五年级数学最大公因数和最小公倍数应用题

合集下载

最大公因数和最小公倍数和列方程应用题1

最大公因数和最小公倍数和列方程应用题1

最大公因数和最小公倍数和列方程应用题1.甲、乙、丙三个班的同学去公园划船,甲班49人,乙班56人,丙班42人。

把各班同学分别分成小组,分乘若干条小船,使每条船上人数相等,最少要多少条船?2.有三根铁丝,长度分别是120厘米、180厘米、300厘米。

现在要把它们截成相等的小段,每根都不能有剩余。

每小段最长多少厘米?一共可以截成多少段?3.兄弟三人在外工作,大哥6天回家一次,二哥8天回家一次,小弟12天回家一次。

兄弟三人同时在十月一日回家,下一次三人再见面是哪一天?4.三个朋友每人隔不同的天数去图书馆一次,甲3天一次,乙4天一次,丙5天一次。

上次三人是星期二在图书馆相逢的,至少要过多少天才能在图书馆重逢?重逢时是星期几?5.两个数的最大公约数是14,最小公倍数是84。

已知其中一个数是28,则另一个数是多少?6.甲数是28,甲、乙两数的最小公倍数是168,最大公约数是4,求乙数。

7.三个连续自然数的最小公倍数是360,求这三个数。

8.三个连续自然数的最小公倍数是1092,求这三个数。

9.爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过几年分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?10.大雪后的一天,亮亮和爸爸从同一点出发沿同一方向分别步测一个圆形花坛的周长。

亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印。

问这个花坛的周长是多少?11.现有四个自然数,它们的和是1111。

如果要求这四个数的公约数尽可能大,那么这四个数的公约数最大可能是多少?12.有三个互不相同的数,它们的和为721。

它们的公约数最大可能是多少?13.已知两个数的最大公约数是21,最小公倍数是126,求这两个数的和是多少。

14.已知两个数的最大公约数是4,最小公倍数是120,求这两个数。

15.两根铁丝分别长65米和95米,用一根绳子分别测量它们,都恰好量完无剩余,这根绳子最多有多长?16.一块砖底面长22厘米,宽是10厘米,要铺成一个正方形地面(不要折断,只能铺整砖)至少要多少块砖?17.小明和小华骑自行车同时从相距120千米的甲乙两地相向而行,3小时相遇,小明的速度是小华的3倍,求他们的速度各是多少?18.某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?19.弟弟有课外书20本,哥哥有课外书25本。

最大公因数与最小公倍数应用题

最大公因数与最小公倍数应用题

最大公因数与最小公倍数应用题1、假设这些糖果最少有x个,那么x既能被8整除,又能被10整除,因此x是8和10的最小公倍数,即x=40.2、假设这包糖最少有y块,那么y既能被8整除,又能被10整除,因此y是8和10的最小公倍数,即y=40.3、这个数是4的倍数,因为4除以4余数是0,所以这个数必须被4整除。

这个数是6的倍数,因为6除以6余数是0,所以这个数必须被6整除。

这个数比6的倍数多1,因此这个数必须是6的倍数加1.因此这个数是24+1=25.4、这个人数是30~50的倍数,且是3、4、6、8的公倍数。

这个人数是120的倍数,且小于等于50,因此这个人数是120.5、每个正方形由6块瓷砖组成,因此正方形的面积等于6的倍数。

正方形的边长等于瓷砖的公因数,因此正方形的面积最小是6×6=36.6、假设这堆苹果最少有x千克,那么x既能被8整除,又能被9整除,又能被10整除,因此x是8、9、10的最小公倍数加3,即x=89.7、假设合唱队至少有x人,那么x既能被7整除,又能被8整除,因此x是7和8的最小公倍数加2,即x=54.8、假设最多有x个研究成绩优秀的同学,那么x既能被37和38整除,又要满足钢笔多出一支,书缺2本,因此x是37和38的最小公倍数加1,即x=703.9、这些水果的最大公因数是8,因此每个盘子里的水果数是8的倍数。

苹果和梨的总数是24+32=56,因此每个盘子里的水果数最多是56/2=28.每个盘子里苹果和梨的个数相同,因此每个盘子里苹果和梨各有14个。

10、这两路汽车同时发车的时间是它们发车时间的最小公倍数,即3×5=15分钟后。

11、这个年级的人数是6、8和9的公倍数,因此这个年级的人数是216.12、这个数是3的倍数,因为3除以3余数是0,所以这个数必须被3整除。

这个数是4的倍数,因为4除以4余数是0,所以这个数必须被4整除。

这个数比4的倍数多2,因此这个数必须是4的倍数加2.这个数是5的倍数,因为5除以5余数是0,所以这个数必须被5整除。

(完整版)最大公因数与最小公倍数综合应用题练习及答案④

(完整版)最大公因数与最小公倍数综合应用题练习及答案④

最大公因数与最小公倍数综合应用练习及答案(四)1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?2、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。

这包糖至少有多少块?3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?4、五年级学生参加植树活动,人数在30~50之间。

如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。

五年级参加植树活动的学生有多少人?5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。

问:拼成的正方形的面积最小是多少?6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘子里苹果和梨各多少?10、阜沙市场是20路和21路汽车的起点站。

20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。

这两路汽车同时发车以后,至少再过多少分钟又同时发车?11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。

这个年级至少有学生多少人?12、有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问个盘子里最少有多少个水果?13、有一个电子表,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子表既响铃又亮灯,请问下一次既响铃又亮灯的是几点钟?14、数学兴趣小组有24个男同学,20个女同学,现要分成小组,每个小组男、女同学人数分别相同,最多可以分成多少个小组?每组至少有多少个男同学?多少个女同学?15、有38支铅笔和41本练习本平均奖给若干个好少年,结果铅笔多出3支,练习本还缺1本。

最大公因数和最小公倍数应用的典型例题和专题练习

最大公因数和最小公倍数应用的典型例题和专题练习

最大公因数和最小公倍数应用的典型例题和专题练习TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】最大公因数和最小公倍数应用的典型例题和专题练习[典型例题]例1、有三根铁丝,一根长18米,一根长24米,一根长30米。

现在要把它们截成同样长的小段。

每段最长可以有几米一共可以截成多少段分析与解:截成的小段一定是18、24、30的最大公因数。

先求这三个数的最大公因数,再求一共可以截成多少段。

解答:(18、24、30)=6(18+24+30)÷6=12段答:每段最长可以有6米,一共可以截成12段。

例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米能截多少个正方形分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。

解答:(36、60)=12(60÷12)×(36÷12)=15个答:正方形的边长可以是12厘米,能截15个正方形。

例3、用96朵红玫瑰花和72朵白玫瑰花做花束。

若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束每个花束里至少要有几朵花分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。

解答:(1)最多可以做多少个花束(96、72)=24(2)每个花束里有几朵红玫瑰花96÷24=4朵(3)每个花束里有几朵白玫瑰花72÷24=3朵(4)每个花束里最少有几朵花4+3=7朵例4、公共汽车站有三路汽车通往不同的地方。

第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。

五年级数学最大公因数和最小公倍数应用题

五年级数学最大公因数和最小公倍数应用题

最大公约数和最小公倍数应用题1.认真理解整除的概念;2.熟练运用求最大公因数与最小公倍数的方法:短除法3.对题意的深入理解;例题1 一张长方形纸,长96厘米,宽60厘米,如果把它裁成同样大小且边长为整厘米的最大正方形,且保持纸张没有剩余,每个正方形的边长是几厘米?每个正方形的面积是多少?可以裁多少个这样的正方形?随堂练习: 1.有一块长方形纸板,长24厘米,宽15厘米,将这块纸板裁成同样大小的正方形,不能有剩余,每块小正方形的边长是最长是多少?可以裁成多少块?2.王师傅找到一块长72厘米,宽60厘米,高48厘米的长方体木料,王师傅把它锯成同样大小的正方体木块,木块的体积最大,不能有剩余,算一算,可以锯成多少块?3.五(1)班给每个同学买了1个练习本,共花去9.30元钱,已知每个练习本的价钱比学生人数少,五(1)班共有多少个学生?例题2 张林、李强都爱在图书馆看书,张林每4天去一次,李强每6天去一次,有一次他们两人在图书馆相遇,至少再过多少天他们又可以在图书馆相遇?随堂练习: 1.有一包奶糖,无论分给6个小朋友,8个小朋友,还是10个小朋友,都正好分完,这包糖至少有多少块?2.某公共汽车站有三条不同线路,1路车每隔6分钟发一辆,2路车每隔10分钟发一辆,3路车每隔12分钟发一辆,三路车在早上8点同时发车后,至少再到什么时候又可以同时发车?3.一个班不足50人,上体育课站队时,无论每行站16人,还是每行站24人,都正好是整行,这个班有多少人?例题3 用一个数去除52,余4,再用这个数去除40,也余4,这个数最大是多少?随堂练习: 1.把19支钢笔和23个软面抄平均奖给几个三好学生,结果钢笔多出了3支,软面抄也多出了3三,得奖的学生最多有几人?2.一个自然数,去除22少2,去除34也少2,这个自然数最大是几?3.一个数除73余1,除98余2,除147余3,这个数最大应是多少?例题4 有一批作业本,无论是平均分给10个人,还是12个人,都剩余4本,这批作业本至少有多少本?随堂练习: 1.有一箱卡通书,把它平均分给6个小朋友,多出1本;平均分给8个小朋友,也多出1本;平均分给9个小朋友,还是多1本,这箱卡通书最少有多少本?2.五年级同学参加社区服务活动,人数在40和50之间,如果分成3人一组,4人一组或6人一组都正好缺一人,五年级参加活动的一共有多少人?4.有一篮鸡蛋,两个两个去数,余1个;三个三个去数,余2个;四个四个去数,余3个,这篮鸡蛋至少有多少个?课堂作业: 1.有两根钢管,一根长25米,一根长20米,把它们锯成同样长的小段,使每根不许有剩余,每段最长几米?一共要锯几次?2.李老师要把84本语文课本,70本数学课本,56本自然课本,平均分为若干堆,每堆中这三种课本的数量分别相等,那么最多可以分成多少堆?每堆中有语文、数学、自然课本各多少本?3缝纫店有一块长40分米,宽25分米的布料,现在顾客要求把它裁成正方形小布块(不能有剩余),块数又要求最少,那么裁成的正方形不布块面积有多大?4.一盒铅笔,可以平均分给4,5,6个小朋友,都没有剩余,这盒铅笔最少有多少只?5.某学校暑假期间安排王老师生4天值一次班,李老师每6天值一次班,张老师每8天值一次班,如果7月1日他们三人同一天值班,下一次他们三人同一天值班是几月几日?6.开学初,学校准备了96个黑板擦,72把扫帚,48个纸篓,平均分给各个班。

五年级下学期最大公因数与最小公倍数应用题及练习题

五年级下学期最大公因数与最小公倍数应用题及练习题

五年级下学期最大公因数与最小公倍数应用题及练习题精心整理最大公约数与最小公倍数1)有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?2)把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?3)把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块?4)用长120厘米,宽80厘米的长方形砖块去铺一块正方形地,最少需要多少块砖?5)一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最少有多少枝?7)每筐梨,按每份2个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?8)现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?每个班至少分到了三种水果各多少千克?9)有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?10)有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装袋(均为整数克),每袋价值相等,要使每袋价值最低应如何装袋?111)一次考试,参加的学生中有711得优,3得良,2得中,别的的得差,已知参加测验的学生不满50人,那么得差的学生有几何人?12)一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C 饮料.问参加会餐的人数是几何人?13)把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而XXX还缺2个,一共最多有几何个小朋友?14)因夜间施工需要,要把施工区的一条长120米的路边路灯有间隔6米改成间隔4米,除两端不需移动,中间还有几盏不需移动?15)两个数的积是6912,最大公因数是24,求它们的最小公倍数?16)甲、乙、丙三个学生按期向某教师讨教,甲每4天去一次,乙每6天去一次,丙每9天去一次,假如这一次他们三人是3月23日都在这个教师家见面,那么下一次三人都在这个教师家见面的工夫是几月几日?17)求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.最大公因数与最小公倍数操演题1、填空:1、假如天然数A除以天然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。

a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。

求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。

与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。

质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。

例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。

把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。

例如:求6和15的最小公倍数。

先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。

短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。

短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。

五年级数学最大公因数和最小公倍数应用题

最大公约数和最小公倍数应用题1.认真理解整除的概念;2.熟练运用求最大公因数与最小公倍数的方法:短除法3.对题意的深入理解;例题1 一张长方形纸,长96厘米,宽60厘米,如果把它裁成同样大小且边长为整厘米的最大正方形,且保持纸张没有剩余,每个正方形的边长是几厘米?每个正方形的面积是多少?可以裁多少个这样的正方形?随堂练习:1.有一块长方形纸板,长24厘米,宽15厘米,将这块纸板裁成同样大小的正方形,不能有剩余,每块小正方形的边长是最长是多少?可以裁成多少块?2.王师傅找到一块长72厘米,宽60厘米,高48厘米的长方体木料,王师傅把它锯成同样大小的正方体木块,木块的体积最大,不能有剩余,算一算,可以锯成多少块?3.五(1)班给每个同学买了1个练习本,共花去9.30元钱,已知每个练习本的价钱比学生人数少,五(1)班共有多少个学生?例题2 张林、李强都爱在图书馆看书,张林每4天去一次,李强每6天去一次,有一次他们两人在图书馆相遇,至少再过多少天他们又可以在图书馆相遇?随堂练习:1.有一包奶糖,无论分给6个小朋友,8个小朋友,还是10个小朋友,都正好分完,这包糖至少有多少块?2.某公共汽车站有三条不同线路,1路车每隔6分钟发一辆,2路车每隔10分钟发一辆,3路车每隔12分钟发一辆,三路车在早上8点同时发车后,至少再到什么时候又可以同时发车?3.一个班不足50人,上体育课站队时,无论每行站16人,还是每行站24人,都正好是整行,这个班有多少人?例题3 用一个数去除52,余4,再用这个数去除40,也余4,这个数最大是多少?随堂练习:1.把19支钢笔和23个软面抄平均奖给几个三好学生,结果钢笔多出了3支,软面抄也多出了3三,得奖的学生最多有几人?2.一个自然数,去除22少2,去除34也少2,这个自然数最大是几?3.一个数除73余1,除98余2,除147余3,这个数最大应是多少?例题4 有一批作业本,无论是平均分给10个人,还是12个人,都剩余4本,这批作业本至少有多少本?随堂练习:1.有一箱卡通书,把它平均分给6个小朋友,多出1本;平均分给8个小朋友,也多出1本;平均分给9个小朋友,还是多1本,这箱卡通书最少有多少本?2.五年级同学参加社区服务活动,人数在40和50之间,如果分成3人一组,4人一组或6人一组都正好缺一人,五年级参加活动的一共有多少人?4.有一篮鸡蛋,两个两个去数,余1个;三个三个去数,余2个;四个四个去数,余3个,这篮鸡蛋至少有多少个?课堂作业:1.有两根钢管,一根长25米,一根长20米,把它们锯成同样长的小段,使每根不许有剩余,每段最长几米?一共要锯几次?2.李老师要把84本语文课本,70本数学课本,56本自然课本,平均分为若干堆,每堆中这三种课本的数量分别相等,那么最多可以分成多少堆?每堆中有语文、数学、自然课本各多少本?3缝纫店有一块长40分米,宽25分米的布料,现在顾客要求把它裁成正方形小布块(不能有剩余),块数又要求最少,那么裁成的正方形不布块面积有多大?4.一盒铅笔,可以平均分给4,5,6个小朋友,都没有剩余,这盒铅笔最少有多少只?5.某学校暑假期间安排王老师生4天值一次班,李老师每6天值一次班,张老师每8天值一次班,如果7月1日他们三人同一天值班,下一次他们三人同一天值班是几月几日?6.开学初,学校准备了96个黑板擦,72把扫帚,48个纸篓,平均分给各个班。

五年级公因数和公倍数的题120道

五年级公因数和公倍数的题120道一、公因数相关题目(60道,先20道带解析)1. 求12和18的最大公因数。

- 解析:分别列出12和18的因数。

12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。

它们共有的因数有1、2、3、6,其中最大的是6,所以12和18的最大公因数是6。

2. 求24和36的最大公因数。

- 解析:24的因数有1、2、3、4、6、8、12、24;36的因数有1、2、3、4、6、9、12、18、36。

共有的因数为1、2、3、4、6、12,最大公因数是12。

3. 求15和25的最大公因数。

- 解析:15的因数是1、3、5、15,25的因数是1、5、25。

它们的公因数有1和5,最大公因数是5。

4. 求8和12的最大公因数。

- 解析:8的因数有1、2、4、8,12的因数有1、2、3、4、6、12。

共有的因数为1、2、4,最大公因数是4。

5. 求20和30的最大公因数。

- 解析:20的因数有1、2、4、5、10、20,30的因数有1、2、3、5、6、10、15、30。

公因数有1、2、5、10,最大公因数是10。

6. 求16和24的最大公因数。

- 解析:16的因数有1、2、4、8、16,24的因数有1、2、3、4、6、8、12、24。

共有的因数为1、2、4、8,最大公因数是8。

7. 求9和15的最大公因数。

- 解析:9的因数有1、3、9,15的因数有1、3、5、15。

公因数为1和3,最大公因数是3。

8. 求14和21的最大公因数。

- 解析:14的因数有1、2、7、14,21的因数有1、3、7、21。

共有的因数为1、7,最大公因数是7。

9. 求28和42的最大公因数。

- 解析:28的因数有1、2、4、7、14、28,42的因数有1、2、3、6、7、14、21、42。

公因数有1、2、7、14,最大公因数是14。

10. 求10和15的最大公因数。

- 解析:10的因数有1、2、5、10,15的因数有1、3、5、15。

五年级下册数学最大公因数和最小公倍数


他们共同的休息日:12,24 这些数和4,6有什么关系?
4和6的公倍数:
……
4和6的公倍数还能找出一些来吗? 可以找多少?
其中最早的一天: 12 最小公倍数:
4的倍数:4,8,12,16,20,24,28,… 6的倍数:6,12,18,24,30,… 4和6的公倍数:12, 24,… 4和6的最小公倍数:12
要求把它剪成若干个大小相同的最大正方形,实际上就是求硬纸板的 长和宽的最大公因数。(60, 56)=4,所以最大正方形的边长是 4 厘米。 答:最大正方形的边长是 4 厘米。
例2:甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行 一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟。 三辆汽车同时从同一个起点出发,问:这三辆汽车至少要多 长时间才能同时回到出发地?
要把96朵红玻瑰花和72朵白玫瑰花做成花束,且每束花里的红玻瑰花朵数相同, 白玫瑰花朵数也相同,那么做成花束的个数一定是96和72 的公因数,又要求花束 的个数最多,所以花束的个数应是96和72的最大公因数。 解:最多可以做多少个花束?(96,72)=24(个) 每个花束里有几朵红玫瑰花? 96÷24=4(朵) 每个花束里有几朵白玫瑰花? 72 ÷ 24=3(朵) 每个花束里至少有几朵花? 4+3=7(朵) 答:最多可以做24个花束,每个花束里至少有7朵花。
8的因数: 1,2,4,8。 12的因数:1,2,3,4,6,12。 8和12的公因数: 1,2,4。
最大公因数
有三根铁丝,分别长8厘米、12厘米、 6厘米,要把它们截成同样大小的小段 (取整厘米数),不能有剩余,每段铁丝 最长多少厘米?
8的因数: 1,2,4,8。 12的因数:1,2,3,4,6,12。 6的因数: 1,2,3,6。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、一张长方形纸,长96厘米,宽60厘米,如果把它裁成同样大小且边长为整厘米的最大正方形,且保持纸张没有剩余,每个正方形的边长是几厘米?每个正方形的面积是多少?可以裁多少个这样的正方形?
2、有一块长方形纸板,长24厘米,宽15厘米,将这块纸板裁成同样大小的正方形,不能有剩余,每块小正方形的边长是最长是多少?可以裁成多少块?
3、王师傅找到一块长72厘米,宽60厘米,高48厘米的长方体木料,王师傅把它锯成同样大小的正方体木块,木块的体积最大,不能有剩余,算一算,可以锯成多少块?
4、五(1)班给每个同学买了1个练习本,共花去9.30元钱,已知每个练习本的价钱比学生人数少,五(1)班共有多少个学生?
5、张林、李强都爱在图书馆看书,张林每4天去一次,李强每6天去一次,有一次他们两人在图书馆相遇,至少再过多少天他们又可以在图书馆相遇?
6、有一包奶糖,无论分给6个小朋友,8个小朋友,还是10个小朋友,都正好分完,这包糖至少有多少块?
7、某公共汽车站有三条不同线路,1路车每隔6分钟发一辆,2路至少再车每隔10分钟发一辆,3路车每隔12分钟发一辆,三路车在早上8点同时发车后,到什么时候又可以同时发车?
8、一个班不足50人,上体育课站队时,无论每行站16人,还是每行站24人,都正好是整行,这个班有多少人?
9、用一个数去除52,余4,再用这个数去除40,也余4,这个数最大是多少?
10、把19支钢笔和23个软面抄平均奖给几个三好学生,结果钢笔多出了3支,软面抄也多出了3个,得奖的学生最多有几人?
11、一个自然数,去除22少2,去除34也少2,这个自然数最大是几?
12、一个数除73余1,除98余2,除147余3,这个数最大应是多少?
13、有一批作业本,无论是平均分给10个人,还是12个人,都剩余4本,这批作业本至少有多少本?
14、有一箱卡通书,把它平均分给6个小朋友,多出1本;平均分给8个小朋友,也多出1本;平均分给9个小朋友,还是多1本,这箱卡通书最少有多少本?
15、五年级同学参加社区服务活动,人数在40和50之间,如果分成3人一组,4人一组或6人一组都正好缺一人,五年级参加活动的一共有多少人?
16、有一篮鸡蛋,两个两个去数,余1个;三个三个去数,余2个;四个四个去数,余3个,这篮鸡蛋至少有多少个?
17、有两根钢管,一根长25米,一根长20米,把它们锯成同样长的小段,使每根不许有剩余,每段最长几米?一共要锯几次?
18、李老师要把84本语文课本,70本数学课本,56本自然课本,平均分为若干堆,每堆中这三种课本的数量分别相等,那么最多可以分成多少堆?每堆中有语文、数学、自然课本各多少本?
19、缝纫店有一块长40分米,宽25分米的布料,现在顾客要求把它裁成正方形小布块(不能有剩余),块数又要求最少,那么裁成的正方形不布块面积有多大?
20、一盒铅笔,可以平均分给4,5,6个小朋友,都没有剩余,这盒铅笔最少有多少只?
21、某学校暑假期间安排王老师生4天值一次班,李老师每6天值一次班,张老师每8天值一次班,如果7月1日他们三人同一天值班,下一次他们三人同一天值班是几月几日?
22、开学初,学校准备了96个黑板擦,72把扫帚,48个纸篓,平均分给各个班。

每一种物品的个数都对应相等,最多可分给多少个班?每种物品各几个?
2.从运动场的一端到另一端全长120米,从一端起到另一端每隔4米插一面小红旗,现在要改成每隔6米插一面小红旗,最多有多少面小红旗不必移动?
3.某市有一个三角形公园,三边长分别为498米,612米,528米。

计划在公园周围每隔若干米植一棵樟树,并且每两棵之间的距离最远,每两棵树相隔多远
课后作业:1.爸爸拿了216元钱去买一种书,正好把钱用完,如果每本书降价1元钱,则可以多买3本,钱也正好用完,爸爸一共买了多少本书?
2.有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?
2.五(1)班和五(2)班两个班的同学去野炊,吃饭时,他们3人一个菜碗,4人一个汤碗,他们共用了28个碗,这两个班参加野炊的同学共有多少人?
3.学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?
5.甲、乙、丙三人早晨在体育场跑步,甲跑完一圈要3分钟,乙跑完一圈要7分钟,丙跑完一圈要6分钟,三人同时从起点出发,经过多长时间三人再次在起点处相遇?
6.把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,
书还缺2本,最多有几个学习成绩优秀的?。

相关文档
最新文档