吸收带类型与溶剂效应

合集下载

紫外-可见吸收光谱 - 紫外-可见吸收光谱

紫外-可见吸收光谱 - 紫外-可见吸收光谱

2.生色团(发色团) 含有n→π*或π→π*的基团。 例:C=C;C=O;C=S;—N=N— 等
3.助色团 含非键电子的杂原子饱和基团。 例:—OH,—OR,—NH—,—NR2—,—X 4.红移(长移)、蓝移(短移): 由于化合物结构变化(共轭、引入助色团)或采用不同溶
剂后: 吸收峰向长波方向移动,叫红移 吸收峰向短波方向移动,叫蓝移
第一节 紫外-可见吸收光谱
5.增色效应、减色效应 增色效应:使吸收强度增加的效应 减色效应:使吸收强度减弱的效应
6.吸收带 吸收光谱中吸收峰的位置称做吸收带 εmax>104 → 强带 εmax<102 → 弱带
第一节 紫外-可见吸收光谱
四、吸收带类型和影响因素
(一)吸收带类型 • 1.R带:由含杂原子的不饱和基团的n →π*跃迁产生(C
分子中价电子(外层电子)吸收紫外-可见光区的电磁 辐射发生电子能级跃迁
(吸收能量=两个跃迁能级之差)
第一节 紫外-可见吸收光谱
二、紫外-可见吸收光谱的电子跃迁类型
1.有机化合物紫外-可见吸收光谱的电子跃迁类型 从有机物化学键的性质来看,与紫外-可见吸收光谱有关的
电子主要有三种,即形成单键的σ 电子,形成双键π 电子以及 未参与成键的n电子。

243 nm 305 nm
迁移
长移 短移
第一节 紫外-可见吸收光谱
第一节 紫外-可见吸收光谱
4. 体系pH的影响
OH OH
O
H+
苯酚在不同pH时的紫外吸收光 谱
=O;C=N;-N=N- )
• λmax≈ 300nm, max<100
• 溶剂极性↑,λmax↓ → 蓝移(短移) 2.K带:由共轭双键的π→ π*跃迁产生

第三章紫外可见分光光度法

第三章紫外可见分光光度法
优点:自动记录, 快速全波段扫描。可 消除光源不稳定、检 测器灵敏度变化等因 素的影响,特别适合 于结构分析。仪器复 杂,价格较高。是目 前用的最多的分光光 度计。
23
3.双波长
将不同波长的两束单色光(λ 1、λ 2) 快束交替通 过同一吸收池而后到达检测器。产生交替信号。无需 参比池。△=1~2nm。两波长同时扫描即可获得导数 光谱。
max也作为定性的依据。不同物质
的λmax有时可能相同,但ε
定量分析的依据。
max不一定相同。
(6)吸收谱带强度与该物质分子吸收的光子数成正比,
10
3.紫外-可见吸收光谱的产生
由于分子吸收紫外-可见光区的电磁辐射,分 子中价电子(或外层电子)的能级跃迁而产生紫 外-可见吸收光谱。 电子能级间跃迁的同时总伴随有振动和转动
紫外分光光度计检测;可作为溶剂使用。
39
2、n→ζ*跃迁
所需能量较大。 吸收波长为150~250 nm,大部分在远紫外区 ,近紫外区仍不易观察到。
含非键电子的饱和烃衍生物(含N、O、S和卤
素等杂原子)均呈现n →ζ*跃迁。 如一氯甲烷、甲醇、三甲基胺n →ζ*跃迁的λ分 别为173 nm、183 nm和227 nm。
38
1、σ →σ *跃迁
所需能量最大,ζ电子只有吸收远紫外光的能量 才能发生跃迁。
饱和烷烃的分子吸收光谱出现在远紫外区。
吸收波长λ< 200 nm。 例:甲烷λmax为125 nm , 乙烷λmax为135 nm, 环丙烷(饱和烃中最长) λmax为190 nm。 在近紫外没有饱和碳氢化合物的光谱,需真空
8
2.能级跃迁的讨论
(1)转动能级间的能量差Δ Er:0.005~0.050 eV, 跃迁产生吸收光谱位于远红外区,称为远红外 光谱或分子转动光谱; (2)振动能级的能量差Δ Ev约为:0.05~1eV,跃

溶剂概述和溶剂效应

溶剂概述和溶剂效应

溶剂概述和溶剂效应摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。

关键词:溶剂溶剂效应吸收光谱液相色谱1,溶剂1.1溶剂的定义溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。

1.2溶剂的分类溶剂按化学组成分为有机溶剂和无机溶剂有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。

有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。

(本文主要概述有机溶剂在化学反应以及波谱中的应用)2,溶剂效应2.1溶剂效应的定义溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。

溶剂对化学反应速率常数的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。

2.2溶剂效应在紫外,荧光,红外,核磁中的应用2.2.1溶剂效应在紫外吸收光谱中的应用[5]有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。

通常,溶剂的极性可以引起谱带形状的变化。

一般在气态或者非极性溶剂(如正己烷)中,尚能观察到振动跃迁的精细结构。

但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。

这一现象称为溶剂效应。

例如,苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平滑的曲线,如图所示2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2]n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。

一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。

增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下:会发生n→π*跃迁的分子,都含有非键电子。

例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O(激发态)。

溶剂概述和溶剂效应

溶剂概述和溶剂效应

溶剂概述和溶剂效应摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。

关键词:溶剂溶剂效应吸收光谱液相色谱1,溶剂1.1溶剂的定义溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。

1.2溶剂的分类溶剂按化学组成分为有机溶剂和无机溶剂有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。

有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。

(本文主要概述有机溶剂在化学反应以及波谱中的应用)2,溶剂效应2.1溶剂效应的定义溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。

溶剂对化学反应速率常数的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。

2.2溶剂效应在紫外,荧光,红外,核磁中的应用2.2.1溶剂效应在紫外吸收光谱中的应用[5]有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。

通常,溶剂的极性可以引起谱带形状的变化。

一般在气态或者非极性溶剂(如正己烷)中,尚能观察到振动跃迁的精细结构。

但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。

这一现象称为溶剂效应。

例如,苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平滑的曲线,如图所示2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2]n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。

一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。

增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下:会发生n→π*跃迁的分子,都含有非键电子。

例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O(激发态)。

苯及其衍生物的紫外吸收光谱的绘制和溶剂效应

苯及其衍生物的紫外吸收光谱的绘制和溶剂效应

苯及其衍生物的紫外吸收光谱的绘制和溶剂效应1、实验目的1.了解苯及其衍生物的紫外吸收光谱及鉴定方法。

2.观察溶剂对吸收光谱的影响。

3.掌握紫外―可见分光光度计的使用。

2、实验原理芳香族化合物的特征吸收是由于苯环结构中三个乙烯的环状共轭体系ππ*→跃迁产生的两个强吸收带,谱带分别位于1185()nm E 带和1204()nm E 带,以及由于ππ*→跃迁和苯环振动重叠而产生的较弱吸收带B (带),谱带位于230270nm ―。

当苯处在气态时有良好的精细结构;当苯环上有取代基时,会对其3个特征吸收带强烈的影响,特征吸收带位移、精细结构简单化。

例如在碱性条件下的苯酚离子3个吸收带分别移至209nm ,235nm 和286(/)nm L mol cm ⋅。

利用紫外吸收光谱鉴定有机化合物的方法是在相同条件下(溶剂、浓度、pH 、温度等)比较未知物与已知纯化合物的吸收光谱,或在与标准谱图相同条件下将绘制的未知物的吸收光谱,再与标准谱图比较,若两者完全一致,基本可认为是同一化合物。

溶剂的极性对有机化合物的紫外吸收光谱有一定的影响,溶剂的极性增加会使有机化合物ππ*→跃迁产生的吸收带红移,n π*→跃迁产生的吸收带蓝移。

3、仪器和试剂1.仪器紫外―可见分光光度计;1.00cm 石英比色皿;带塞比色皿:2510mL 支;10mL 移液管3支。

2.试剂苯()AR 、苯甲酸()AR 、苯酚()AR 、环己烷()AR 、乙醇()AR 、丙酮()AR 。

4、实验操作1.苯及其衍生物的紫外吸收光谱的绘制(1)在石英吸收池,加两滴苯,加盖,放置约两分钟后,相对空石英吸收池,在200至320nm 波长范围内绘制紫外吸收光谱。

(2)在3支25mL 带塞比色管中分别加0.5()mL 两滴苯、20mg 苯酚、20mg 苯甲酸,用环己烷10mL 溶解后稀释至刻度为母液。

分别取2mL 母液于25mL 带塞比色管中,用环己烷溶液稀释至刻度,摇匀。

有机波谱分析知识点

有机波谱分析知识点

名词解析发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。

助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。

红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。

蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。

增色效应(hyperchromic effect):使吸收强度增加的作用。

减色效应(hypochromic effect):使吸收强度减弱的作用。

吸收带:跃迁类型相同的吸收峰。

指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

但该区中各种官能团的特征频率不具有鲜明的特征性。

共轭效应(conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。

诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。

核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。

化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。

弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。

分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。

红外吸收光谱峰位的影响因素

红外吸收光谱峰位的影响因素

光谱峰位的影响因素分子内基团的红外吸收会受到邻近基团及整个分子其他部分的影响,也会因测定条件及样品的物理状态而改变。

所以同一基团的特征吸收会在一定范围内波动。

影响因素有: 1. 化学键的强度一般地说化学键越强,则力常数K 越大,红外吸收频率 ν 越大。

如碳碳三键,双键和单键的伸缩振动吸收频率随键强度的减弱而减小。

伸缩振动频率 (cm -1) 2150 1715 1200 2. 诱导效应诱导效应可以改变吸收频率。

如羰基连有拉电子基团可增强碳氧双键,加大C=O 键的力常数K ,使C=O 吸收向高频方向移动。

C=O 伸缩振动频率(cm -1 ) 1715 1815 ~ 17853. 共轭效应共轭效应常使C =O 双键的极性增强,双键性降低,减弱键的强度使吸收向低频方向移动。

例如羰基与α、β不饱和双键共轭,从而削弱了碳氧双键,使羰基伸缩振动吸收频率向低波数位移。

C=O 伸缩振动频率(cm -1) 1715 1685 ~ 16704. 成键碳原子的杂化状态一般化学键的原子轨道s 成分越多,化学键力常数K 越大,吸收频率越高。

sp sp 2 sp 3C−H伸缩振动频率(cm-1)3300 3100 29005. 键张力的影响主要是环状化合物环的大小不同影响键的力常数,使环内或环上基团的振动频率发生变化。

具体变化在不同体系也有不同。

例如:环丙烷的C-H伸缩频率在3030 cm-1,而开链烷烃的C-H伸缩频率在3000 cm-1以下。

6.氢键的影响氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。

形成氢键后基团的伸缩频率都会下降。

游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体,C=O键频率出现在1700 cm-1 。

分子内氢键不受浓度影响,分子间氢键受浓度影响较大。

例如:乙醇的自由羟基的伸缩振动频率是3640 cm-1,而其缔合物的振动频率是3350 cm-1。

形成氢键还使伸缩振动谱带变宽。

有机化合物的紫外吸收光谱及溶剂效应.

有机化合物的紫外吸收光谱及溶剂效应.

实验九有机化合物的紫外吸收光谱及溶剂效应实验目的:(1)学习有机化合物结构与其紫外光谱之间的关系;(2)了解不同极性溶剂对有机化合物紫外吸收带位置、形状及强度的影响。

(3)学习紫外—可见分光光度计的使用方法实验原理:与紫外-可见吸收光谱有关的电子有三种,即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。

跃迁类型有:σ→σ*,n→σ* ,n→π*,π→π* 四种。

在以上几种跃迁中,只有π-π*和n-π*两种跃迁的能量小,相应波长出现在近紫外区甚至可见光区,且对光的吸收强烈,是我们研究的重点。

影响有机化合物紫外吸收光谱的因素有内因和外因两个方面。

内因是指有机物的结构,主要是共轭体系的电子结构。

随着共轭体系增大,吸收带向长波方向移动(称作红移),吸收强度增大。

紫外光谱中含有π键的不饱和基团称为生色团,如有C=C、C=O、NO2、苯环等。

含有生色团的化合物通常在紫外或可见光区域产生吸收带;含有杂原子的饱和基团称为助色团,如OH、NH2、OR、Cl等。

助色团本身在紫外及可见光区域不产生吸收带,但当其与生色团相连时,因形成n→π*共轭而使生色团的吸收带红移,吸收强度也有所增加。

影响有机化合物紫外吸收光谱的外因是指测定条件,如溶剂效应等。

所谓溶剂效应是指受溶剂的极性或酸碱性的影响,使溶质吸收峰的波长、强度以及形状发生不同程度的变化。

这是因为溶剂分子和溶质分子间可能形成氢键,或极性溶剂分子的偶极使溶质分子的极性增强,从而引起溶质分子能级的变化,使吸收带发生迁移。

例如异丙叉丙酮的溶剂的溶剂效应如表1所示。

随着溶剂极性的增加K带红移,而R带向短波方向移动(称作蓝移或紫移)。

这是因为在极性溶剂中π→π * 跃迁所需能量减小,吸收波长红移(向长波长方向移动)如图(a)所示;而n→π * 跃迁所需能量增大,吸收波长蓝移(向短波长方向移动),溶剂效应示意图如(b)所示。

图1 电子跃迁类型σπ *σ *nπ∆C*—C-△E n>△E p C=0 △E n>△E p图2溶剂极性效应(a)π→π * 跃迁(b)n→π * 跃迁B吸收带,在不同极性溶剂中,其强度和形状均受到影响、在非极性溶剂正庚烷中,可清晰看到苯酚B吸收带的精细结构,但在极性溶剂乙醇中,苯酚B吸收带的精细结构消失,仅存在一个宽的吸收峰,而且其吸收强度也明显减弱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01:12:58
lgκ
6
远紫外光
近紫外光
5
π→π*跃迁
4
σ→σ*跃迁
电荷转移跃
n→π*跃迁3Biblioteka n→σ*跃2迁
可见光区 π→π*跃迁
1
配体场跃迁
0
0
100 200 300 400 500 600 700 800
• 当芳环上连有一个发色基团时(取代基与芳环间有 π-π共轭),同时出现K吸收带,B吸收带;
苯乙烯:二个吸收带,B带的吸收波长比K带长,
K 吸收带:λmax=244 nm,κmax=12 000 L·mol-1·cm-1 ; B 吸收带:λmax=282 nm,κmax=450 L·mol-1·cm-1 。
→ C=C 发色基团, 但 p p* ,λmax 200 nm。
乙烯π→π*跃迁的λmax为162 nm, κmax为:1×104 L·mol1·cm-1。
H
H
CC
H
H
助色团取代 p p*发生红移。
01:12:58
共轭双键体系的 π→π*跃迁
共轭双键结构的分子出现 K 吸收带。 能量小,近紫外区,κmax>104 L·mol-1·cm-1 ,强吸收。 (1)K带(德 Konjugation,共轭 )
01:12:58
5.电荷转移吸收带
电荷转移跃迁:一个电子从体系中的电子给予体( donator)部分转移到该体系中的电子接受体(accepter)产 生的跃迁。跃迁所产生的吸收带称为电荷转移吸收带。
特点:吸收强度大(κmax>104 L·mol-1·cm-1 )。
01:12:58
[Co(NH3)5X]n+的紫外—可见吸收光谱 X=NH3时,n=3,X=F,Cl,Br,I时,n=2
9.3.1 电子跃迁和吸收带类型
有机化合物的紫外-可见吸收光谱是三种电子、四种 跃迁的结果:σ电子、π电子、n电子。
s*
HC O
s
Hp
n
p*
E K
R
E,B
n
p
s
分子轨道理论:成键轨道—反键轨道,非键轨道。
当外层电子吸收紫外或可见辐射后,就从基态向激发态 (反键轨道)跃迁。主要有四种跃迁,所需能量ΔΕ大小顺 序为:n→π* < π→π* < n→σ* < σ→σ*
——非封闭共轭体系的 p → p * 跃迁 丁二烯(CH2=CH—CH=CH2)
K带:λmax=217nm,κmax=21 000 L·mol-1·cm-1 。 极性溶剂使 K 带发生红移。 苯乙烯、苯甲醛、乙酰苯等,也都会出现 K 带。
01:12:58
共轭双键体系的 π→π*跃迁
p
p
p 165nm
•芳环上有取代基时,B带的精细结构减弱或消失。 •在极性溶剂中,由于溶质与溶剂的相互作用,B带的 精细结构也被破坏。
01:12:58
E 吸收带
封闭共轭体系(芳香族和杂芳香族化合物)中,π→π*跃 迁产生的K带又称为E带(Ethyleneic Band)。 • 属于跃迁概率较大或中等的允许跃迁; • E带类似于B带也是芳香结构的特征谱带。其中E1带 κmax>104 L·mol-1·cm-1 ,而E2带κmax≈103 L·mol-1·cm-1 。
01:12:58
1. σ→σ*跃迁
所需能量最大,σ电子只有吸收远紫外线的能量 才能发生跃迁。
饱和烷烃的分子吸收光谱出现在远紫外区。 吸收波长λ< 200 nm。 例:甲烷λmax为125 nm , 乙烷λmax为135 nm, 环丙烷(饱和烃中最长) λmax为190 nm。 在近紫外没有饱和碳氢化合物的光谱,需真空 紫外分光光度计检测;可作为溶剂使用。
01:12:58
2. n→σ*跃迁
所需能量较大,但比σ→σ*小。 吸收波长为150~250 nm,大部分在远紫外区,近紫 外区仍不易观察到。 含非键电子的饱和烃衍生物(含N,O,S和卤素等杂原 子)均呈现n→σ* 跃迁。n→σ* 跃迁所需能量取决于带有n 电子的原子的性质以及分子结构。
01:12:58
6.配位体场吸收带
在配体的配位体场作用下过渡金属离子的d 轨道和镧 系、锕系的 f 轨道裂分,吸收辐射后,产生d-d 和 f -f 跃 迁。
这种d-d跃迁所需能量较小,产生 的吸收峰多在可见光区,强度较弱( κmax=0.1~100 L·mol-1·cm-1 )。
f -f 跃迁带在紫外-可见光区,它 是镧系、锕系的 4f 或 5f 轨道裂分出 不同能量的 f 轨道之间的电子跃迁而 产生的。
3. n →π*跃迁
• 由n→π*跃迁产生的吸收带称为R带(德文Radikal)。
• 能量最小;200~700 nm; κmax <103 L·mol-1·cm-1较小(一 般小于100) ,弱吸收,禁阻跃迁。 • 分子中同时存在杂原子和双键产生n→π* 跃迁。
C=O,N=N,N=O,C=S • 基团中氧原子被硫原子取代后吸收峰发生红移 ;
p₃ 217nm p₂
p
(HOMO LVMO)
p
p₁
p
max
共轭烯烃(不多于四个双键)p p*跃迁吸收峰位置可 由伍德沃德—菲泽规则估算。
max= 基 + nii 基:由非环或六元环共轭二烯母体决定的基准值。
01:12:58
K 带和 R 带的区别:
① K 带κmax﹥10 000 L·mol-1·cm-1以上,而 R 带κmax<103 ,通常在100以下。 ② K 带在极性溶剂中发生红移,而 R 带在极性溶剂 中发生蓝移; ③ K带的λmax随共轭体系的增大而发生红移,而 R 带 的变化不如 K 带明显。
01:12:58
B 吸收带(苯吸收带) π→π* 跃迁
——芳香族和杂芳香族化合物的特征谱带
• 苯:B带在230~270 nm;宽峰,禁阻跃迁,弱吸收
带(κmax≈200 L·mol-1·cm-1 )。
• 包含多重峰或称 精细结构(由于振动 次能级对电子跃迁的 影响所引起的)。
01:12:58
B 吸收带(苯吸收带)
C=O:n→π*,λmax 280~290 nm; C=S (硫酮):n→π*,λmax 400 nm左右。 • R 带在极性溶剂中发生蓝移。
正己烷中:279 nm;乙醇中:272 nm;水中:264 nm。
01:12:58
4. π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近
紫外区,κmax一般在104 L·mol-1·cm-1以上,属强吸收。 不饱和烃π→π*跃迁:
相关文档
最新文档