生经历知识的形成过程,使学生空间观念得到进一步发展。
这样不仅让学生学到知识,更重要的是对学生渗透了平移和转化的数学思想方法,培养了学生观察、分析、概括和能力。
我认为本节课的不足之处是:(1)在学生把平行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法,局限了学生的思维。
应让学生充分展示,从而明确不同的割补方法,其结果是一样的。
三种剪法。
(2)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。
(3)对知识的巩固运用做的不够。
本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力。
但由于在用数格子的方法求面积时,教师应变能力不强,耽误了时间,此题没来得及做,教师本人的能力还需多锻炼。
《平行四边形的面积》教学反思10篇

《平行四边形的面积》教学反思10篇《平行四边形的面积》优秀教学反思篇一本节课内容在学生学习了长方形、正方形、平行四边形、三角形和梯形的特征以及长方形、正方形面积计算的基础上进行教学的,同时又是进一步学习三角形面积、梯形面积等知识的基础。
成功之处:1、创设问题情境,引发矛盾冲突,激发学生的学习兴趣。
在教学中,通过创设“这两个花坛哪一个大呢?”的情境,引发学生的思考,比较这两个花坛的大小,就是比较它们的面积大小,而长方形的面积学生已学过,非常简单就可以得出,但是平行四边形的面积学生没有学过,如何求平行四边形的面积呢?通过这样的疑问,引领学生探索平行四边形的面积计算公式。
2、渗透“转化”思想。
转化思想是学生学习数学的非常重要的思维方式,利用转化思想学生可以把新知识转化为已学过的旧知识,利用旧知识解决新问题。
在本课教学中,学生首先通过数方格的方法初步发现了长方形和平行四边形这两个图形的面积是相等的,也发现长方形的面积是底乘高,平行四边形的面积是底乘高,但是如何验证这个计算公式呢?学生通过手中的平行四边形会联想到把它转化为长方形,这时教师放手让学生通过剪一剪、拼一拼,自己动手研究推到平行四边形的面积计算公式。
这样设计教学过程由浅入深、由易到难、由具体到抽象,学生在探索的过程中逐步体会转化思想在学习中的重要作用。
不足之处:学生虽然能够推导出平行四边形的面积计算公式,但是仍有个别学生在表述上还存在一些困难。
再教设计:加强学生的语言表述能力,做到规范、严谨。
《平行四边形的面积》教学反思篇二由于暑假在家,我就备了这一课。
所以一开始我的教学目标还是很明确的:①借助学生已有的经验和方格图,让学生初步感知平行四边形的面积可能与它的底和对应高有关,再通过剪、拼进一步确定平行四边形的面积计算公式,并能根据公式正确计算平行四边形的面积。
②在操作、观察、比较的过程中,渗透转化的思想,发展学生的空间观念,使学生获得探索图形内容的基本方法和基本经验。
平行四边形的面积教学反思(精选6篇)

平行四边形的面积教学反思〔精选6篇〕平行四边形的面积教学反思1新课标指出“有效的数学活动不能单纯地依赖模拟与记忆,老师要引导学生通过动手理论、自主探究、合作交流等学习方式真正理解和掌握根本的数学知识、技能、思想和方法。
”在《平行四边形的面积》一课的教学中,我通过让学生动手理论,自主探究,让学生经历了知识的形成过程。
反思这节课,我总结了一些成功的经历和失败的教训,详细概括为以下几点:一.注重数学专业思想方法的浸透。
我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的浸透。
要让学生理解或理解一些数学的根本思想,学会掌握一些研究数学的根本方法,从而获得独立考虑的自学才能。
在这节课中,先让学生回忆平行四边形与长方形的联络,想一想长方形的面积是怎样求的?引出可以用数方格的方法来求平行四边形的面积。
把这两个图形按每个格1平方米的方法来数,数的过程中提示学生:“可以把不满一个格的按半个来数。
”学生数好以后,说一说数的结果。
再让学生说说你是怎样数的?你发现了什么?有利于有才能的学生向转化的方法靠拢。
二.注重学生数学思维的开展数学教学的核心是促进学生思维的开展。
教学中,老师要想方设法地通过学生数学知识学习,全面提醒数学思维过程,启迪和开展学生思维,将知识发生、开展过程与学生学习知识的心理活动统一起来。
课堂教学中充分有效地进展思维训练,是数学教学的核心。
在这节课中,设计了数一数、剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察考虑:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长х宽,所以平行四边形的面积=底х高。
学生掌握了平行四边形面积公式的推导方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维形式。
这个推导过程也促进了学生猜测、验证、抽象概括等思维才能的开展。
三.分层运用新知,逐步理解内化对于新知需要及时组织学生稳固运用,才能得到理解内化效果。
平行四边形的面积教学反思15篇

平行四边形的面积教学反思15篇平行四边形的面积教学反思1本节课的教学目标是使学生在理解的情况下掌握平行四边形面积的计算公式,使学生能够正确的计算平行四边形面积,并通过对图形的认真观察、比较和自我动手拼拼剪剪等实际操作,来进一步发展学生的想象力,初步建立学生的空间思维能力,通过剪切和平移的动手操作,充分培养学生的分析理解能力、实际操作能力、抽象概括归纳能力和用所学知识解决实际问题的综合能力。
在本节课的教学中,我基本完成了预定的教学目标,取得了较好的教学效果,讲完《平行四边形的面积》这一堂课后,总体感到这节课还是成功的,但深思后也感到这节课还有些不足和遗憾,我就这堂课作如下反思:在教学中做到了让每个孩子都参与到学习中来,从分发挥了学生的主体作用。
本堂课的教学我充分让每个学生主动参与学习,让学生感受到参与到探究学习中的乐趣。
首先,通过孙悟空看守蟠桃园的故事导入,让学生大胆猜测:长方形的树地和平行四边形的树地哪块大?然后让他们每个人说明自己的理由,可以用不同的方法来验证自己的观点。
我重点讲转换的方法。
发给学生图片,让每个学生自己动手剪拼,剪成已经学过的图形。
引导学生自愿参与学习全过程,去主动探求知识,达到强化学生主动参与的目的,引导学生采用不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长_宽,得到平行四边形面积计算公式是底_高,利用小组合作、讨论、交流等方式要求学生把自己总结的过程叙述出来,达到开发学生思维,培养学生的语言表达及归纳总结能力的目的。
加强培养学生的空间想象能力,初步建立空间思维,这对于培养学生解决生活中实际问题的能力有着重要的作用。
在学习中能向学生逐步渗透“转化”思想,让原有积累的经验和知识成为学习新知的坚实基础。
我在本堂课教学时引导学生采用“转化”的思想,来分散教学中的难点,加深学生对公式的理解和记忆。
我通过引导学生大胆猜想平行四边形的面积可能与什么有关,该如何计算,然后引出学生能将平行四边形转化成已学的什么图形进行推导它的面积。
平行四边形的面积教学反思9篇

平行四边形的面积教学反思9篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如演讲稿、工作总结、工作计划、心得体会、教学总结、事迹材料、优秀作文、教学设计、合同范文、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as speeches, work summaries, work plans, experiences, teaching summaries, deeds materials, excellent essays, teaching designs, contract samples, and other materials. If you want to learn about different data formats and writing methods, please pay attention!平行四边形的面积教学反思9篇平行四边形的面积教学反思1本节课的重点是推导和理解平行四边形的面积公式,平行四边形的面积公式是几何图形面积计算第一次运用转化思想方法推导得出的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学《平行四边形面积》
教学内容分析:
平行四边形面积计算的教学是新课程标准五年级上册第79-81页的教学内容,本教学内容是在学生掌握了这些图形的特征及长方形,正方形面积计算的基础上学习的,它和三角形,梯形面积计算联系比较紧密,也是为今后进一步步学习圆面积和立体图形表面积打下基础。
设计的理念:
学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征会做高,为了让学生更好的理解掌握平行四边形面积公式。
因此在教学中让学生经历猜想操作验证推理的过程,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。
教学目标:
1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2. 通过操作,观察,比较活动,初等认识转化的方法,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。
3. 引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。
教学重点:
使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:
通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
并能正确运用平行四边形的面积公式解决相应的实际问题。
教具,学具准备:多媒体,平行四边形硬纸片,一把剪刀。
教学过程:
一.创设情境、导入新课。
多媒体课件出示课文主题图,观察主题图,让学生找一找图中有哪些学过的图形,当学生找到图中学校门前的两个花坛时。
师:观察图中学校门口前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
生:会计算长方形面积,不会计算平行四边形的面积。
师:可是要比较两个花坛的大小我们必须要知道平行四边形的面积怎样计算呢?今天我们就来研究平行四边形面积的计算。
(板书课题:平行四边形的面积)
[设计意图:是让学生在现有知识水平中无法比较两个花坛的大小,来激发学生积极探求知识的奥秘的欲望。
]
二.探究平行四边形的面积。
1. 用数方格的方法探索计算面积。
师:请同学们大胆猜想一下,你想用什么方法来求平行四边形的面积呢?
生1:我想把平行四边形拉成一个长方形。
生2:我想用数方格子的方法来计算。
.....
师:(1)拉动平行四边形的边框,让学生观察得知;用拉的方法不能求出平行四边形的面积。
(2)我们再来验证一下你们刚才提出的数方格子的方法行不行,用多媒体出示教材第80页方格图。
我们已经知道可以用数方格子的方法得到一个图形的面积,现在请同学们用这个方法算出这个平行四边形和长方形的面积。
说明要求:一个方格表示1平方厘米,不满一格的都按半格计算。
现在同学们一齐来交流一下是是怎样数的,请把数出的结果填在表格中。
同桌合作完成:
4. 汇报结果:用投影展示学生填写好的表格,观察表格的数据,你发现了什么?想到了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长,高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
[设计意图:通过让学生数一数,议一议,先感受一下平行四边形与长方形的面积的联系。
培养学生联想、猜测的能力,同时为下一步的探究提供思路。
]
2. 推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到一平行四边形的面积,但是用数方格这个方法能任意数出一些平行四边形面积吗?为什么?哪些平行四边形的面积不能用这种方法呢?
生:不方便、比较麻烦,不是处处都适用,例如没方格图的平行四边形和生活中一些的平行四边形物体。
师:既然不方便,不能处处适用,我们能否不数方格从中探索出平行四边形面积的规律呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,向学生提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?现在请大家验证一下。
(3)分组合作动手操作,探索图形的转化。
各小组用课前准备的平行四边形和剪刀进行剪和拼。
思考一下;能否把平行四边形转化成自己会算面积的图形来计算它的面积。
转化成一个什么图形呢?各小组组织学生动手实验、合作交流开展探究活动。
各小组代表把拼剪的图形展示在黑板上,并说一说演示的过程和自己的一些想法。
生:我们就把平行四边形变成一个长方形,因为长方形的面积我们已经会计算了。
引导学生:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。
用多媒体演示平移和拼的过程。
剪——平移——拼。
[设计意图:通过小组合作,共同完成操作。
使每个学生能从感性上认识利用割补把平行四边形通过剪—平移—拼成一个长方形的演示全过程。
]
(4)小组讨论,合作交流,探索平行四边形的面积计算公式。
我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论后,根据学生回答情况出示讨论题目给学生。
拼出的长方形和原来的平行四边形相比,面积变了没有?
拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
[设计意图:创设探究的空间和时间,采用自主探索,合作交流等学习中,让学生了解平行四边形的面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。
] (5)小组交流汇报,归纳叙述出自己的推导过程。
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。
那么平行四边形的面积等于什么?
因为:长方形的面积=长×宽,
所以:平行四边形的面积=底×高
如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,同学们能否尝试用字母表示平行四边形面积计算公式。
S=ah
学生思考:要求平行四边形的面积必须要知道什么条件呢?(平行四边形的底和高)
3、平行四边形面积计算公式的应用。
既然我们已经推导出平行四边形面积计算公式,那么我们现在可以运用公式解决一些实际的问题。
(1)、现在课本主题图中学校门口两块花坛的大小这个问题现在可以解决吗?怎样解答呢?
生:先量出平行四边形的底和高再按平行四边形面积计算公式来计算,并说说计算过程,再比较大小。
(2)运用平行四边形面积计算公式让学生自学例1。
师:例1是给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做、并说说解题方法和板书结果。
学生板书例1的结果;s=ah=6×4=24(平方米)
[设计意图:在解决问题过程中能让学生进一步理解和掌握平行四边形面积的计算方法。
还能让学生感受到学习数学的价值。
]
三、巩固拓展。
1、给下面各题目填空。
(1)、一个长方形的长是5厘米,高是3厘米,这个长方形的面积是()平方厘米。
(2)、一个平行四边形的底是8米,高是5米,这个平行四边形的面积是()平方米。
(3)、一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是()平方分米。
[设计意图:通过反复计算平行四边形的面积,加深学生对面积公式的理解和更熟练地运用平行四边形的面积计算公式解决实际问题。
]
2、你能想办法求出下面两个平行四边形的面积吗?
3、同学们自己画一个平行四边形,并标出平行四边形的底和高的数量,同桌交换来求这个平行四边形的面积。
[设计意图:这两题练习设计可让学生想办法找出平行四边形的底和高才能求出面积,这样设计进一步加强了学生作平行四边形的高的方法,同时培养了学生动手操作和应用公式的实践能力。
]
四、课堂总结
通过本节课的学习你有什么收获?你知道平行四边形面积公式是怎样推导的吗?要求平行四边形的面积就必须知道什么条件呢?你会运用平行四边形的面积计算公式来解答一些实际问题。
请你们找出生活中用到的平行四边形,并计算出它的面积,在下节课上进行交流好吗?
板书设计:
长方形的面积=长×宽
平行四边形的面积=底×高
用字母表示是:S=a×h= a·h= ah。