平面弯曲梁的强度与刚度计算

平面弯曲梁的强度与刚度计算
平面弯曲梁的强度与刚度计算

第八章平面弯曲梁的强度与刚度计算

§8-1 纯弯曲时横截面的正应力

一.纯弯曲试验:

纯弯曲:内力只有弯矩,而无剪力的弯曲变形。

剪切弯曲:既有弯矩,又有剪力的弯曲变形。

为了研究梁横截面上的正应力分布规律,取一矩形截面等直梁,在表面画些平行于梁轴线的纵线和垂直干梁轴线的横线。在梁的两端施加一对位于梁纵向对称面内的力偶,梁则发生弯曲。梁发生弯曲变形后,我们可以观察到以下现象:

①横向线仍是直线且仍与梁的轴线正交,只是相互倾斜了一个角度;

②纵向线(包括轴线)都变成了弧线;

③梁横截面的宽度发生了微小变形,在压缩区变宽了些,在拉伸区则变窄了些。

根据上述现象,可对梁的变形提出如下假设:

①平面假设:梁弯曲变形时,其横截面仍保持平面,且绕某轴转过了

一个微小的角度。

②单向受力假设:设梁由无数纵向纤维组成,则这些纤维处于单向受

拉或单向受压状态。

可以看出,梁下部的纵向纤维受拉伸长,上部的纵向纤维受压缩短,其间必有一层纤维既不伸长也木缩短,这层纤维称为中性层。中性层和横截面的交线称为中性轴,即图中的Z轴。梁的横截面绕Z 轴转动一个微小角度。

二.梁横截面上的正应力分布:

图中梁的两个横截面之间距离为dx,变形后中性层纤维长度仍为dx且dx=ρdθ。距中性层为y的某一纵向纤维的线应变ε为:

对于一个确定的截面来说,其曲率半径ρ是个常数,因此上式说明同一截面处任一点纵向纤维的线应变与该点到中性层的距离成正比。

由单向受力假设,当正应力不超过材料的比例极限时,将虎克定律代入上式,得:

由上式可知,横截面上任一点的弯曲正应力与该点到中性轴的距离成正比,即正应力沿截面高度呈线性变化,在中性轴处,y=0,所以正应力也为零。

三.梁的正应力计算:

在梁的横截面上任取一微面积dA,作用在这微面积上的微内力为σdA,在整个横截面上有许多这样的微内力。微面积上的微内力σdA对z轴之矩的总和,组成了截面上的弯矩

式中

称为横截面对中性轴的惯性矩,是截面图形的几何性质,仅与截面形状和尺寸有关。

上式是梁纯弯曲时横截面上任一点的正应力计算公式。应用时M 及y均可用绝对值代入,至于所求点的正应力是拉应力还是压应力,可根据梁的变形情况,由纤维的伸缩来确定,即以中性轴为界,梁变形后靠凸的一侧受拉应力,靠凹的一侧受压应力。也可根据弯矩的正负来判断,当弯矩为正时,中性轴以下部分受拉应力,以上部分受压应力,弯矩为负时,则相反。

横截面上最大正应力发生在距中性轴最远的各点处。即

W Z称为抗弯截面模量,也是衡量截面抗弯强度的一个几何量,其值与横截面的形状和尺寸有关。

弯曲正应力计算公式是梁在纯弯曲的情况下导出来的。对于一般的梁来说,横截面上除弯矩外还有剪力存在,这样的弯曲称为剪切弯曲。在剪切弯曲时,横截面将发生翘曲,平截面假设不再成立。但较精确的分析证明,对于跨度l与截面高度h之比 l/h>5的梁,计算其正应力所得结果误差很小。在工程上常用的梁,其跨高比远大于5,因此,计算式可足够精确地推广应用于剪切弯曲的情况。

§8-2 常用截面二次矩平行移轴公式

一、常用截面二次矩:

1、矩形截面:

2、圆形截面与圆环形截面:

①圆形截面:I Z=Πd4/64

W Z=Πd3/32

?

=A Z dA

y I 2?

=A

y dA z I 2

②圆环形截面: I Z =Π(D 4

-d 4

)/64

W Z =Πd 3{1-(d/D)4

}/32

3、型钢的截面:查表,见附录。

二.组合截面二次矩 平行移轴公式:

计算弯曲正应力时需要截面对中性轴的惯性矩,截面的中性轴又是截面的形心主轴。在截面上任一点K ,取邻域dA ,K 点到z 轴、y 轴的距离分别为y 、z ,定义y 2dA 、z 2dA 为微元对z 轴、y 轴的惯性矩,分别记作:

dI z =y 2dA dI y =z 2dA

上式对整个截面积分,得截面对z 轴、y 轴的惯性矩:

图所示的截面形心为C ,面积为A ,z c 轴、y c 轴通过截面形心C ,现有不通过形心的z 轴、y 轴分别与z c 轴、y c 轴平行,两轴之间的距离分别为a 、b ,截面对z 轴、z c 轴以及对y 轴、y c 轴的惯性矩有以下关系:

I Z =I Zc +a 2A I Y =I Yc +b 2A

上式称为惯性矩的平行移轴公式,即截面对任一轴z 的惯性矩等于该截面对过形心而平行于z 轴的z c 轴的惯性矩加上两轴之间的距离的平方与截面面积的乘积 见教材P146例题。

§8-3 弯曲正应力强度计算

为保证梁安全地工作,危险点处的正应力必须小于梁的弯曲许用应力[σ],这是梁的正应力强度条件。对于塑性材料,其抗拉和抗压

Z

Z

I

y

M

I

y

M

1

max

max

2

max

max

,

?

=

?

=-

σ

强度相同,宜选用中性轴为截面对称轴的梁,其正应力强度条件为:

对于脆性材料,其抗拉和抗压强度不同,宜选用中性轴不是截面对称轴梁,并分别对抗拉和抗压应力建立强度条件:

对于中性轴不是截面的对称梁,其最大拉应力值与最大压应力值不相等。如图所示的T形截面梁,最大拉应力和最大压应力分别为:

强度条件可解决三类强度计算问题:

①强度校核:验算梁的强度是否满足强度条件,判断梁在工作时是否安全。

②截面设计:根据梁的最大载荷和材料的许用应力,确定梁截面的尺寸和形状,或选用合适的标准型钢。

③确定许用载荷:根据梁截面的形状和尺寸及许用应力,确定梁可承受的最大弯矩,再由弯矩和载荷的关系确定梁的许用载荷。

注:对于非对称截面,需按公式

分别计算三类问题。

[]

+

+≤σ

σ

max

[]

-

-≤σ

σ

max

【例】图示T形截面铸铁外伸梁,其许用拉应力[σ]=30MPa,许用压应力[σ]=60MPa,截面尺寸如图。截面对形心轴z的惯性矩Iz =763mm4,且y1=52cm。试校核梁的强度。

解:

1、求支座反力:FA= FB=

画出弯矩图,最大正弯矩在C点,最大负弯矩在B点,即C点为上压下拉,而B点为上拉下压。

2、求出B截面最大应力:

最大拉应力(上边缘)

最大压应(下边缘)

3、求出C截面最大应力:

最大拉应力(下边缘)

最大压应力(上边缘)

最大拉应力在C点且σCmax=<[σ]+=30MPa

最大压应力在B点且σBmax=<[σ]-=60MPa

故梁强度足够。

见教材P147例题。

师生小结:

1、纯弯曲的定义及应用;

2、梁的弯曲强度计算;

3、应用。

§8-5 梁的弯曲变形概述

梁在外载荷作用下将产生变形,梁不但要满足强度条件,还要满足刚度条件,即要求梁在工作时的变形不能超过一定的范围,否则就会影响梁的正常工作。

一、挠曲线方程:

悬臂梁在纵向对称面内的外力P的作用下将发生平面弯曲,变形后梁的轴线将变为一条光滑的平面曲线,称为梁的挠曲轴线,也称弹性曲线、挠曲线。

y=f(X)→梁的绕曲线方程。

二、挠度和转角:

梁上任一截面C,变形后其形心在C/处,C截面的形心产生线位移CC/。CC/既有水平分量,也有垂直分量,而水平分量很小,只讨论垂直分量C/C//。截面形心位移的垂直分量称该截面的挠度,用y表示。

C截面不但产生线位移,还产生了角位移,横截面绕中性轴转动产生了角位移,此角位移称转角,用θ表示。

挠度和转角的正负号作如下规定:

挠度与y轴正方向同向为正,反之为负;截面转角以逆时针方向转动为正,反之为负。

只要知道梁的挠曲轴线方程y=f(x),就可求出挠度和转角。

(

)()EI x M x =ρ1()()

2

3

2///

11y y x +±=ρ()

()EI x M y y ±=+2

3

2///1()EI

x M y ±=//

()EI

x M y =//

§8-6 用叠加法求梁的变形

一、挠曲轴线近似微分方程:

梁任一截面的曲率: (1)

曲线y=f(x)的曲率: (2)

代入(1)式得: (3)

式(3)称梁的挠曲轴线微分方程。由于y /很小,y /2更小,可忽略。

方程的正负号与弯矩M 的正负号的规定以及挠度的正方向规定有关,规定挠度向上为正。弯矩M 与曲线的二阶导数y //的正负号关系为:

1)梁的挠曲轴线是一下凸曲线,梁的下侧纤维受拉,弯矩M>0,曲线的二阶导数y //>0;

2)梁的挠曲轴线是一上凸曲线,梁的上侧纤维受拉,弯矩M<0,曲线的二阶导数y //<0。

由此可知,这两种情况下弯矩与曲线的二阶导数均同号,上式应取正号,即:

注:书本P153表给出了梁在简单载荷下的挠曲线方程,端截面转角

和最大挠度。

二、用叠加法求梁的变形:

小变形时梁弯曲挠度的二阶导数与弯矩成正比,而弯矩是载荷的

EI

qa EI a

qa B 2332132-=?-=θEI qa a y B C 24

1-

=?=θEI qa y C 84

2-

=EI

qa EI qa EI qa y y y C C C 85824

4421-=--=+=线性函数,所以梁的挠度与转角是载荷的线性函数,可以使用叠加法计算梁的转角和挠度,即梁在几个载荷同时作用下产生的挠度和转角等于各个载荷单独作用下梁的挠度和转角的叠加和,这就是计算梁弯曲变形的叠加原理。 举例:

外伸梁在外伸段作用有均布载荷q ,梁的抗弯刚度为EI ,求C 截面的挠度。

解:把外伸梁段上的均布载荷向B 截面简化,得集中力qa ,力偶qa 2/2,将使B 截面产生转角θB ,BC 段的实际变形等于固定端产生转角θB 的悬臂梁。C 截面的挠度由以下两部分构成:悬臂梁由于B 截面产生转角引起的挠度y C1和悬臂梁在载荷下产生的挠度y C2。

首先计算B 截面转角θB :

三、梁的刚度条件:

梁除了要满足强度条件外,还要满足刚度条件,即工作中的梁的

()m EI

Pl

y2

8

9

3

3

3

10

24

.1

10

11100

10

210

48

86

.8

10

20

48

-

-

?

=

?

?

?

?

?

?

=

=

[]2

10

77

.1

500

86

.8

500

1

-

?

=

=

=l

f

挠度和转角不能太大。

设梁的最大挠度和最大转角分别为y max和θmax,而[y]和[θ]分别为挠度和转角的许用值,则梁的刚度条件为:

y max≤[y]

θmax≤[θ]

举例:

简支梁选用32a工字钢,P=20KN,l=8.86m,E=210Gpa,梁的许用挠度[f]=l/500,试校核梁的刚度。

解:查表得:I Z=11100cm4。

查表得梁的跨中挠度为:

因为y<[f],所以梁满足刚度条件。

见教材P155例题。

§8-7 提高梁的强度和刚度的措施

1、合理安排梁的支承:

均布载荷作用在简支梁上时,最大弯矩与跨度的平方成正比,如能减少梁的跨度,将会降低梁的最大弯矩。

举例:

h bh bh A W Z

167.062==h h h A

W Z

125.0413223

==ππ()h

A

W Z

31.0~27.0=

2、合理地布置载荷:(P158图)

使梁上载荷分散布置,可以降低最大弯矩。 举例:

3、选择梁的合理截面:

①根据抗弯截面系数与截面面积比值W z /A 选择截面:

抗弯截面系数越大,梁能承受载荷越大;横截面积越小,梁使用的材料越少。同时考虑梁的安全性与经济性,可知W z /A 值越大,梁截面越合理。以下比较具有同样高度h 的矩形、圆形和工字形(槽形)截面的W z /A 值:

高为h 、宽为b 的矩形截面:

直径为h 的圆形截面: 。

高为h 的工字形与槽形截面: 。 可见这三种截面的合理顺序是:1)工字形与槽形截面;2)矩形截面;3)圆形截面。截面形状的合理性,可以从梁截面弯曲正应力的分布规律说明,梁截面的弯曲正应力沿截面高度呈线性变化,截面边缘处的正应力最大,中性轴处的正应力值为零,中性轴附近的材料没有得到充分的应用,如果减少中性轴附近的材料,而把材料布置到

[][]-+-

+

==σσσσ21max max y y 距中性轴较远处,截面形状则较为合理,所以,工程上常采用工字形、圆环形、箱形等截面形式。

②根据材料的拉压性能选择截面:

对于塑性材料,其抗拉强度和抗压强度相等,宜采用中性轴为截面对称轴的截面,使最大拉应力与最大压应力相等。如矩形、工字形、圆环形、圆形等截面形式。对于脆性材料,其抗压强度大于抗拉强度,宜采用中性轴不是对称轴的截面,如T 形截面,使中性轴靠近受拉端,使得:

梁的强度和刚度计算.

梁的强度和刚度计算 1.梁的强度计算 梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。 (1)梁的抗弯强度 作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下: 梁的抗弯强度按下列公式计算: 单向弯曲时 f W M nx x x ≤=γσ (5-3) 双向弯曲时 f W M W M ny y y nx x x ≤+=γγσ (5-4) 式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny ——梁对x 轴和y 轴的净截面模量; y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到; f ——钢材的抗弯强度设计值。 为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。 需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。 (2)梁的抗剪强度 一般情况下,梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。截面上的最大剪应力发生在腹板中和轴处。在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。因此,设计的抗剪强度应按下式计算

v w f It ≤=τ (5-5) 式中:V ——计算截面沿腹板平面作用的剪力设计值; S ——中和轴以上毛截面对中和轴的面积矩; I ——毛截面惯性矩; t w ——腹板厚度; f v ——钢材的抗剪强度设计值。 图5-3 腹板剪应力 当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。 (3)梁的局部承压强度 图5-4局部压应力 当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承加劲肋,或受有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。 在集中荷载作用下,翼缘类似支承于腹板的弹性地基梁。腹板计算高度边缘的压应力分布如图5-4c 的曲线所示。假定集中荷载从作用处以1∶2.5(在h y 高度范围)和1∶1(在h R 高度范围)扩散,均匀分布于腹板计算高度边缘。梁的局部承压强度可按下式计算

第八章梁的强度与刚度.

第八章梁的强度与刚度 第二十四讲梁的正应力截面的二次矩 第二十五讲弯曲正应力强度计算(一) 第二十六讲弯曲正应力强度计算(二) 第二十七讲弯曲切应力简介 第二十八讲梁的变形概述提高梁的强度和刚度

第二十四讲纯弯曲时梁的正应力常用截面的二次矩 目的要求:掌握弯曲梁正应力的计算和正应力分布规律。 教学重点:弯曲梁正应力的计算和正应力分布规律。 教学难点:平行移轴定理及其应用。 教学内容: 第八章平面弯曲梁的强度与刚度计算 §8-1 纯弯曲时梁的正应力 一、纯弯曲概念: 1、纯弯曲:平面弯曲中如果某梁段剪力为零,该梁段称为纯弯曲梁段。 2、剪切弯曲:平面弯曲中如果某梁段剪力不为零(存在剪力),该梁段称为剪切弯曲梁段。 二、纯弯曲时梁的正应力: 1、中性层和中性轴的概念: 中性层:纯弯曲时梁的纤维层有的变长,有的变短。其中有一层既不伸长也不缩短,这一层称为中性层。 中性轴:中性层与横截面的交线称为中性轴。 2、纯弯曲时梁的正应力的分布规律: 以中性轴为分界线分为拉区和压区,正弯矩上压下拉,负弯矩下压上拉,正应力成线性规律分布,最大的正应力发生在上下边沿点。

3、纯弯曲时梁的正应力的计算公式: (1)、任一点正应力的计算公式: (2)、最大正应力的计算公式: 其中:M---截面上的弯矩;I Z---截面对中性轴(z轴)的惯性矩; y---所求应力的点到中性轴的距离。 说明:以上纯弯曲时梁的正应力的计算公式均适用于剪切弯曲。

§8-2 常用截面的二次矩平行移轴定理 一、常用截面的二次矩和弯曲截面系数: 1、矩形截面: 2、圆形截面和圆环形截面: 圆形截面 圆环形截面 其中:

桥式起重机主梁强度、刚度计算

桥式起重机箱形主梁强度计算 一、通用桥式起重机箱形主梁强度计算(双梁小车型) 1、受力分析 作为室用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。 其主梁上将作用有G P 、Q P 、H P 载荷。 主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。 当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。 2、主梁断面几何特性计算 上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。

图2-4 注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。 ① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。 ② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /) ④ 3 21232021122.)21(2)2(F F F h F h h F h H F F y F y i i c +++++- =∑?∑= (cm ) ⑤ 2 233 22323212113 112 212)(212y F Bh y F h h H b y F Bh J x ?++?+--+?+= (4cm ) ⑥ 202032231)2 2(21221212b b F h b B h B h J y ++++= (4cm )

液压机横梁的强度与刚度的计算

横梁的强度与刚度的计算 由于横梁是三个方向上尺寸相差不太多的箱体零件,用材料力学的强度分析方法不能全面地反应它的应力状况。目前,在进行初步设计计算时,还只能将横梁简化为简支梁进行粗略核算,而将许用应力取得很低。按简支梁计算出的横梁中间截面的应力值和该处实测应力值还比较接近,因此作为粗略核算,这种方法还是可行的。但无法精确计算应力集中区的应力,那里的最大应力要大很多。 有限单元法的以展提供了比较精确地计算横梁各部分应力的可能性,因此,目前在设计横梁时,普遍使用有限单元法计算。但作为分析强度的基础,下面将介绍支梁算法。 当上下横梁刚度不够时,会给立柱带来附加弯矩。上横梁刚度如太小,或两个方向上刚度不一样,在液压缸加载时,上横梁和工作缸法兰的接触面会形成局部接触,使工作缸过早损坏。一般对横梁的刚度要求为立柱间每米跨度上挠度不超过0.15mm。由于横梁均属于跨度比较小而高度相对比较大的梁,因此在计算挠度时,除了考虑弯矩引起的挠度外,还必须计算由于剪力引起的挠度。 一、上横梁的强度与刚度的计算: 由于上横梁的刚度远大于立太平的刚度,因此可以将上横梁简化为简支梁,支点间距离为宽边立柱中心距。 (1)单缸液压机工作的公称力简化为作用于法兰半圆环重心上的两个集中力,如下图:

单缸液压机上横梁受力简图 最大弯矩在梁的中点: M max =P/2(1/2-D/∏) 式中:P—液压机公称压力(N); D—缸法兰的环形接触面平均直径(cm); L—立柱宽边中心距(cm)。 最大剪力为: Q =P/2 最大挠度在梁的中点: ?0=P/48EJ×(L/2-D/∏)×[3L2-4(L/2-D/∏)2]+KPL/4GA[1-2(D/∏L)] =PL3/48EJ×[1-6(D/∏L)2+4(D/∏L)3]+KPL/4GA[1-2(D/∏L)] 式中:E—梁的弹性模量(N/㎝2); J—梁的截面惯性矩(cm2); G—梁的剪切弹性模量(N/㎝2); A—梁的截面积(cm2); K—截面形状系数,见式(2—80)。

桥式起重机主梁强度、刚度计算

桥式起重机箱形主梁强度计算 一、通用桥式起重机箱形主梁强度计算(双梁小车型) 1、受力分析 作为室内用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。 其主梁上将作用有G P 、Q P 、H P 载荷。 主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。 当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。 2、主梁断面几何特性计算 上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。

图2-4 注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。 ① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。 ② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /) ④ 3 21232021122.)21(2)2(F F F h F h h F h H F F y F y i i c +++++- =∑?∑= (cm ) ⑤ 2 233 22323212113 112 212)(212y F Bh y F h h H b y F Bh J x ?++?+--+?+= (4cm ) ⑥ 202032231)2 2(21221212b b F h b B h B h J y ++++= (4cm )

第四章扭转的强度与刚度计算.

41 一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C B m (d ) (e ) 图19-5 (b )

梁的刚度计算

梁得强度与刚度计算 1.梁得强度计算 梁得强度包括抗弯强度、抗剪强度、局部承压强度与折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定得相应得强度设计值。 (1)梁得抗弯强度 作用在梁上得荷载不断增加时正应力得发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下: 梁得抗弯强度按下列公式计算: 单向弯曲时 ?????(5-3) 双向弯曲时 ?????(5-4) y轴式中:M x 、M y——绕x轴与y轴得弯矩(对工字形与H形截面,x轴为强轴, 为弱轴); W nx、Wny——梁对x轴与y轴得净截面模量; ——截面塑性发展系数,对工字形截面,;对箱形截面,;对其她截面,可查表得到; f ——钢材得抗弯强度设计值。 为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘得外伸宽度b与其厚度t之比大于,但不超过时,应取。 需要计算疲劳得梁,按弹性工作阶段进行计算,宜取。 (2)梁得抗剪强度 一般情况下,梁同时承受弯矩与剪力得共同作用。工字形与槽形截面梁腹板上得剪应力分布如图5-3所示。截面上得最大剪应力发生在腹板中与轴处。在主平面受弯得实腹式梁,以截面上得最大剪应力达到钢材得抗剪屈服点为承载力极限状态。因此,设计得抗剪强度应按下式计算 ???????(5-5) 式中:V——计算截面沿腹板平面作用得剪力设计值; S——中与轴以上毛截面对中与轴得面积矩;

I——毛截面惯性矩; t w——腹板厚度; f v——钢材得抗剪强度设计值。 图5-3腹板剪应力 当梁得抗剪强度不满足设计要求时,最常采用加大腹板厚度得办法来增大梁得抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力得计算。 (3)梁得局部承压强度 图5-4局部压应力 当梁得翼缘受有沿腹板平面作用得固定集中荷载且该荷载处又未设置支承加劲肋,或受有移动得集中荷载时,应验算腹板计算高度边缘得局部承压强度。 在集中荷载作用下,翼缘类似支承于腹板得弹性地基梁。腹板计算高度边缘得压应力分布如图5-4c得曲线所示。假定集中荷载从作用处以1∶2、5(在h y高度范围)与1∶1(在hR高度范围)扩散,均匀分布于腹板计算高度边缘。梁得局部承压强度可按下式计算 ???????(5-6) 式中:F——集中荷载,对动力荷载应考虑动力系数; ——集中荷载增大系数:对重级工作制吊车轮压,=1、35;对其她荷载,=1、0; ——集中荷载在腹板计算高度边缘得假定分布长度,其计算方法如下

第四章 扭的强度与刚度计算

一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C m (d ) (e ) 图19-5 (b )

梁的刚度计算

梁的刚度计算 The Standardization Office was revised on the afternoon of December 13, 2020

梁的强度和刚度计算 1.梁的强度计算 梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。 (1)梁的抗弯强度 作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下: 梁的抗弯强度按下列公式计算: 单向弯曲时 f W M nx x x ≤= γσ (5-3) 双向弯曲时 f W M W M ny y y nx x x ≤+=γγσ (5-4) 式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny ——梁对x 轴和y 轴的净截面模量; y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对 箱形截面,05.1==y x γγ;对其他截面,可查表得到; f ——钢材的抗弯强度设计值。

为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。 需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。 (2)梁的抗剪强度 一般情况下,梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。截面上的最大剪应力发生在腹板中和轴处。在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。因此,设计的抗剪强度应按下式计算 v w f It VS ≤= τ (5-5) 式中:V ——计算截面沿腹板平面作用的剪力设计值; S ——中和轴以上毛截面对中和轴的面积矩; I ——毛截面惯性矩; t w ——腹板厚度; f v ——钢材的抗剪强度设计值。 图5-3 腹板剪应力 当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。

第10 章 梁的强度和刚度.

第10 章梁的强度和刚度10-1选择题 1 弯曲变形时,弯曲剪应力在横截面上(D)分布。 A.均匀 B.线性 C.假设均匀 D.抛物线 2 弯曲变形时,弯曲正应力在横截面上(B)分布。 A.均匀 B.线性 C.假设均匀 D.抛物线 3 构件抵抗变形的能力称(A)。 A.刚度 B.强度 C.稳定性 D.极限强度

4 构件抵抗破坏的能力(B)。 A.刚度 B.强度 C.稳定性 D.极限强度 5 梁的一端固定另一端自由的梁称(D )。 A.简支 B.外伸 C.多跨 D.悬臂 6 梁的一端用固定铰,另一端用可动铰支座支承的梁称(A)梁。 A.简支 B.外伸 C.多跨 D.悬臂

7 简支梁的一端或二端伸出支座外的梁称(B )梁。 A.简支 B.外伸 C.多跨 D.悬臂 8 图示梁的最大挠度为(C )qa4/EI。 9 图示梁的最大转角为(C)qa3/EI。

10 梁的剪切弯曲变形时,梁横截面在上下边缘处的弯曲应力为( A)。 A.剪应力为零、正应力最大B.剪应力最大、正应力最大 C.剪应力为零、正应力为零D.剪应力最大、正应力为零 11 等强度梁的截面尺寸(C ) A.与载荷和许用应力均无关 B.与载荷无关,而与许用应力有关 C.与载荷和许用应力均有关 D.与载荷有关,而与许用应力无关

12 在材料和荷载确定的情况下,提高梁的强度和刚度的最好办法是增大(C )。 A.截面面积 B.截面静矩 C.截面惯性矩 D.都不对 13 矩形截面梁的横截面高度增加到原来的两倍,截面的抗弯能力将增大到原来的(C)。 A 2倍 B 3倍 C 4倍 D.8倍

梁的刚度计算

1 ?梁的强度计算 梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求 在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。 (1)梁的抗弯强度 作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段, 以双轴对 称工字形截面为例说明如下: 梁的抗弯强度按下列公式计算: 单向弯曲时 M x x W nx 双向弯曲时 M x 式中:M 、M ---- 绕x 轴和y 轴的弯矩(对工字形和 H 形截面,x 轴为强轴,y 轴 为弱轴); W W ――梁对x 轴和y 轴的净截面模量; x , y ――截面塑性发展系数,对工字形截面, x 1.05, y 1.20 ;对箱 形截面,x y 1.05 ;对其他截面,可查表得到; f ——钢材的抗弯强度设计值。 为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其 厚度t 之比大于13._ 235/ f y ,但不超过15, 235/ f y 时,应取x 1.0。 需要计算疲劳的梁,按弹性工作阶段进行计算,宜取 x y 1.0 o (2)梁的抗剪强度 一般情况下,梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板 上的剪应力分布如图5-3所示。截面上的最大剪应力发生在腹板中和轴处。 在主 平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极 限状态。因此,设计的抗剪强度应按下式计算 (5-3) (5-4) x W nx y W ny

VS It w 式中:V ——计算截面沿腹板平面作用的剪力设计值; S ――中和轴以上毛截面对中和轴的面积矩; I ――毛截面惯性矩; t w ——腹板厚度; f v ——钢材的抗剪强度设计值。 图5-3 腹板剪应力 当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁 的抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截 面处有较大削弱时,才需进行剪应力的计算。 (3)梁的局部承压强度 图5-4局部压应力 当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承 加劲肋,或受有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。 在集中荷载作用下,翼缘类似支承于腹板的弹性地基梁。 腹板计算高度边缘 的压应力分布如图5-4c 的曲线所示。假定集中荷载从作用处以 1 :(在h y 高度 范围)和1 : 1(在h R 高度范围)扩散,均匀分布于腹板计算高度边缘。梁的局 部承压强度可按下式计算 F c t w 1 z 式中:F ——集中荷载,对动力荷载应考虑动力系数; 集中荷载增大系数:对重级工作制吊车轮压, 二;对其他荷载, l z ——集中荷载在腹板计算高度边缘的假定分布长度,其计算方法如下 跨中集中荷载 l z = a+5h y +2h R 梁端支反力 I z = a++ai a --- 集中荷载沿梁跨度方向的支承长度,对吊车轮压可取为 50mm (5-5) (5-6)

强度计算和刚度计算

8 强度计算和刚度计算 8.1在图2.1所示的简易吊车中,BC 为钢杆,AB 为木杆。木杆AB 的横截面面积2 1100cm A =,许用 应力[]MPa 71=σ;钢杆BC 的横截面面积2 26cm A =,许用应力[]MPa 1602=σ,试求许可吊重P 。 图8-1 8.2图7.2所示的拉杆沿斜截面m-m 由两部分胶合而成。力。试问:为使杆件承受最大拉力N ,α角的值应为多少?若杆件横截面面积为2 4cm ,并规定 60≤α,试确定许可荷载P 。 图8-2 8.3 一矩形截面梁,梁上作用均布荷载,已知:l=4m ,b=14cm ,h=21cm ,q=2kN/m ,弯曲时木材的容许应 力 []kPa 4 101.1?=σ,试校核梁的强度。 图8-3 8.4 图示矩形截面木梁,许用应力[σ]=10Mpa 。 (1)试根据强度要求确定截面尺寸b 。 (2)若在截面A 处钻一直径为d=60mm 的圆孔(不考虑应力集中),试问是否安全。

图8-4 8.5欲从直径为d的圆木中截取一矩形截面梁,试从强度角度求出矩形截面最合理的高h和宽b。 8.6 图示外伸梁,承受荷载F作用。已知荷载F=20kN,许用应力[σ]=160Mpa,许用剪应力[τ]=90Mpa。请选择工字钢型号。 图8-6 8.7一铸铁梁,其截面如图所示, 已知许用压应力为许用拉应力 的4倍,即[σc]=4[σt]。 试从强度方面考虑,宽度b为何值最佳。 图8-7 8.8 当荷载F直接作用在简支梁,AB的跨度中点时,梁内最大弯曲正应力超过许用应力30%。为了消除此种过载,配置一辅助梁CD,试求辅助梁的最小长度a。 图8-8

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 N、 <7 =——< f(4-1) 4 式中:N一构件的轴心拉力或压力设计值; A,_——构件的净截面面积; f——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已山孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: N' b =——

轴心受力构件的刚度是以限制其长细比来保证的,即

2 <[A] 式中:A——构件的最大长细比; [2]——构件的容许长细比。 3.轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: (4-25) 式中:(P—轴心受压构件的整体稳定系数,0 = 2工。 J y 整体稳定系数0值应根据构件的截面分类和构件的长细比查表得到。 构件长细比兄应按照下列规定确定: (1)截面为双轴对称或极对称的构件 (4-26) 式中:h,心一构件对主轴x和y的计算长度; 止,.一构件截面对主轴x和〉,的回转半径。 双轴对称十字形截面构件,人或九取值不得小于5.07b/t (其中b/t为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为),轴)的稳定应取计?及扭转效应的下列换算长细比代替心 葢“詔/(人/25.7 + J//:)

相关文档
最新文档